Уход и... Инструменты Дизайн ногтей

Отражение инфракрасного излучения. Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения. Вред и польза инфракрасного излучения

Все многообразие излучений, исходящих от Солнца, имеет единую природу - это электромагнитные волны. Разнообразие в их свойствах вызвано отличиями в длине волны. Видимая часть спектра солнечного излучения начинается с самых коротких - фиолетовых волн (0,38 мкм) и завершается самыми длинными волнами (0,76 мкм), которые человеческий глаз воспринимает, как красный цвет.

Немецкий учёный Гершель в 1800 году обнаружил за красной частью спектра некие невидимые лучи, вызывающее значительное повышение температуры термометра, используемого им для исследования. Это излучение было названо - инфракрасным.

Каково влияние инфракрасного излучения на организм человека? Давайте это выясним.

Что такое инфракрасное излучение

Излучение, примыкающее к красной части видимого спектра, не воспринимаемое нашими органами зрения, но обладающее способностью нагревать освещаемые поверхности, было названо инфракрасным. Приставка «инфра» означает «больше». В нашем случае - это электромагнитные лучи с длиной волны большей, чем у видимого красного света.

Что является источником инфракрасного излучения

Его естественным источником является Солнце. Диапазон инфракрасных лучей достаточно широк. Это волны с длиной от 7 и до 14 микрометра (мкм). Частичное поглощение и рассеяние инфракрасных лучей происходит в атмосфере Земли.

О масштабах инфракрасного солнечного излучения говорит тот факт, что на него приходится 58% всего спектра электромагнитных волн, исходящих от нашего светила.

Такой, достаточно широкий диапазон ИК лучей делят на три части:

  • длинные волны, излучаемые нагревателем с температурой до 300 °C;
  • средние - до 600 °C;
  • короткие - более 800 °C.

Все они излучаются возбуждёнными атомами (т. е. обладающими избыточной энергией), а также ионами вещества. Источником ИК излучения являются все тела, если их температура выше абсолютного нуля (минус 273 °C).

Итак, в зависимости от температуры излучателя формируются ИК лучи разной длины волны, интенсивности и проникающей способности. А от этого и зависит, как инфракрасное излучение воздействует на живой организм.

Польза и вред ИК излучения для здоровья человека

Ответить на вопрос - вредно ли для человека инфракрасное излучение, можно, вооружившись некоторыми сведениями.

Длинноволновые ИК лучи, попадая на кожу, воздействует на нервные рецепторы, вызывая ощущение тепла. Поэтому инфракрасное излучение ещё называют тепловым.

Более 90% этого излучения поглощается влагой, содержащейся в верхних слоях кожи. Оно вызывает лишь повышение температуру кожного покрова. Медицинские исследования показали, что длинноволновое излучение не только безопасно для человека, но и повышает иммунитет, запускает механизм регенерации и оздоровления многих органов и систем. Особенно эффективными в этом отношении являются ИК лучи с длиной волны 9,6 мкм. Этими обстоятельствами обусловлено применение инфракрасного излучения в медицине.

Совсем иной механизм воздействия инфракрасных лучей на организм человека, относящегося коротковолновой части спектра. Они способны проникнуть на глубину нескольких сантиметров, вызывая нагревание внутренних органов.

В месте облучения из-за расширения капилляров может появиться покраснение кожи, вплоть до образования волдырей. Особенно опасны короткие ИК лучи для органов зрения. Они могут спровоцировать образования катаракты, нарушения водно-солевого баланса, появления судорог.

Причиной известного эффекта теплового удара служит именно коротковолновое ИК излучение. Повышение температуры головного мозга на 1 °C уже вызывает его признаки:

Перегревание на 2 °C может спровоцировать развитие менингита.

Теперь разберёмся с понятием интенсивности электромагнитного излучения. Этот фактор зависит от расстояния до источника тепла и его температуры. Длинноволновое тепловое излучение малой интенсивности играет важную роль для развития жизни на планете. Человеческий организм нуждается в постоянной подпитке этими длинами волн.

Таким образом, определяется длиной волны и временем воздействия.

Как избежать вредного воздействия ИК лучей

Поскольку мы определились, что негативное влияние на человеческий организм оказывает коротковолновое ИК излучение, выясним, где нас может подстерегать эта опасность.

Прежде всего это тела с температурой, превышающей 100 °C. Такими, могут явиться следующие.

