Уход и... Инструменты Дизайн ногтей

Ядерные источники питания. Атомная батарейка для телефона: принцип работы, преимущества и недостатки. Тасс: атомная батарейка своими руками. рассказывают инженеры

Российские физики разработали батарейку, которая может преобразовывать в электричество энергию бета-распада – излучения электронов радиоактивным элементом.

Коллектив исследователей из Московского института стали и сплавов под руководством заведующего кафедрой материаловедения полупроводников и диэлектриков профессора Юрия Пархоменко представил прототипы радиоизотопных батареек, созданных по технологии преобразования энергии бета-излучения в электрическую энергию на основе монокристаллов пьезоэлектриков. В качестве источника использован радиоактивный изотоп «никель-63». Его период полураспада около 100 лет, что позволяет создавать элементы питания со сроками службы до 50 лет.

Представленный МИСиС прототип ядерной батарейки

Руководитель работы профессор Юрий Николаевич Пархоменко

Такие батарейки часто называют также «ядерными», поскольку в них используется процесс бета-распада, при котором один из нейтронов ядра превращается в протон с испусканием электрона. Хотя бета-распад - один из видов радиоактивного излучения, людям нечего бояться. Бета-излучение в данном случае обладает малой проникающей способностью и легко задерживается оболочкой. А используемый изотоп «никель-63» не имеет сопутствующего гамма-излучения. Так что сами батарейки не излучают и совершенно безопасны.

Чтобы компенсировать малую мощность природного бета-распада, физики используют импульсный режим с накоплением заряда. В этом случае удается обеспечить непрерывную мощность электрического тока 10-100 нановатт с каждого кубического сантиметра устройства. Такой мощности достаточно для питания, например, кардиостимулятора.

Благодаря длительному сроку службы батарейки найдут применение в тех случаях, когда их замена нежелательна или просто невозможна: в медицине, ядерной энергетике, авиакосмической технике, нано- и микроэлектронике, в системах безопасности и контроля.

Выбор в качестве источника энергии несуществующего в природе изотопа «никель-63» неслучаен. В нашей стране разработана также уникальная технология его выработки в специальных ядерных реакторах и обогащения до необходимых «не ниже 80%». Производство батареек запланировано на в Красноярском крае.

Уникальные характеристики разработанного устройства, его компактность и безопасность позволяют надеяться на его конкурентоспособность на рынке аналогичных источников питания
Единственный недостаток батарейки – высокая стоимость. Из-за дороговизны производства никеля-63 на начальном этапе она может составлять несколько миллионов рублей. Однако по мере отработки технологии и налаживании массового производства цена неминуемо сильно упадет.

Радиоизотопные источники энергии - устройства использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.

Радиоизотопные термоэлектрические генераторы
(radioisotope thermoelectric generator (RTG, RITEG)

Радиоизотопный термоэлектрический генератор (РИТЭГ) преобразует тепловую энергию, выделяющуюся при естественном распаде радиоактивных изотопов, в электроэнергию.
РИТЭГ состоят из двух основных элементов: источника тепла, который содержит радиоактивный изотоп, и твердотельных термопар, которые преобразуют тепловую энергию распада плутония в электричество. Термопары в РИТЭГе используют тепло от распада радиоактивного изотопа для нагрева горячей стороны термопары и холода пространства или планетарной атмосферы для получения низкой температуры на холодной стороне.
По сравнению с ядерными реакторами РИТЭГи значительно компактнее и проще конструктивно. Выходная мощность РИТЭГ весьма невелика (до нескольких сотен ватт) и небольшой КПД. Зато в них нет движущихся частей и они не требуют обслуживания на протяжении всего срока службы, который может исчисляться десятилетиями.
В усовершенствованном типе РИТЭГа − The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), который стал применяться в последнее время, был изменен состав термопары. Вместо SiGe в MMRTG для термопар применяется PbTe/TAGS (Te, Ag, Ge, Sb).
MMRTG предназначен для производства 125 Вт электроэнергии в начале миссии, с падением до 100 Вт после 14 лет. При массе 45 кг MMRTG обеспечивает около 2.8 Вт/кг электроэнергии в начале жизни. Конструкция MMRTG способна работать как в вакууме космического пространства, так и в планетарных атмосферах, например, на поверхности Марса. MMRTG обеспечивает высокую степень безопасности, минимизацию веса оптимизацию уровней мощности в течение минимального срока службы в 14 лет.
NASA также работает над новой технологией RTG, называемой Advanced Stirling Radioisotope Generator ASRG (Радиоизотопный генератор Стирлинга). ASRG, как и MMRTG, преобразует тепло распада плутония-238 в электричество, но не использует термопары. Вместо этого тепло распада заставляет газ расширяться и осциллировать поршень, подобно двигателю автомобиля. Это перемещает магнит назад и вперед через катушку более 100 раз в секунду, генерируя электричество для космического корабля. Количество вырабатываемой электроэнергии больше, чем у MMRTG, примерно на 130 ватт, с гораздо меньшим количеством плутония-238 (примерно на 3.6 кг меньше). Это результат более эффективного преобразования цикла Стирлинга. Если для миссии требуется больше энергии, можно использовать несколько ASRG, чтобы генерировать больше энергии. На сегодняшний день нет запланированных миссий, которые будут использовать ASRG, но они разрабатываются для 14-летней миссии.
Существует концепция подкритических РИТЭГ. Подкритический генератор состоит из источника нейтронов и делящегося вещества с как можно большей критической массой. Нейтроны источника захватываются атомами делящегося вещества и вызывают их деление. Очень важное место при выборе рабочего изотопа играет образование дочернего изотопа, способного к значительному тепловыделению, так как цепь ядерного преобразования при распаде удлиняется и соответственно возрастает общая энергия, которую можно использовать. Наилучшим примером изотопа с длинной цепью распада и с энерговыделением на порядок большим, чем у большинства других изотопов, является уран-232. Основное преимущество такого генератора в том что энергия распада реакции с захватом нейтрона может быть гораздо выше энергии спонтанного деления. Соответственно, потребное количество вещества гораздо ниже. Количество распадов и радиационная активность в пересчете на тепловыделение также ниже. Это снижает вес и размеры генератора.

