Уход и... Инструменты Дизайн ногтей

Электродвижущая сила. Закон Ома для замкнутой цепи и неоднородного участка цепи. Правила Кихгофа. Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца. Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротив

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи - Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.
  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.

Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

- где φ1 и φ 2 – потенциалы на концах участка.

ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: - где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:


Тогда закон Ома примет вид:

ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε


Решение задач по закону ому для неоднородного участка цепи

Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

Рис. 3 Перемещение заряда на этих участках возможно лишь с помощью сил

неэлектрического происхождения (сторонних сил): химические процессы, диффузия носителей заряда, вихревые электрические поля. Аналогия: насос, качающий воду в водонапорную башню, действует за счет негравитационных сил (электромотор).

Сторонние силы можно характеризовать работой, которую они совершают над перемещающимися зарядами.

Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой. Э.Д.С. действующей в цепи.

Ясно, что размерность Э.Д.С. совпадает с размерностью потенциала, т.е. измеряется в вольтах.

Стороннюю силу, действующую на заряд, можно представить в виде:

= ∫ F ст . d l

Q ∫ Eст . d l ,

ε 12

= ∫ Eст . d l .

Для замкнутой цепи: ε = ∑ ε i

= ∫ Eст . d l .

Циркуляция вектора напряженности сторонних сил равна Э.Д.С., действующей в замкнутой цепи (алгебраической сумме Э.Д.С.).

При этом необходимо помнить, что поле сторонних сил не является потенциальным, и к нему нельзя применять термин – разность потенциалов или напряжение.

7.5. Закон Ома для неоднородного участка цепи.

Рассмотрим неоднородный участок цепи, участок, содержащий источник Э.Д.С.

(т.е. участок, – где действуют неэлектрические силы). Напряженность E поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил, т.е.

E = Eq + Eст . .

Величина, численно равная работе по переносу единичного положительного заряда суммарным полем кулоновских и сторонних сил на участке цепи (1 – 2), называется напряжением на этом участке U12 (Рис. 4)

2 r r

U 12 = ∫ E q d l +

∫ Eст . d l ;

Eq d l = − dφ и ∫ Eq d l

= φ 1 − φ 2 ;

U 12 = (φ 1 – φ 2 ) + ε 12

Напряжение на концах участка цепи совпадает с разностью потенциалов только в

случае, если на этом участке нет Э.Д.С., т.е. на однородном участке цепи.

I·R12 = (φ1 – φ2 ) + ε 12

Это обобщенный закон Ома. Обобщенный закон Ома выражает закон сохранения энергии применительно к участку цепи постоянного тока. Он в равной мере справедлив как для пассивных участков (не содержащих Э.Д.С.), так и для активных.

В электротехнике часто используют термин падения напряжения – изменение напряжения вследствие переноса заряда через сопротивление

В замкнутой цепи: φ 1 = φ 2 ;

I RΣ = ε

R∑

Где R Σ =R + r; r – внутреннее сопротивление активного участка цепи (Рис. 5).

Тогда закон Ома для замкнутого участка цепи, содержащего Э.Д.С. запишется в

R + r

7.6. Закон Ома в дифференциальной форме.

Закон Ома в интегральной форме для однородного участка цепи (не содержащего Э.Д.С.)

I = U

Для однородного линейного проводника выразим R через ρ

R = ρ

ρ – удельное объемное сопротивление; [ρ ] = [Ом м ].

Найдем связь между j и E в бесконечно малом объеме проводника – закон Ома в

дифференциальной форме.

В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов (Рис.6) движутся в направлении действия силы, т.е. плотность тока

j E , следовательно, векторы коллинеарны.

А мы знаем что: j =

E , т.е.

E j или

j = σ E

это запись закона Ома в дифференциальной форме.

Здесь σ – удельная электропроводность. Размерность j – [ Oм − 1 м − 1 ]; Плотность тока можно выразить через заряд, n и v r др . .

j = en vr др .

обозначим: b = v E др . , то v r др . = b E ;

j = enb E ,

а если σ = enb ,

где n – число пар ионов, b – расстояние. j = j E

– закон Ома в дифференциальной форме.

7.7. Работа и мощность тока. Закон Джоуля - Ленца.