  1. Производственные источники лучистой энергии (сталеплавильные, электродуговые печи и пр.) Снижение опасности их воздействия достигается специальной защитной одеждой, теплозащитными экранами, применением более новых технологий, а также лечебно-профилактическими мероприятиями для обслуживающего персонала;
  2. . Самым надёжным и проверенным из них является русская печь. Излучаемое ею тепло не только чрезвычайно приятно, но и целебно. К великому сожалению эта деталь быта почти полностью канула в Лету. На смену ей пришли все возможные электрические обогреватели. Те из них, чья тепловыделяющая спираль защищена теплоизолирующим материалом, излучают мягкое длинноволновое излучение. Оно оказывает благотворное влияние на организм. Обогреватели с открытым нагревательным элементом излучают жёсткое, коротковолновое излучение, которое и может привести к описанным выше негативным последствиям. В техническом паспорте обогревателя производитель обязан указать характер излучения этого прибора.

Если же вы стали обладателем коротковолнового обогревателя, соблюдайте правило - чем ближе обогреватель, тем меньшим должно быть время его воздействия.

Помощь при тепловом ударе

Природа наделила человека очень совершенной системой терморегуляции. Но, если все же имеет место тепловой удар, следует выполнить определённый комплекс мероприятий, минимизирующих его последствия:

Человечество живёт в мире природных и рукотворных источников различных излучений. Неоспоримо воздействие инфракрасного излучения на организм человека. Но нет статистики, доказывающей его вред.

А знание закономерностей его взаимодействия с биологическими объектами позволяет использовать полезное влияние инфракрасного излучения на человека для предотвращения болезней и терапии различных заболеваний.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.


Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.


ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.


Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.


Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.


Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Умеем делать? Не-а.

Мы все привыкли к тому, что цветы красные, черные поверхности не отражают свет, кока-кола непрозрачная, горячим паяльником нельзя ничего осветить как лампочкой, а фрукты можно легко отличить по их цвету. Но давайте представим на минутку, что мы может видеть не только видимый диапазон(хи-хи), но и ближний инфракрасный. Ближний инфракрасный свет - это вовсе не то, что можно увидеть в . Он скорее ближе в видимому свету, чем к тепловому излучению. Но у него есть ряд интересных особенностей - часто совершенно непрозрачные в видимом диапазоне предметы отлично просвечиваются в инфракрасном свете - пример на первой фотографии.
Черная поверхность плитки прозрачна для ИК, и с помощью камеры, у которой снят с матрицы фильтр можно рассмотреть часть платы и нагревательный элемент.

Для начала - небольшое отступление. То, что мы называем видимым светом - всего лишь узкая полоска электромагнитного излучения .
Вот, например я упер с википедии такую картинку:


Мы просто не видим ничего кроме этой маленькой части спектра. И фотоаппараты, которые делают люди - изначально кастрированы, чтобы добиться похожести фотоснимка и человеческого зрения. Матрица фотоаппарата способна видеть инфракрасный спектр, но специальным фильтром(он называется Hot-mirror) эта возможность убирается - иначе снимки будут выглядеть несколько непривычно для человеческого глаза. А вот если этот фильтр убрать…

Камера

Подопытным выступил китайский телефон, который изначально предназначался для обзора. К сожалению, выяснилось что радиочасть у него жестоко глючит - то принимает, то не принимает звонки. Само-собой, писать я про него не стал, но китайцы не захотели ни выслать замену, ни забрать этот. Так он остался у меня.
Разбираем телефон:


Вытаскиваем камеру. Паяльником и скальпелем аккуратно отделяем фокусировочный механизм(сверху) от матрицы.

На матрице должно быть тонкое стеклышко, возможно с зеленоватым или красноватым отливом. Если там его не - посмотрите на часть с «объективом». Если нет и там, то скорее всего все плохо - оно напылено на матрицу или на одну из линз, и снять ее будет более проблематично, чем найти нормальную камеру.
Если оно есть - нам надо его как можно более аккуратно снять, не повредив матрицу. У меня оно треснуло при этом, и пришлось долго выдувать осколки стекла с матрицы.

К сожалению, я потерял свои фотки, поэтому покажу фотку из ее блога , которая делала тоже самое, но с веб-камерой.


Вот тот осколок стекла в углу - как раз и есть фильтр. Был фильтр.