Требования к характеристикам радиоизотопов, использующихся в РИТЭГах, к сожалению часто противоречивы. Для того, чтобы достаточно долго поддерживать мощность для выполнения задачи период полураспада радиоизотопа должен быть достаточно велик. С другой стороны, у него должна быть достаточно высокая объёмная активность для получения значительного энерговыделения в ограниченном объёме установки. А это означает, что период полураспада у него не должен быть слишком мал, ибо удельная активность обратно пропорциональна периоду распада.
У радиоизотопа должен быть удобный для утилизации вид ионизирующего излучения. Гамма-излучение и нейтроны достаточно легко покидают конструкцию, унося заметную часть энергии распада. Высокоэнергетичные электроны β-распада хотя и неплохо задерживаются, однако при этом образуется тормозное рентгеновское излучение, уносящее часть энергии. Кроме того, гамма-, рентгеновское и нейтронное излучения зачастую требуют специальных конструктивных мер по защите персонала (если он присутствует) и близкорасположенной аппаратуры.
Предпочтительным для радиоизотопной генерации энергии является альфа-излучение.
Не последнюю роль в выборе радиоизотопа является его относительная дешевизна и простота его получения.
Типичные периоды полураспада для радиоизотопов, используемых в РИТЭГ, составляют несколько десятилетий, хотя изотопы с более короткими периодами полураспада могут использоваться для специализированных применений.

Маломощные и малогабаритные радиоизотопные источники питания

Бета-вольтаические источники питания
(Betavoltaic power sources)

Также существуют нетермические генераторы, похожие по принципу работы на солнечные батареи. Это бета-гальванические и оптико-электрические источники. Они малогабаритны и предназначены для питания устройств, не требующих больших мощностей.
В бета-вольтаическом источнике питания изотопный источник испускает бета-частицы, которые собираются на полупроводнике. В результате генерируется постоянный ток. Процесс преобразования энергии, который аналогичен процессу фотогальванической (солнечной) ячейки, происходит эффективно даже в экстремальных условиях окружающей среды. Выбирая количество и тип изотопа, можно создать настраиваемый источник питания с заданным выходом и временем жизни. Такие батареи практически не дают гамма-лучей, а мягкое бета-излучение задерживается корпусом батарей и слоем фосфора. Бета-вольтаические источники обладают высокой плотностью энергии и сверхнизкой мощностью. Это позволяет бета вольтаическому устройству функционировать дольше, чем конденсаторам или батареям для маломощных устройств. Длительность работы, например бета-вольтаического источника на оксиде прометия примерно два с половиной года, а 5 мг оксида прометия дают энергию в 8 Вт. срок службы бета-вольтаических источников может превышать 25 лет.

Бета-вольтаический эффект. Работа бета-вольтаического преобразователя основана на том, что излученные при распаде электроны или позитроны высоких энергий, попадая в область
p-n перехода полупроводниковой пластины, генерируют там электронно-дырочную пару, которая затем пространственно разделяется областью пространственного заряда (ОПЗ). Вследствие этого на n и p- поверхностях полупроводниковой пластины возникает разность электрических потенциалов. Принципиально механизм преобразования напоминает тот, который реализован в полупроводниковых солнечных батареях, но с заменой фотонного облучения на облучение электронами или позитронами бета-распада радионуклидов.

Пьезоэлектрический радиоизотопный микроэлектрогенератор
(The Radioisotope Thin-film Mkropower Generator)

Сердце этого элемента питания - кантилевер, тонкая пластина из пьезокристаллического. Коллектор на кончике кантилевера захватывает заряженные частицы, испускаемые из тонкопленочного радиоактивного источника. За счет сохранения заряда, радиоизотопная пленка остается с равными и противоположными зарядами. Это приводит к электростатическим силам между кантилевером и радиоактивным источником, изгибу кантилевера и преобразованию излучаемой источником энергии в запасенную механическую энергию. Кантилевер все больше изгибается и наконец кончик кантилевера вступает в контакт с радиоактивной тонкой пленкой, а накопленные заряды нейтрализуются посредством переноса заряда. Это происходит периодически. При подавлении электростатической силы кантилевер высвобождается. Внезапное высвобождение возбуждает колебания, которые приводят к зарядам, индуцированным в пьезоэлектрическом элементе у основания кантилевера. Сигнал переменного тока от пьезоэлектрического источника питания можно использовать непосредственно через импеданс нагрузки или выпрямлять с помощью диодов и фильтровать через внешний конденсатор. Поднятое таким образом напряжение смещения используется для управления маломощными датчиками и электроникой.

Основная область применения изотопных источников – космические исследования. Изучение «глубокого космоса» без использования радиоизотопных генераторов невозможно, так как при значительном удалении от Солнца уровень солнечной энергии, который можно было бы использовать для производства электричества, необходимого для функционирования аппаратуры и передачи радиосигналов, очень мал. Химические источники также не оправдали себя.
На Земле радиоизотопные источники нашли применение в навигационных маяках, радиомаяках, метеостанциях и подобном оборудовании, установленном в местности, где по техническим или экономическим причинам не было возможности воспользоваться другими источниками электропитания. В частности, в СССР выпускались термоэлектрические генераторы нескольких видов. В качестве радиоактивных изотопов в них использовались 90 Sr и 238 Pu. Однако у них очень большой период достижения безопасной активности. Они выработали свой срок службы, составляющий 10 лет, и в настоящее время должны быть утилизированы. В настоящее время, в связи с риском утечки радиации и радиоактивных материалов, практику установки необслуживаемых радиоизотопных источников в малодоступных местах прекратили.
Радиоизотопные источники энергии применяются там, где необходимо обеспечить автономность работы оборудования, компактность, надёжность.