Рассмотрим произвольный участок цепи, к концам которого приложено напряжение U . За время dt через каждое сечение проводника проходит заряд

Полезно вспомнить и другие формулы для мощности и работы:

N = RI2

A = RI2 t

В 1841г. Английский физик Джеймс Джоуль и русский физик

Эмилий Ленц установили закон теплового действия электрического

ДЖОУЛЬ Джеймс Пресскотт (Рис. 6)

(24.12.1818 – 11. 10.1889) – английский физик, один

из первооткрывателей закона сохранения энергии.

Первые уроки по физике ему давал Дж. Дальтон, под

влиянием которого Джоуль начал свои эксперименты.

Работы посвящены электромагнетизму, кинетической

теории газов.

ЛЕНЦ Эмилий Христианович (Рис. 7) (24.2.1804

– 10.2.1865) – русский физик. Основные работы в области

электромагнетизма. В 1833 установил правило определения

электродвижущей силы индукции (закон Ленца), а в 1842 (независимо

от Дж. Джоуля) – закон теплового действия электрического тока (закон Джоуля - Ленца). Открыл обратимость электрических машин. Изучал зависимость сопротивление металлов от температуры. Работы относятся также к геофизике.

Независимо друг от друга Джоуль и Ленц показали, что при протекании тока в проводнике выделится количество теплоты:

(7.7.7) это закон Джоуля – Ленца в интегральной форме.

Следовательно, нагревание происходит за счет работы, совершаемой силами поля над зарядом (мощность выделения тепла N = RI2 ).

Получим закон Джоуля – Ленца в дифференциальной форме.

dQ = RI 2 dt = ρ dS dl (jdS ) 2 dt = ρj2 dldSdt = ρj2 dldSdt = ρj2 dVdt,

Закон Ома для неоднородного участка цепи.

При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка , где AK - работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, , где q - положительный заряд, который перемещается между любыми двумя точками цепи; - разность потенциалов точек в начале и конце рассматриваемого участка; . Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то. Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

Закон Ома для неоднородного участка цепи имеет вид:

где R - общее сопротивление неоднородного участка.

ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε < 0.

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

U — напряжение

I — сила (интенсивность) тока

R — Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

— это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением , а сопротивление источника тока (аккумулятора) - внутренним сопротивление . Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется (V ), что является конечной разностью потенциалов , измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а ), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б ), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи .

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в ), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи .

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть
или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2 . Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме . Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений . Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным . Как видно — .

Особенности резонанса напряжений следующие:

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (предполагается что они положительные) от точек с бÓльшим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока . Силы неэлектростатического происхождения , действующие на заряды со стороны источников тока, называются сторонними .

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе – за счет механической энергии вращения ротора генератора и т.п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Источник тока и потребители тока (сопротивление R ) составляют замкнутую цепь (рис.6.3).

Источник тока можно охарактеризовать сопротивлением r (сопротивление внутренней части цепи) и электродвижущей силой (ЭДС) ε – она определяет работу сторонних сил по перемещению единичного положительного заряда в один кулон от отрицательного полюса к положительному

Изображение источника тока на схемах приведено на рис.6.3,б.

Нужно отметить, что выделение в электрической цепи отдельного участка, на котором действуют сторонние силы, не всегда возможно. Сторонние силы могут действовать на всех участках цепи. Например, ЭДС индукции возникает во всех точках проводящего контура, находящегося в переменном во времени магнитном поле.

Участок цепи, где одновременно действуют сторонние и кулоновские силы, называют неоднородным участком цепи (рис.6.4). Работу кулоновских сил по перемещению электрического заряда на этом участке характеризует разность потенциалов (), а работу сторонних сил – действующая на этом участке цепи ЭДС ε 1,2:

(6.7)


Для неоднородного участка цепи вводится новая величина, называемая напряжением U 1,2 , она характеризует общую работу сторонних и кулоновских сил на неоднородном участке цепи при перемещении единичного положительного заряда:

(6.8)

На однородном участке цепи () напряжение равно разности потенциалов:

Для описания силового действия на помещенные в поле сторонних сил заряды (по аналогии с электростатическим полем) вводят его силовую характеристику – напряженность поля сторонних сил :

Тогда формулы (6.7) и (6.8) можно представить в виде:

(6.9)

Для ЭДС ε, действующей в замкнутой цепи, из выражения (6.9) получим

т.е. ЭДС ε равна циркуляции вектора напряженности сторонних сил по произвольному замкнутому контуру. Это свидетельствует о том, что поле сторонних сил в отличие от электростатического поля, не является потенциальным.