Собираем все обратно, учитывая то, что при изменении зазора между объективом и матрицей камера не сможет правильно сфокусироваться - у вас получится или близорукая, или дальнозоркая камера. Мне потребовалось три раза собрать-разобрать камеру, чтобы добиться корректно работы механизма автофокуса.

Вот теперь можно окончательно собрать телефон, и начать исследовать этот новый мир!

Краски и вещества

Кока-кола внезапно стала полупрозрачной. Сквозь бутылку проникает свет с улицы, а через стакан видны даже предметы в комнате.

Плащ из черного стал розовым! Ну, кроме пуговиц.

Черная часть отвертки тоже посветлела. А вот у телефона эта участь постигла только кольцо джойстика, остальная часть покрыта другой краской, которая ИК не отражает. Так же как и пластик док-станции для телефона на заднем плане.

Таблетки из зеленых превратились в сиреневые.

Оба кресла в офисе тоже превратились из готично-черных в непонятные цветные.

Искусственная кожа осталась черной, а ткань - оказалось розовой.

Рюкзаку(он есть на заднем плане предыдущей фотки) стало еще хуже - он практически весь стал сиреневым.

Как и сумка для фотоаппарата. И обложка электронной книги

Коляска из синий превратилась в ожидаемо-фиолетовую. А световозвращающая нашивка, хорошо видимая в обычную камеру совсем не видна в ИК.

Красная краска, как близкая к нужной нам части спектра, отражая красный свет, захватывает и часть ИК. В итоге красный цвет заметно светлеет.

Причем таким свойством обладает все красная краска, что я замечал.

Огонь и температура

Еле тлеющая сигарета выглядит в ИК как очень яркая точка. Стоят ночью люди на остановке с сигаретами - а их кончики освещают им лица.

Зажигалка, свет которой на обычной фотографии вполне сравним с фоновым освещением в ИК режиме перекрыла жалкие потуги фонарей на улице. На фотографии даже не видно фона - умный фотоаппарат отработал изменение яркости, уменьшив экспозицию.

Паяльник при разогреве светится как небольшая лампочка. А в режиме поддержания температуры имеет нежно-розовый свет. А еще говорят что пайка не для девушек!

Горелка выглядит практически одинаково - ну разве что факел чуть дальше(на конце температура падает довольно быстро, и на определенном этапе уже перестает светить в видимом свете, но еще светит в ИК).

А вот если нагреть горелкой стеклянную палочку - стекло начнет светиться в ИК довольно ярко, и палочка будет выступать волноводом(яркий кончик)

Причем палочка будет светиться довольно долго и после прекращения нагрева

А фен термовоздушной станции вообще выглядит как фонарик с сеточкой.

Лампы и свет

Буква М на входе в метро горит гораздо ярче - в ней все еще используются лампы накаливания. А вот вывеска с название станции почти не изменила яркость - значит там люминесцентные лампы.

Двор ночью выглядит немного странно - сиреневая трава и гораздо светлее. Там, где камера в видимом диапазоне уже не справляется и вынуждена повышать исо(зернистость в верхней части), камере без ИК фильтра хватает света с запасом.

На этой фотографии получилась забавная ситуация - одно и то же дерево освещают два фонаря с разными лампами - слева лампой НЛ (оранжевая уличная), а справа - светодиодной. У первой в спектре излучения есть ик, и поэтому на фотографии листва под ней выглядит светлофиолетовой.


А у светодиодной нет ИК, а только видимый свет(поэтому лампы на светодиодах более энергоэффективны - энергия не тратится на излучение ненужного излучения, которое человек все равно не увидит). Поэтому листве приходится отражать то, что есть.

А если посмотреть на дом вечером, то можно заметить, что разные окна имеют разный оттенок - одни ярко-фиолетовые, а другие желтые или белые. В тех квартирах, чьи окна светятся фиолетовым(голубая стрелка) до сих пор используют лампы накаливания - горячая спираль светит всем подряд равномерно по всему спектру, захватывая и УФ и ИК диапазон. В подъездах используются энергосберегающие лампы холодного белого света(зеленая стрелка), а в части квартир - люминесцентные теплого света(желтая стрелка).

Восход. Просто восход.

Закат. Просто закат. Интенсивности солнечного света недостаточно для тени, а вот в инфракрасном диапазоне(может из-за разного преломления света с разной длинной волны, или из-за проницаемости атмосферы) тени видны отлично.

Занимательно. У нас в коридоре одна лампа сдохла и свет еле-еле, а вторая - нет. В инфракрасном свете наоборот - дохлая лампа светит гораздо ярче, чем живая.