Радиоизотопы и их использование

С развитием и ростом ядерной энергетики цены на важнейшие генераторные изотопы быстро падают, а производство изотопов быстро возрастает. В то же время стоимость изотопов, получаемых облучением (U-232, Pu-238, Po-210, Cm-242 и др.), снижается незначительно. В связи с чем изыскиваются способы более рациональных схем облучения мишеней, более тщательной переработки облучённого топлива. Большие надежды на расширение производства синтетических изотопов связаны с ростом сектора реакторов на быстрых нейтронах. В частности, именно реакторы на быстрых нейтронах с использованием значительных количеств тория позволяют надеяться на получение больших промышленных количеств урана-232.
При использовании изотопов во многом разрешается проблема утилизации отработанного ядерного топлива, и радиоактивные отходы из опасного мусора превращаются не только в дополнительный источник энергии, но и в источник значительного дохода. Практически полная переработка облучённого топлива способна приносить денежные средства, сопоставимые со стоимостью энергии, выработанной при делении ядер урана, плутония и других элементов.

Плутоний-238, кюрий-244 и стронций-90 являются чаще всего используемыми изотопами. Кроме них их в технологии и медицине используют еще около 30 радиоактивных изотопов.

Некоторые освоенные практикой радиоизотопные источники тепла
Изотоп Получение (источник) Удельная мощность для чистого изотопа. Вт/г T 1 / 2
60 Со Облучение в реакторе 2.9 5.271 года
238 Pu атомный реактор 0.568 87.7 лет
90 Sr осколки деления ~2.3 28.8 лет
144 Ce осколки деления 2.6 285 дней
242 Cm атомный реактор 121 162 дня
147 Pm осколки деления 0.37 2.64 года
137 Cs осколки деления 0.27 33 года
210 Po облучение висмута 142 138 дней
244 Cm атомный реактор 2.8 18.1 года
232 U облучение тория 8.097 68.9 лет
106 Ru осколки деления 29.8 ~371.63сут

238 Pu У 238 Pu период полураспада 87.7 года (потеря мощности 0.78 % в год), удельная мощность для чистого изотопа 0.568 Вт/г и исключительно низкие уровни гамма- и нейтронного излучения. 238 Pu имеет самые низкие требования к экранированию. Требуется менее 25 мм свинцового экранирования для блокирования излучения 238 Pu. 238 Pu стал наиболее широко используемым топливом для РИТЭГов, в форме оксида плутония (PuO 2).
В середине прошлого века 236 Pu и 238 Pu применялись для изготовления радиоизотопных электрических батареек для питания кардиостимуляторов срок службы которых достигал 5 и более лет. Однако вскоре вместо них стали применять нерадиоактивные литиевые батарейки, срок службы которых доходит до 17 лет.
238 Pu должен быть специально синтезирован; его мало (~1% - 2%) в ядерных отходах, изотопное его выделение затруднительно. Чистый 238 Pu может быть получен, например, с помощью облучения нейтронами 237 Np.
Кюрий. Два изотопа 242 Cm и 244 Cm являются альфа-излучателями (энергия 6 МэВ); Они имеют относительно короткие периоды полураспада 162.8 дней и 18.1 года и производят до 120 Вт/г и
2.83 Вт/г тепловой энергии соответственно. Кюрий-242 в виде окиси применяется для производства компактных и чрезвычайно мощных радиоизотопных источников энергии. Однако 242 Cm очень дорог (около 2000 долларов США за грамм). В последнее время все большую популярность приобретает более тяжелый изотоп кюрия − 244 Cm. Так как оба эти изотопы практически чистые альфа-излучатели, проблема радиационной защиты остро не стоит.
90 Sr. 90 Sr β-излучатель с незначительной γ-эмиссией. Его период полураспада в 28.8 лет намного короче, чем у 238 Pu, Цепочка из двух β-распадов (90 Sr → 90 Y→ 90 Zr) дает суммарную энергию 2.8 МэВ (один грамм дает ~0.46 Вт). Поскольку выход энергии ниже, он достигает более низких температур, чем 238 Pu, что приводит к снижению эффективности термоэлектрического преобразования. 90 Sr – продукт деления ядер и доступен в больших количествах по низкой цене. Стронций является источником ионизирующего излучения высокой проницаемости, что предъявляет относительно высокие требования к биологической защите.
210 Po. 210 Po имеет период полураспада всего 138 дней при огромном начальном тепловыделении в 142 Вт/г. Это практический чистый альфа-излучатель. Из-за малого периода полураспада 210 Po плохо подходит для РИТЭГов, а используется для создания мощных и компактных источников тепла (Половина грамма полония может нагреться до 500 °C). Стандартные источники с тепловой мощностью 10 Вт были установлены в космических аппаратах типа «Космос» и на «Луноходах» в качестве источника тепла для поддержания нормального функционирования аппаратуры в приборном отсеке.
210 Po также широко используется там, где нужна активная антистатика. Из-за малого периода полураспада утилизация отработанных устройств с 210 Po не требует никаких особых мер. В США допустимо выбрасывать их на помойку общего назначения.
При использовании альфа-активных изотопов с большим удельным энерговыделением часто необходимо разбавить рабочий изотоп для уменьшения тепловыделения. Кроме того, полоний весьма летуч, и требуется создание прочного химического соединения с каким-либо элементом. В качестве таких элементов предпочтительны свинец, иттрий, золото, так как они образуют тугоплавкие и прочные полониды.
241 Am. В связи с дефицитом 238 Pu, альтернативой ему в качестве топлива для РИТЭГов может стать 241 Am. У 241 Am период полураспада 432 года. Он практически чистый альфа-излучатель. 241 Am находится в ядерных отходах и почти изотопически чист. Однако удельная мощность 241 Am составляет только 1/4 от удельной мощности 238 Pu. Кроме того от продуктов распада 241 Am исходит более проникающее излучение и необходимо лучшее экранирование. Впрочем, требования к экранированию излучения для 241 Am не намного более строги чем в случае с 238 Pu.
241 Am широко используется в детекторах дыма. В ионизационном детекторе дыма используется крошечный кусочек америция-241. Заполненное воздухом пространство между двумя электродами создает камеру, которая позволяет течению небольшого постоянного тока между электродами. Если дым или тепло поступают в камеру, электрический ток между электродами прерывается и срабатывает сигнал тревоги. Эта дымовая сигнализация является менее дорогостоящей, чем другие устройства.
63 Ni. 63 Ni чистый β − -излучатель. Максимальная энергия электронов 67 кэВ, период полураспада 100.1 л. В начале двухтысячных годов в США и России были разработаны элементы питания, основой которых является 63 Ni. Срок работы устройств более 50 лет, а размеры меньше одного кубического миллиметра. Для получения электроэнергии используется бета-вольтаический эффект. Также ведутся работы по созданию пьезоэлектрического радиоизотопного генератра. Подобные батареи могут быть использованы в нейро- и кардиостимуляторах.
144 Ce. Источник тепла – 144 Ce. 144 Ce чистый β − -излучатель. Период полураспада 144 Ce 285 суток, Удельная мощность для чистого изотопа 2.6 Вт/г. РИТЭГ предназначается для питания радиопередатчиков и автоматических метеостанций. Стандартная мощность 200 Вт.
Радиоизотопы широко применяются в смеси с фосфором для обеспечения постоянного свечения в контрольных приборах на борту транспортных средств, в часах, фонарях на полярных аэродромах и в навигационных знаках и даже в ёлочных игрушках. Раньше чаще всего для этого применялся 226 Ra, период полураспада которого 1620 лет. Однако из соображений радиационной безопасности после 1970-х годов радий в этих целях не используется. В наши дни для этих целей чаще всего используют мягкими бета излучателями: прометием (147 Pm Т 1/2 = 2.64 года), криптоном (85 Kr Т 1/2 = 10.8 лет) и тритием (3 H Т 1/2 = 12.3 года). Конечно, периоды их полураспада маловаты, зато их ионизирующее излучение не проникает за оболочки устройств.

ЯДЕРНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Применение энергии ядерного распада дает в отличие, например, от солнечных источников питания качественно иные типы космических электростанций длительного действия. Дело в том, что источники энергии, космических ядерных установок (реактор или радиоактивный изотоп) не получают эту энергию из космоса, a являются как бы аккумуляторами. В то же время ядерный реактор не является непосредственно источником электроэнергии. Реактор или изотоп - это мощный источник тепла. Получение электрического тока в ядерном источнике питания сводится к преобразованию тепловой энергии в электрическую.

Ядерный источник энергии будет находиться непосредственно на борту ОКС, а это дает возможность получать энергию практически непрерывно и независимо от каких-либо внешних факторов.

Здесь мы не будем останавливаться на принципе действия и устройстве ядерного реактора, об этом написано достаточно много и обстоятельно. Рассмотрим лишь некоторые способы преобразования тепловой энергии в электрическую.

Турбогенераторная установка с ядерным реактором считается одной из наиболее перспективных систем для длительного применения в космосе, поэтому рассмотрим ее подробнее.

На рис. 31 показана принципиальная схема такой установки, с теплопередающим агентом и рабочим телом которой является жидкость.

Рис. 31. Схема ядерной турбогенераторной установки:

1 - реактор; 2 - кипятильник; 3 - насос; 4 - турбина; 5 - электрогенератор; 6 - холодильник; 7 - насос

Выделяющееся в ядерном реакторе тепло воспринимается теплоносителем первичного контура. Нагретая до высокой температуры жидкость поступает в теплообменный аппарат - кипятильник, где отдает свое тепло рабочему телу вторичного контура. После этого первичный теплоноситель насосом высокого давления перегоняется снова в реактор.

Основной рабочий цикл установки осуществляется во вторичном контуре. Рабочее тело (также жидкость) сначала нагревается до температуры кипения в кипятильнике, а затем здесь же полностью испаряется. Пар, который поступает на рабочие лопатки паровой турбину, приводит во вращение обыкновенный машинный электрогенератор. Отработанный пар по выходе из турбины поступает в холодильник, где полностью конденсируется, т. е. снова превращается в жидкость.

Как мы уже говорили, единственным способом отдача тепла в окружающее пространство в космосе является радиационное излучение. Поэтому холодильником любой космической установки является излучатель тепла. Рабочее тело, пришедшее к первоначальному жид-кому состоянию, перегоняется насосом снова в кипятильник. На этом цикл основного рабочего контура замыкается.

Схема, в которой основное рабочее тело не нагревается непосредственно в реакторе, а воспринимает тепло через промежуточный теплоноситель, называется двухконтурной .

Возможно применение и одноконтурной схемы теплопередачи, в которой нет первичного контура и рабочее тело нагревается и испаряется не в кипятильнике, а непосредственно в каналах тепловыделяющих элементов реактора.

Очевидно, что одноконтурная схема проще и легче, так как в ней нет теплообменного аппарата - кипятильника и магистралей первичного контура. Кроме того, при такой схеме можно было бы значительно увеличить съем тепла с тепловыделяющей поверхности реактора, получить более высокую температуру цикла, а следовательно, и больший к.п.д. Но несмотря на все эти преимущества, одноконтурную схему нельзя применить для ОКС. Главная причина - засорение теплоносителя системы радиоактивными продуктами распада и возникновение так называемой наведенной активности в элементах конструкции установки. А это влечет за собой увеличение веса антирадиационной защиты для экипажа и, кроме того, делает в значительной мере невозможным ремонт и профилактику установки в условиях эксплуатации. При двухконтурной схеме основное рабочее тело не имеет непосредственного контакта с ядерным реактором и вторичный контур системы вполне доступен для обслуживания.

Реальное осуществление космической электротурбоустановки с ядерным реактором связано с выбором подходящего рабочего тела для основного (вторичного) контура.

В наземных атомных электростанциях с турбогенератором в качестве рабочего тела применяется вода. Но высокая коррозионная активность, большие давления пара (до 280 атм и более), высокая наведенная радиоактивность, а главное, низкие максимальные температуры цикла (не выше 300 °C) делают воду совершенно неприменимой для космических энергоустановок.