Домофон. Точнее, штука рядом с ним, которая с камерами и подсветкой, которая включается в темноте. Она такая яркая, что видна и на обычную камеру, но для инфракрасной - это почти прожектор.

Подсветку можно включить и днем, закрыв пальцем датчик освещения.

Подсветка видеонаблюдения. У самой камеры подсветки не было, поэтому ее сколхозили из говна и палок. Она не очень яркая, потому что снята днем.

Живая природа

Волосатый киви и зеленый лайм по цвету почти не отличаются друг от друга.

Зеленые яблоки стали желтыми, а красные - ярко-сиреневыми!

Белые перцы стали желтыми. А привычные зеленый огурцы - каким-то инопланетным фруктом.

Яркие цветки стали практически однотонными:

Цветок почти не отличается по цвету от окружающей травы.

Да и яркие ягоды на кусте стало очень трудно увидеть в листве.

Да что ягоды - даже разноцветная листва стала однотонной.

Короче, выбрать фрукты по их цвету уже не получится. Придется спрашивать продавца, у него-то нормальное зрение.

Но почему на фотографиях все розовое?

Для ответа на этот вопрос нам придется вспомнить строение матрицы фотоаппарата. Я опять спер картинку из википедии.


Это фильтр байера - массив фильтров окрашенных в три разных цвета, расположенных над матрицей. Матрица воспринимает весь спектр одинаково, и только фильтры помогают построить полноцветную картинку.
Но инфракрасный спектр фильтры пропускают неодинаково - синие и красные больше, а зеленые меньше. Камера думает, что вместо инфракрасного излучения на матрицу попадает обычный свет и пытается формировать цветную картинку. На фотографиях, где яркость ИК-излучения минимальна обычные цвета еще пробиваются - на фотографиях можно заметить оттенки цветов. А там, где яркость большая, например на улице под ярким солнцем - ИК попадает на матрицу именно в той пропорции, которую пропускают фильтры, и которое образует розовый или фиолетовый цвет, забивая своей яркостью всю остальную цветовую информацию.
Если фотографировать с надетым на объектив фильтром - пропорция цветов получается другой. Например вот такой:


Эту картинку я нашел в сообществе ru-infrared.livejournal.com
Там же еще куча картинок снятых в инфракрасном диапазоне. Зелень на них белая потому, что ББ выставляется как раз по листве.

Но почему растения получаются такими яркими?

На самом деле, этот вопрос состоит из двух - почему зелень выглядит ярко и почему фрукты яркие.
Зелень яркая потому что в инфракрасной части спектра поглощение минимально(а отражение - максимально, что и показывает график):

Виновен в этом хлорофил. Вот его спектр поглощения:

Скорее всего это связано с тем, что растение защищается от высокоэнергетического излучения, подстраивая спектры поглощения таким образом, чтобы получить и энергию для существования и не быть засушенным от слишком щедрого солнца.

А это спектр излучения солнца(точнее, той части солнечного спектра, который достигает земной поверхности):

А почему ярко выглядит фрукты?

У плодов в кожуре зачастую нет хлорофилла, но тем не менее - они отражают ИК. Ответственно за это вещество, которое называется эпикутикулярный воск - тот самый белый налет на огурцах и сливах. Кстати, еспи погуглить «белый налет на сливах», то результатами будет что угодно, но только не это.
Смысл в этом примерно такой же - надо и окраску сохранить, которая может быть критична для выживания, и не дать солнцу высушить плод еще на дереве. Сушеный чернослив на деревьях это, конечно, отлично, но немного не вписывается в жизненные планы растения.

Но блин, почему рака-богомола?

Сколько я не искал, какие животные видят инфракрасный диапазон, мне попадались только раки-богомолы(ротоногие). Вот такие лапочки:

Кстати, если вы не хотите пропустить эпопею с чайником или хотите увидеть все новые посты нашей компании, вы можете подписаться на (кнопка «подписаться»)

Теги:

  • инфракрасный диапазон
  • другой мир
Добавить метки

Занимающее спектральную область между красным концом видимого света (с длиной полны l, ок. 0,76 мкм) и коротковолновым радиоизлучением (l~1-2 мм). Верх, граница И. и. определяется чувствительностью человеческого глаза к видимому излучению, а нижняя - условна, т. к. ИК-диапазон перекрывается радиодиапазоном длин волн. ИК-область спектра обычно делят на ближнюю (0,76-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). И. и. подчиняется всем законам оптики и относится к оптич. излучению. И. и. не видимо глазом, но создаёт ощущение тепла и поэтому часто наз. тепловым. Спектр И. и. может состоять из отд. линий, полос или быть непрерывным в зависимости от испускающего его источника. Линейчатые

Рис. 1. Инфракрасный спектр излучения ртути. 1-12 - спектральные линии, длины волн которых в мкм равны: 1 - 1,014; 2 - 1,129; 3 - 1,357; 4 - 1,367; 5 - 1,395; 6 - 1,530; 7 - 1,692; 8 - 1,707 и 1,711; 9 - 1,814; 10 - 1,970; 11 - 2,249; 12 - 2,326.

ИК-спектры испускают возбуждённые атомы или ионы при переходах между близко расположенными электронными уровнями энергии (рис. 1; см. Атомные спектры ).Полосатые ИК-спектры наблюдаются в спектрах испускания возбуждённых молекул, возникающих при переходах между колебат. и вращат. уровнями энергии, - колебат. и вращат. спектры (см. Молекулярные спектры ).Колебат. и колебательно-вращат. спектры расположены гл. обр. в средней, а чисто вращательные - в далёкой ИК-области. Непрерывный ИК-спектр излучают нагретые твёрдые и жидкие тела. Абс. и относит, доля И. и. нагретого твёрдого тела зависит от его темп-ры. При темп-pax ниже 500 К излучение почти целиком расположено в ИК-области (тело кажется тёмным). Однако полная энергия излучения при таких темп-pax мала. При повышении темп-ры доля излучения в видимой области увеличивается, тело становится тёмно-красным, затем красным, жёлтым и, наконец, при темп-pax выше 5000 К белым; при этом вместе с полной энергией излучения растёт и энергия И. п. Строгая зависимость энергии излучения нагретых тел от темп-ры существует только для абсолютно чёрного тела . всех диапазонов длин

Рис. 2. Кривые излучения абсолютно чёрного тела Л и вольфрама В при температуре 2450 °К. Заштрихованная часть - излучение вольфрама в ИК-области; интервал 0,4-0,74 мкм - видимая область.

волн реальных тел меньше, чем излучение абсолютно чёрного тела той же темп-ры, и может носить селективный характер. Напр., излучение накалённого вольфрама в ИК-области отличается от излучения чёрного тела больше, чем в видимой области спектра (рис. 2). Излучение Солнца близко к излучению абсолютно чёрного тела с темп-рои около 6000 8К, причём около 50% энергии излучения расположено в ИК-области. Распределение энергии излучения человеческого тела в ИК-области близко к распределению энергии чёрного излучения с максимумом при l~9,5 мкм.

Источники И. и . Наиболее распространённые источники И. и.- лампы накаливания с вольфрамовой нитью мощностью до 1 кВт, 70-80% излучаемой энергии к-рых приходится на ИК-диапазон (они используются, напр., для сушки и нагрева), а также угольная электрич. дуга, газоразрядные лампы, электрич. спирали из нихромовой проволоки. Для ИК-фотографии и в нек-рых ИК-приборах (напр., приборах ночного видения) для выделения И. и. применяют ИК-светофильтры. В науч. исследованиях (напр., в инфракрасной спектроскопии )применяют разл. спец. источники И. и. в зависимости от области спектра. Так, в ближней ИК-области (l=0,76-2,5 мкм) источником И. и. служит ленточная вольфрамовая лампа, в средней ИК-области (2,5-25 мкм) - штифт Нернста и глобар, в области l~20 -100 мкм - платиновая полоска, покрытая тонким слоем окислов нек-рых редкоземельных металлов; в далёкой ИК-области (100-1600 мкм) - ртутная кварцевая лампа высокого давления. Источниками И. и. являются не-к-рые ИК-лазеры: лазер на ниодимовом стекле (l=1,06 мкм), гелий-неоновый лазер (l=1,15 мкм и 3,39 мкм), СО-лазер (l~5,08-6,66 мкм), СО 2 -лазер (l~9,12-11,28 мкм), лазер на парах воды (l~118,6 мкм), HCN-лазер (l~773 мкм), хим. лазер на смеси Н 2 и С1 2 (l~3,7-3,8 мкм), на GaAs (l~0,83-0,92 мкм), InSb (l~4,8-5,3 мкм), (Pb, Sn) Те (l~6,5-32 мкм) и др. Многие ИК-лазеры могут работать в режиме перестраиваемой частоты излучения.