Наилучшие свойства имеют жидкометаллические теплоносители. Жидкие металлы: ртуть, натрий, калий, рубидий, цезий и некоторые другие - обладают очень высокой теплопроводностью, большой скрытой теплотой парообразования, небольшими давлениями паров при высоких температурах, что и оправдывает их широкое распространение в конструктивных разработках ядерных турбогенераторных установок. Антикоррозионные свойства и наведенная активность их также вполне приемлемы.

Принципиально турбогенераторная схема может осуществляться не только на парах жидких металлов, но и с газом в качестве рабочего тела - по так называемому циклу Брайтона, т. е. как газотурбинная установка, в состав которой вместо насоса входит компрессор. Но такая схема при некоторых преимуществах (более высокие температуры и высокие эксплуатационные качества) имеет очень существенные недостатки, в частности очень большой удельный вес.

Конструктивное решение турбогенераторной ядерной установки можно рассмотреть на примере разработанной в США системы SNAP-2 с электрической мощностью 3 квт (рис. 32).

Рис. 32. Энергетическая установка SNAP-2:

1 - трубка конденсатора; 2 - излучатель; 3 - активная зона реактора; 4 - дополнительный подогреватель; 5 - насос теплоносителя; 6 - отражатель реактора; 7 - управление нагрузкой; 8 - полезная нагрузка; 9 - расширительный бак; 10 - ртутный насос; 11 - подшипник скольжения и упорные подшипники; 12 - статор электрогенератора; 13 - турбина; 14 - подшипник скольжения; 15 - насос

В качестве теплоносителя первичного контура применен сплав натрия с калием, температура которого на выходе из реактора 650 °C. Теплоноситель вторичного контура - ртуть. Максимальная температура рабочего цикла 621 °C. Турбина - двухступенчатая. Площадь радиационного холодильника - излучателя - 9,3 м 2 . Электрический генератор дает переменный ток напряжением 110 в, частотой 2000 гц.

Полный к. п. д. SNAP-2 равен всего лишь 6,5 %. Это значит, что из 50 квт тепловой мощности реактора около 47 квт рассеивается излучателем или уходит на нагрев конструкции. Общий вес системы SNAP-2 без биологической защиты - 270 кг (из них 90 кг приходится на реактор), т. е. удельный вес установки без защиты составляет 90 кг/квт.

Но и этот довольно высокий удельный вес ядерной установки заметно увеличится из-за веса биологической защиты, который в большой степени зависит от размещения энергоустановки на станции, а также от условии эксплуатации, в частности от места запуска реактора - будет ли он производиться на Земле или после выведения ОКС на орбиту.

Наземный запуск ядерной установки усложняет обслуживание стартовой площадки, но обеспечивает условия для полной проверки работы всей энергосистемы.

Запуск же на орбите связан со снижением надежности всей энергетической системы и довольно сложен в осуществлении. В случае запуска на Земле экипаж в момент подготовки к старту и в полете при прохождении атмосферы должен быть полностью защищен не только от направленной радиации, но и от «разбрызгивания» ее молекулами окружающего воздуха, т. е. практически защита должна быть круговой, сплошной. На орбите же достаточно лишь так называемой теневой защиты экипажа, вес которой, очевидно, намного меньше. Кроме того, на орбите энергоустановка может быть удалена от основной конструкции ОКС на некоторое расстояние, например с помощью выдвижной телескопической штанги или другим способом. А так как толщина защиты зависит от расстояния до источника радиации, то вес теневого защитного экрана можно будет сделать еще меньше. Сколько же должна весить биологическая защита для турбогенератора SNAP-2? При ее расчете исходят из допустимой дозы облучения экипажа. Если принять, что суммарная доза для экипажа ОКС за три месяца не должна превысить 15 рентген, то вес защиты при удавлении реактора от экипажа на 15 м составит от 200 до 450 кг в зависимости от взаимной компоновки реактора и кабины экипажа.

Таким образом, суммарный вес установки может достичь 720 кг, а удельный вес - 240 кг/квт. Следует заметить, однако, что с увеличением мощности установки эти Цифры значительно уменьшаются.

Турбогенераторная установка - не единственный способ использования энергии ядерного реактора в космосе. Существуют и другие способы преобразования ее в электричество. Об этих способах мы расскажем в разделе о немашинных методах преобразования энергии.

Энергия ядерного распада может быть получена не только в реакторе, но и с помощью радиоактивных изотопов . Основные достоинства этого источника энергии, применимого для небольших мощностей до 0,5 квт), - малый вес и длительное время непрерывной и стабильной работы.

Принципиальная схема использования изотопов ничем не отличается от схемы турбогенераторной установки с реактором - теплоноситель прокачивается через специальный котел с трубками из материала, насыщенного изотопом, например стронцием-90 или цезием-144. Но может использоваться я схема, применяемая в солнечных батареях: облученный теплом от изотопа слой люминофора излучает фотоны, которые попадают на кремниевый элемент, аналогичный солнечной батарее. Получить большую электрическую мощность с помощью радиоизотопов очень трудно, да и вряд ли выгодно, если учесть сложность получения изотопов и их высокую стоимость.

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Ядерные взрывы в космосе Перспектива использования околоземного космического пространства в качестве плацдарма для размещения ударных вооружений заставила задуматься над способами борьбы со спутниками еще до появления самих спутников.Наиболее радикальным по тем

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Советские ядерные двигатели В Советском Союзе работы над ядерными ракетными двигателями начались в середине 50-х годов. В НИИ-1 (научный руководитель - Мстислав Келдыш) инициатором и руководителем работ по ЯРД был Виталий Иевлев. В 1957 году он сделал по этой теме сообщение

Из книги Малая скоростная автоматизированная подводная лодка-истребитель пр. 705(705К) автора Автор неизвестен

Источники: 1. История отечественного судостроения, т.5. СПб.: "Судостроение", 1996.2. Шмаков Р.А. Опередившие время… (ПЛА проектов 705 и /05К). "Морской Сборник", 1996, 9 7.3. Адмиралтейские верфи. Люди, корабли, годы. 1926-1996, СПб: "Гангут", 1 9964. Михайловский А.П. Рабочая глубина. Записки

Из книги Эскадренные миноносцы типа "Новик" в ВМФ СССР автора Лихачев Павел Владимирович

ИСТОЧНИКИ РГА ВМФ. Фонды: р-12 опись 1 дело № 22 "О степени готовности кораблей Балтийского флота", р-35 1 № 6, р- 2293№ 56 "Журнал боевых действий эсминца "Энгельс", р-2571№ 62л. 97,139, р-2571№ 101, р-3511№ 7л.18, р-951№16л.З, р-2502№33л.89 "Приказы командира бригады эсминцев МСБМ. 1932., р-2571№ 50 "Тех.