Методы обнаружения и измерения И. и . основаны на преобразовании энергии И. и. в др. виды энергии, методы регистрации к-рых хорошо разработаны. В тепловых приёмниках поглощённое И. и. вызывает повышение темп-ры термочувствит. элемента, к-рое тем или иным способом регистрируется. Тепловые приёмники могут работать практически во всей области И. и. В фотоэлектрич. приёмниках поглощённое И. и. приводит к появлению или изменению электрич. тока или . Такие приёмники в отличие от тепловых селективны, т. е. чувствительны лишь в определ. ИК-области спектра (см. Приёмники оптического излучения) . Мн. фотоэлектрич. приёмники И. и. особенно для средней и далёкой ИК-области спектра работают лишь в охлаждённом состоянии. В качестве приёмников И. и. также используются приборы, основанные на усилении или тушении люминесценции , под действием И. и., а также т. н. антистоксовы люминофоры (см. Антистоксова люминесценция ),непосредственно преобразующие И. и. в видимое (люминофор с ионами Yb и Еr преобразует излучение l=1,06 мкм в видимое с l=0,7 мкм). Спец. фотоплёнки и пластинки - инфрапластинки - также чувствительны к И. н. (до l=1,3 мкм). Существуют также спец. приборы, к-рые позволяют путём регистрации собств. теплового И. и. получить распределение темп-ры по поверхности объекта, т. е. его тепловое (или температурное) изображение. Это т. н. тепловое изображение можно преобразовать в видимое изображение, в к-ром яркость видимого изображения в отд. точках пропорциональна темп-ре соответствующих точек объекта. Изображение, полученное в этих приборах, не является ИК-изображением в обычном смысле, т. к. даёт лишь картину распределения темн-ры на поверхности объекта. Приборы визуализации И. и. делятся на несканирующие и сканирующие. В первых И. и. регистрируется непосредственно на фотоплёнке или люминесцентном экране, а также на экране с помощью электроннооптических преобразователей (ЭОП) или эвапорографов. К сканирующим приборам относятся тепловизоры или термографы с оптико-механич. сканированием объекта. Область чувствительности ЭОП определяется чувствительностью к И. и. и не превышает l=1,3 мкм. Эвапорографы и тепловизоры могут быть использованы в средней ИК-области, и потому они позволяют получать тепловое изображение низкотемпературных тел. Существуют также методы параметрич. преобразования И. и. в видимое излучение при смешивании И. и. с лазерным излучением в оптически нелинейных кристаллах (см. Параметрический генератор света ).

Оптические свойства веществ в ИК-области спектра (прозрачность, коэф. отражения, коэф. преломления), как правило, значительно отличаются от оптич. свойств в видимой и УФ-областях спектра. Мн. вещества, прозрачные в видимой области, оказываются непрозрачными в нек-рых областях И. и., и наоборот. Напр., слой


воды толщиной в неск. см непрозрачен для И. и. с l>1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны для И. и. (германий для l>1,8 мкм, кремний для l>1,0 мкм). Чёрная бумага прозрачна в далёкой ИК-области. Вещества, прозрачные для И. и. и непрозрачные в видимой области, используются в качестве светофильтров для выделения И. и.

Рис. 3. Отражение инфракрасного излучения от щёлочно-галоидных кристаллов.

Поглощение И. и. для большинства веществ в тонких слоях носит селективный характер в виде относительно узких областей - полос поглощения. Нек-рые вещества, гл. обр. монокристаллы, даже при толщине до неск. см прозрачны в достаточно больших определённых диапазонах ИК-спектра. В табл. приведена длинноволновая граница l г пропускания нек-рых материалов, применяемых в ИК-области спектра для изготовления призм, линз, окон и пр. оптич. деталей (материалы, помеченные звёздочкой, гигроскопичны). Полиэтилен, парафин, тефлон, алмаз прозрачны для l>100 мкм (пропускание более 50% при толщине 2 мм). Отражат. способность для И. и. у большинства металлов значительно больше, чем для видимой области, и возрастает с увеличением l И. и. (см. Металлооптика ).Напр., коэф. отражения Al, Au, Ag, Сu в области l=10 мкм достигает 98%. Жидкие и твёрдые неметаллич. вещества обладают в ИК-области селективным отражением, причём положение максимумов отражения зависит от хим. состава вещества. У нек-рых


Рис. 4. Кривая пропускания атмосферы в области l=0,6-14 мкм. "Окна" прозрачности в области l@2,0-2,5 мкм; 3,2-4,2 мкм; 4,5-5,2 мкм; 8,0-13,5 мкм. Полосы поглощения с максимумами при l@0,93; 1,13; 1,40; 1,87; 2,74; 6,3 мкм принадлежат парам воды; при l=2,7, 4,26 и 15,0 мкм - углекислому газу и при l@9,5 мкм - озону.

кристаллов коэф. отражения в максимуме селективного отражения (рис. 3) достигает больших значений (до 80%), и поэтому пластинки из таких кристаллов могут служить отражат. фильтрами для выделения определ. областей И. и. (т. н. метод остаточных лучей). Прозрачность земной атмосферы для И. и. (так же как и для видимого и УФ-излучения) играет большую роль в процессе теплового радиац. обмена между излучением Солнца, падающим на Землю, и И. и. Земли в мировое пространство (обратное излучение Земли расположено гл. обр. в области спектра с максимумом ок. 10 мкм), а также существенна при практич. использовании И. и. (для связи, в ИК-фотографии, для применения И. и. в военном деле и т. д.). Проходя через земную атмосферу, И. и. ослабляется в результате рассеяния (см. Рассеяние света )и поглощения. Азот и кислород воздуха не поглощают И. и., а ослабляют его лишь в результате рассеяния, к-рое значительно меньше, чем для излучения видимого света (т. к. коэф. рассеяния ~l - 4). Пары воды, СО 2 , озона и др. примеси, имеющиеся в атмосфере, селективно поглощают И. и. Особенно сильно поглощают И. и. пары воды, полосы поглощения к-рых расположены почти во всей ИК-области спектра (рис. 4). Благодаря сильному поглощению И. и. земной атмосферой лишь небольшая часть обратного И. и. Земли выходит за пределы атмосферы, т. е. атмосфера служит теплоизолирующей оболочкой, препятствующей охлаждению Земли. Наличие в атмосфере частиц дыма, пыли, мелких капель воды (дымка, туман) приводит к дополнит, ослаблению И. и. в результате рассеяния на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны И. и.

Применение ИК-излучения . И. н. находит широкое применение в науч. исследованиях, при решении большого числа практич. задач, в военном деле и пр. Исследование спектров испускания и поглощения веществ в ИК-области является дополнением к исследованиям в видимой и УФ-областях и используется при изучении структуры электронной оболочки атомов, определения структуры молекул, а также для качеств, и количеств. спектрального анализа . Широкое применение для изучения структуры атомов и молекул н элементного состава вещества нашли ИК-лазеры (особенно с перестраиваемой частотой; см. Лазерная спектроскопия ). Благодаря особенностям взаимодействия И. и. с веществом ИК-фотография имеет ряд преимуществ перед фотографией в видимом излучении. Так, в результате меньшего ослабления И. и. вследствие рассеяния при прохождении через дымку и небольшой туман и при использовании инфраплёнок и ИК-светофильтров удаётся получить ИК-фотографии предметов, удалённых на расстояние в сотни км. Фотографии одного и того же объекта, полученные в И. и. и в видимом свете, вследствие различия коэф. отражения и пропускания объекта могут значительно различаться, и на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии и непосредственно глазом, что используется при фотографировании земной поверхности со спутников Земли, в ботанике, медицине, криминалистике, аэрофоторазведке и т. д. На ИК-фотографиях отд. участков неба часто можно увидеть большее число звёзд, туманностей и др. объектов, чем на обычных фотографиях. Фотографирование в И. и. можно производить и в полной темноте при облучении объектов И. и. В пром-сти И. и. используются для сушки (в т. ч. локальной) разл. материалов и изделий. На основе электронно-оптич. преобразователей, чувствительных к И. и., созданы различного рода приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов И. и. от спец. источников со светофильтрами вести наблюдение или прицеливание в полной темноте. Эвапорографы и тепловизоры применяются в пром-сти для обнаружения перегретых участков машин или электронных приборов, для получения температурных карт местности и т. д. Создание высокочувствит. приёмников И. и. (напр., болометров или охлаждаемых фотосопротивлений) позволило построить теплопеленгаторы для обнаружения и пеленгации объектов, темп-pa к-рых выше темп-ры окружающего фона (нагретые трубы кораблей, двигатели самолётов и др.), по их собств. тепловому И. и. Созданы также системы самонаведения на цель снарядов и ракет. ИК-локаторы и дальномеры позволяют обнаружить в темноте любые объекты и измерять расстояния до них. ИК-лазеры используются также для наземной и космич. связи. Лит.: Леконт Ж., Инфракрасное излучение, пер. с франц., М., 1958; Соловьев С. М., Инфракрасная фотография, М., I960; Оптические материалы для инфракрасной техники. [Справочник], М., 1965; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, 3 изд., М., 1985; Марков М. Н., Приемники инфракрасного излучения, М., 1968; Приёмники инфракрасного излучения, пер. с франц., М., 1969; Xадсон Р., Инфракрасные системы, пер. с англ., М., 1972; Ллойд Д ж., Системы тепловидения, пер. с англ., М., 1978; Левитин И. Б., Применение инфракрасной техники в народном хозяйстве. Л., 1981; Гибсон X., Фотографирование в инфракрасных лучах, пер. с англ., М., 1982. В . И. Малышев.