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 3.7 Ядерные спектры и эффект Мёссбауэра При максимально возможной опоре на механику или электродинамику необходимо указать физически наглядные математические операции, интерпретация которых через колебания подходящей модели приводит для неё к законам сериальных

Из книги Броненосец Двенадцать Апостолов автора Арбузов Владимир Васильевич

§ 3.13 Ядерные реакции и дефект массы Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной

Из книги Импульсные блоки питания для IBM PC автора Куличков Александр Васильевич

Из книги Металл Века автора Николаев Григорий Ильич

ИСТОЧНИКИ РГА ВМФ Фонд 417. Главный морской штаб. Фонд 418. Морской генеральный штаб. Фонд 421. Морской Технический комитет. Фонд 427. Главное управление кораблестроения и снабжений Фонд 609. Штаб командующего флотом Черного моря. Фонд 870. Вахтенные и шканечные журналы (коллекция).

Из книги Источники питания и зарядные устройства автора

Глава 3 Импульсные источники питания персональных компьютеров типа АТ/ХТ Совершенствование персональных компьютеров и используемых в них источников электропитания происходило постепенно и параллельно. Появление новых функциональных возможностей у вычислительных

Из книги Сварка автора Банников Евгений Анатольевич

В ИНДУСТРИИ ПИТАНИЯ В нашей стране большое внимание уделяется увеличению выпуска товаров народного потребления и улучшению их качества. Важная отрасль нашего народного хозяйства - пищевая промышленность, на долю которой приходится более половины всех потребительских

Из книги Автономное электроснабжение частного дома своими руками автора Кашкаров Андрей Петрович

Источники питания. База знаний Предупреждение:если вы не маньяк-электронщик (или т.п.) с соответствующим опытом, то не используйте назащищенные (unprotected) LiCo аккумуляторы, особенно если они невнятного происхождения! Выигрыш в цене нивелируется нюансами эксплуатации (нельзя

Из книги Windows 10. Секреты и устройство автора Алмаметов Владимир

Из книги Основы рационального питания автора Омаров Руслан Сафербегович

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

2.6. Блок питания Блок питания, как вы можете видеть из названия, отвечает за предоставление питания всем комплектующим компьютера, которые устанавливаются в материнскую плату и не имеют отдельной вилки для розетки. То есть, каждая деталь компьютера, чтобы работать,

Из книги автора

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ Цель: ознакомиться с основными понятиями культуры и режима питанияКультура питания – это знание: основ правильного питания; свойств продуктов и их воздействия на организм, умение их правильно выбирать и

Из книги автора

Источники Источников по классической метрологии много. Полный анализ их невозможен, я бы рекомендовал следующие книги:Б.Г.Артемьев, Ю.Е.Лукашов «Справочное пособие для специалистов метрологических служб»;В.А.Кузнецов, Г.В.Ялунина «Общая метрология»;«Метрология,

Наконец на нашей аккумуляторной поляне засветился Росатом, показав на форуме «Атомэкспо-2017» ядерную батарейку со сроком службы не менее 50 лет. Пользуясь этим знаменательным поводом, рассмотрим перспективы использования мирного атома для мобильных устройств.

Атомный (ядерный) аккумулятор - это все-таки батарейка, а не аккумулятор, так как - это по определению одноразовый источник электрического тока, без возможности перезаряда. Несмотря на это, воображение публики активно будоражит перспектива использования атомных аккумуляторов в мобильных устройствах. Но обо всем по порядку.

Что именно представил Росатом на форуме? Генеральный директор ФГУП «НИИ НПО Луч», Павел Зайцев заявил, что представленный источник, работающий на изотопе Ni63, способен в течение 50 лет выдавать 1mkW с напряжением 2V. Павел Зайцев вполне откровенно говорит про скромные вольт-амперные характеристики, делая основной упор на длительный срок службы. Наверно, исключительно из личной скромности, Генеральный директор ФГУП «НИИ НПО Луч» указал в технических характеристиках только мощность, а не общепринятую ёмкость. Но мы не будем придавать этому большое значение и просто рассчитаем ёмкость:

C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA

Получается, что ёмкость ядерной батарейки, размером с небольшой универсальный аккумулятор , всего лишь как у литий-полимерного (Li-Pol) аккумулятора для блютуз наушников! Павел Зайцев предполагает использование своей ядерной батарейки в кардиологии, что вызывает большие сомнения при столь огромных размерах. Возможно эта ядерная батарея может рассматриваться как некий прототип получения электричества из изотопов, но Росатому потребуется уменьшить батарею в тысячи раз, чтобы соответствовать современным электрокардиостимуляторам.

Совсем не порадовала стоимость ядерного аккумулятора - директор государственного унитарного предприятия объявил цену изотопа никеля в долларах (!) 4000USD/грамм. Означает ли это, что основной компонент будет приобретаться за границей России? А сколько грамм необходимо на изготовление одного аккумулятора? Одновременно с этим было замечено, что потребуются также алмазные элементы (также не ясно сколько?), но стоимость которых (уже в рублях) колеблется от 10 000 до 100 000 рублей за штуку. Какова же будет полная стоимость такой батарейки? Электрокардиостимуляторы в России устанавливаются по полису ОМС бесплатно в экстренных случаях или при наличии квоты. При недостаточности квоты и за электрокардиостимуляторы иностранного производства больным приходится оплачивать самостоятельно. Будут ли ядерные батареи устанавливаться за счет бюджета ОМС или пожилые люди должны будут приобретать их отдельно? Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме "день простоять и ночь продержаться", то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях. Аналогичную оценку "изобретения" Росатома дают пользователи социальных сетей:

Едва ли ее где-нибудь получится использовать. Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит:)

Заявленный срок службы (50 лет), как мы догадались - это как раз половина периода полураспада Ni 63 (100лет). Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C 14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки .

Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С 14

С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения. Все эти реакторы используют уран как топливо, а внутри реактор сделан из графитовых блоков. Эти графитовые блоки используются в процессе ядерного расщепления, позволяя контролировать цепную реакцию, которая даёт постоянный источник тепла. Это тепло потом используется, чтобы превратить воду в пар, которое потом крутит турбины, чтобы сделать электричество. Ядерные электростанции производят ядерные отходы, которые необходимо безопасно утилизировать. Надо просто подождать, чтобы эти отходы перестали быть радиоактивными. К сожалению, это занимает тысячи и миллионы лет. Это также требует очень много денег, чтобы контролировать безопасность в течение этих многих лет. Так как мы используем графитовые реакторы, Англия создала 95000 тон графитовых блоков содержащих радиацию. Этот графит только один из форм углерода, простой и стабильный элемент, но если положить эти блоки в высоко радиоактивное место, то тогда часть углерода превращается в углерод 14 . Углерод 14 может превратиться обратно в обычный углерод 12 когда её дополнительная энергия уйдет. Но это очень долгий процесс потому что период полураспада углерода 14 составляет 5730 лет.
Недавно ученные из университета Bristol"s Cabot Institute продемонстрировали, что углерод 14 концентрируется в блоках радиацией снаружи. Это значит, что возможно убрать большинство радиации нагревая их - большинство радиации выходит как газ, который потом может быть собран. Оставшиеся графитовые блоки все-равно радиоактивны, но не так сильно, это значит, что утилизировать их будет проще и дешевле. Радиоактивный углерод 14 в форме газа, может быт переделан при низких давлениях и высоких температурах в алмаз - это еще одна форма углерода. Искусственные алмазы, сделанные из радиоактивного углерода, излучают поток бета-излучения, которое может создать электрический ток. Это дает нам ядерную энергию алмазной батареи. Чтобы она была безопасной для нашего использования она покрывается слоем не радиоактивного алмаза, который полностью поглощает всю радиацию и превращает её в электричество почти на 100%. Там нет движущейся частей, ее не надо обслуживать, алмаз просто производит электричество. Так как алмаз самое твердое вещество на свете, то ни какое другое вещество не может дать такую защиту для радиоактивного углерода 14 . Поэтому снаружи можно обнаружить очень маленькое количество радиации. Но это почти то же самое количество радиации, сколько выделяет банан, так что оно совсем безопасно. Как мы уже сказали только половина углерода 14 распадается через каждый 5730 лет, это значит что наша батарея-бриллиант имеет удивительное время жизни - она разрядится на 50% только в 7746 году. Эти бриллиантовые батареи будут лучше всего использованы там, где нельзя менять обычные батарей. Например в спутниках для космических исследований или для имплантированных устройств, таких как кардиостимуляторы.

Мы просим всех отправлять свои предложения на #diamondbattery. Разработка этой новой технологии решила бы много проблем, например: ядерного мусора, чистого электричества и увеличения срока службы батарей. Это перенесет нас в "бриллиантовый век" производства энергии.

Очень красивая концепция ученых из Бристоля 2016 года и очень скромная коробочка Росатома возможно (?) когда-нибудь будут доработаны до алмазных электростанций, но никак не ядерных батареек для мобильных устройств. Сложно будет уговорить людей ходить с Фукусимой в кармане, даже если за это начнут доплачивать.

Использование атома в мирных целях - это один из спорных вопросов современности, если учесть, что энергетика - это наиболее монополизированная отрасль экономики, когда в цене KW электроэнергии более 90% составляют налоги и сборы. Эффективность мирного атома вызывают сомнения, так как в цену условно дешевой атомной энергии не включается стоимость техногенных последствий. Поэтому некоторые страны, в том числе Германия и Япония приняли решение полностью отказаться от использования атома в энергетике. Ведь развивая возобновляемые источники энергии, можно не только полностью отказаться от атомной энергии, но и создать высокотехнологическую отрасль с миллионами высококвалифицированных рабочих мест.

Подводя итог, мы, скорее всего, имеем очередную технодурилку типа "Супераккумулятор ", а не прорывное "изобретение" бриллиантового века. Другими словами, применять мирный атом в микроэнергетике - это что свинью брить - визгу много, а шерсти мало!

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет. Сущность изобретения заключается в том, что ядерная батарейка содержит корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, при этом детектор выполнен в виде чередующихся слоев n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены. Технический результат - упрощение технологии изготовления полупроводникового детектора, преобразующего энергию бета-частиц в электрический ток. 1 ил.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет, например в кардиостимуляторах, или в глубоководных датчиках, или в приборах, запущенных в космос, либо в приборах, установленных в труднодоступных местах.

Известны ядерные батарейки, принцип действия которых основан на конверсии энергии частиц, возникающих при радиоактивном распаде изотопов, в электрический ток при прохождении через полупроводниковый детектор, работающий в бета- или фотовольтаическом режиме. Известные батарейки используют газообразные, жидкие и твердотельные изотопы, испускающие альфа-, бета-частицы, а также гаммакванты .

Известно устройство , которое содержит корпус, в котором помещен полупроводниковый детектор из аморфного кремния, представляющий p-i-n-структуру, а внутренность корпуса наполнена тритием (3 H), который испускает электроны. Время полураспада трития примерно 12 лет. В рабочем режиме каждая бета-частица, достигшая поверхности детектора, влетает в детектор и создает в нем более одной тысячи электронно-дырочных пар. Возникшие дырки и электроны разделяются внутренним полем p-i-n-структуры, что приводит к формированию напряжения на контактах детектора и появлению электрического тока при подключении нагрузки. Недостатком такой батарейки являются малые значения тока, пропорциональные площади только одной поверхности плоского детектора.