Перевод Дмитрия Викторова

Аббревиатура: ИК излучение
Определение: невидимое излучение с длинами волн примерно от 750 нм до 1мм.

Инфракрасное излучение - это излучение с длиной волны больше чем 700 - 800 нм, верхняя граница видимого диапазона длин волн. Эта граница не определяет, как снижается чувствительность глаза к видимому излучению в данной спектральной области.

Несмотря на то, что чувствительность глаза к видимому излучению, например, при 700 нм уже очень слабая, излучение от некоторых лазерных диодов с длиной волны выше 750 нм все равно можно увидеть, если это излучение достаточно интенсивно. Такое излучение может быть вредно для глаз, даже если оно не воспринимается как очень яркое. Верхний предел инфракрасной области спектра с точки зрения длины волны также четко не определен, под ним обычно понимается примерно 1 мкм.

Для того, чтобы "видеть" в инфракрасном свете, используются приборы ночного видения .

Для областей инфракрасного спектра используется следующая классификация:

  • - ближняя инфракрасная область спектра (также называется ИК-A) составляет ~ от 700 до 1400 нм. Лазеры, излучающие в этом диапазоне длин волн, особенно опасны для глаз, так как ближнее инфракрасное излучение передается и фокусируется на чувствительной сетчатки так же, как видимый свет, в то же время не вызывает защитного рефлекса моргания. Необходима соответствующая защита для глаз.
  • - коротковолновый инфракрасный (ИК-B) распространяется от 1,4 до 3 мкм . Этот диапазон является относительно безопасным для глаз, так как такое излучение будет поглощено веществом глаза прежде, чем оно сможет достичь сетчатки. Легированные эрбием волоконные усилители для оптоволоконной связи работают в этом диапазоне.
  • - средневолновый инфракрасный диапазон (ИК-C) от 3 до 8 мкм . Атмосфера испытывает сильное поглощение в этом диапазоне. Существует много линий поглощений, например, для двуокиси углерода (CO2) и водяного пара (H2O). Многие газы обладают сильными и характерными линиями поглощения среднего ИК излучения, что делает эту область спектра интересной для высокочувствительной газовой спектроскопии.
  • - длинноволновый ИК варьируется от 8 до 15 мкм , следуя за дальним инфракрасным, который распространяется до 1 мм, в литературе иногда он начинается уже с 8 мкм. Длинноволновую ИК область спектра используют для тепловидения.

Однако следует отметить, что определения этих терминов существенно различаются в литературе. Большая часть стекол прозрачна для ближнего инфракрасного излучения, но сильно поглощает излучение больших длин волн, при этом фотоны этого излучения могут быть напрямую превращены в фононы. Для кварцевого стекла, используемого в кварцевых волокнах, сильное поглощение происходит после 2 мкм.

Инфракрасное излучение также называется тепловым излучением, так как тепловое излучение от нагретых тел находится в большей степени в инфракрасной области. Даже при комнатной температуре и ниже, тела выделяют значительное количество среднего и дальнего инфракрасного излучения, который может быть использован для тепловидения.
Например, инфракрасные изображения нагретого зимой дома могут выявить утечки тепла (например, на окнах, крыше, или в плохо изолированных стенах за радиаторами) и тем самым помогают принять эффективные меры по улучшению.

По материалам интернет-портала