Наиболее близким аналогом предлагаемого изобретения является батарейка на изотопах, предложенная в американском патенте (Patent US 6774531) . В прототипе существенно увеличена эффективность детектора за счет специальной конструкции 3D-кремниевого детектора.

Известная батарейка содержит корпус, наполненный газообразным тритием, куда помещен бетавольтаический детектор из кремния n-типа. В объеме детектора созданы колодцы для трития, на стенках которых сформирован слой p + -типа проводимости, причем все размеры колодцев не превышают длину свободного пробега электронов в тритии.

Недостатком известного устройства является то, что реализация детектора, содержащего в объеме полупроводника глубокие колодцы, на стенках которых сформирован p-n-переход, является очень сложной технической задачей, решенной пока только для кремния. Для других полупроводников, имеющих более высокую плотность, чем у кремния, известная конструкция детектора вообще малоэффективна. Действительно, при средней энергии электронов Е=6 кэВ, испускаемых тритием, электрон сможет проникнуть в детектор только на глубину 0.1-0.2 мкм, а при наличии слоя p-типа на стенках колодцев значительная часть заряда, порожденная электронами, рекомбинирует в нем, не достигнув p-n-перехода.

Технический результат, на который направлено заявляемое решение, состоит в устранении указанных недостатков.

Этот результат достигается тем, что ядерная батарейка на радиоактивных изотопах, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличается тем, что в объеме детектора созданы чередующиеся слои n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности: n + -i-p + -i-…-n + -i-р + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев, к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа и тоже соединены.

В предлагаемом устройстве конструкция детектора исключает необходимость формирования на стенках колодцев p-n-переходов. Поэтому детектор может быть изготовлен не только из кремния, но и из других полупроводников, например из арсенида галлия.

На фиг.1 схематично представлено сечение одной из возможных конструкций предлагаемой батарейки. Батарейка содержит корпус 1 с электродами 2 и 3. Корпус наполнен материалом радиоактивного изотопа 4. В корпус помещены два детектора 5 и 6 из арсенида галлия. Детекторы выполнены из эпитаксиального материала, содержащего последовательность слоев n + 7, i 8, p + 9, высоколегированным слоям n + 7, p + 9 созданы омические контакты соответственно 10 и 11, соединенные проволочками с электродами 2 и 3 корпуса. Перпендикулярно плоскостям, в которых выращены слои n + , i, p + в объеме детектора сформированы колодцы 12.

Пример практического исполнения. В герметичный металлический корпус 1, имеющий электроды 2 и 3, электрически развязанные с корпусом за счет диэлектрических вставок, были установлены два идентичных детектора 5 и 6. При этом внутренность корпуса была заполнена радиоактивным тритием, испускающим бета-частицы. Детекторы изготавливались из арсенида галлия, выращенного с помощью газофазовой эпитаксии. На проводящей подложке n + -типа последовательно были выращены слои: n + -слой 7 толщиной 10 мкм, i-слой 8, компенсированный хромом в процессе эпитаксии, толщиной 30 мкм, p + -слой 9 толщиной 10 мкм, затем i-слой 8 толщиной 30 мкм, n + -слой 7 толщиной 10 мкм и затем снова i-слой 8 толщиной 30 мкм, p + -слой 9 толщиной 10 мкм. С использованием стандартных методов фотолитографии, химического травления и вакуумного напыления формировались омические контакты 10 и 11 к высоколегированным слоям. С использованием реактивно-ионного травления и кратковременного химического травления в детекторах формировались колодцы 12 с диаметром верхнего отверстия 80 мкм и шагом 100 мкм. В результате была получена ядерная батарейка новой конструкции.

В рабочем режиме при размерах детекторов 5×5 см 2 общий объем колодцев, заполненных тритием, составляет 0.25 см 3 . При этом радиоактивность указанного объема с тритием равна 10 10 Бк. Поскольку 70% электронов, испущенных в результате радиоактивного распада трития, попадают в активные области детектора т.е. в полуизолирующие области 8 (часть попадает в высоколегированные слои) и каждый электрон порождает примерно 1700 электронно-дырочных пар, то максимальная величина тока от данной батарейки составит 2.5 мкА.

Таким образом, предложена ядерная батарейка с новой конструкцией бетавольтаического детектора. Реализация детектора не требует создания p-n-переходов на стенках колодцев, сформированных в объеме детектора, поэтому для создания полупроводникового детектора можно использовать не только кремниевые структуры.

Источники информации

1. Kherani N.P., Shmayda W.T., Zukotynski S. /Nuclear batteries/ Patent US 5606213, 1997.

2. Chu F.Y., Mannik L., Peralta S.B., Ruda H.E. /Radioisotope-powered semiconductor battery/ Patent US 5859484, 1999.

3. Gadeken L. /Apparatus and method for generating electrical current from the nuclear decay process of radioactive material/ Patent US 6774531, 2004.

Ядерная батарейка, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличающаяся тем, что детектор выполнен в виде чередующихся слоев n + , i (либо ν либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n + -типа, созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены.

Похожие патенты:

Изобретение относится к устройству плазменного осаждения из паровой фазы для получения кремниевых тонкопленочных модулей солнечного элемента, к способу получения тонкопленочных модулей и к кремниевым тонкопленочным фотогальваническим панелям.

Изобретение относится к применению пластикового композита, содержащего материал-носитель, выбранный из группы полиэтилентерефталата (PET), полиэтиленнафтената (PEN) или сополимера этилена с тетрафторэтиленом (ETFE), а также слои полиамида-12, граничащие с материалом-носителем по обеим сторонам, для получения фотоэлектрических модулей.

Изобретение относится к области конструкции и технологии изготовления фотоэлектрических преобразователей (ФП) солнечного излучения в электрический ток и может быть использовано в производстве солнечных фотоэлементов.