Уход и... Инструменты Дизайн ногтей

Сложение вычитание умножение и деление действительных чисел. Законы арифметических действий над действительными числами. Геометрическая модель действительных чисел

Но всегда ли эти дроби периодические? Ответ на этот вопрос отрицателен: существуют отрезки, длины которых нельзя выразить бесконечной периодической дробью (т.е. положительным рациональным числом) при выбранной единице длины. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.


Если единицей длины является длина стороны квадрата, то длина диагонали этого квадрата не может быть выражена положительным рациональным числом.


Из данного утверждения следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной единице длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.


Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональных чисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные периодические десятичные дроби - это и есть положительные иррациональные числа.


Множество положительных иррациональных чисел обозначают символом J+.


Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R+.


Любое положительное действительное число может быть представлено бесконечной десятичной дробью - периодической (если оно является рациональным) либо непериодической (если оно является иррациональным).


Действия над положительными действительными числами сводятся к действиям над положительными рациональными числами. В связи с этим для каждого положительного действительного числа вводят его приближенные значения по недостатку и по избытку.


Пусть даны два положительных действительных числа a и b , an и bn - соответственно их приближения по недостатку, a¢n и b¢n - их приближения по избытку.


Суммой действительных чисел a и b a + b n удовлетворяет неравенству an + bn a + b < a¢n + b¢n.


Произведением действительных чисел a и b называется такое действительное число a × b , которое при любом натуральном n удовлетворяет неравенству an × bn a b × b¢n.


Разностью положительных действительных чисел a и b называется такое действительное число с , что a = b + с.


Частным положительных действительных чисел a и b называется такое действительное число с , что a = b × с.


Объединение множества положительных действительных чисел с множеством отрицательных действительных чисел и нулем есть множество R всех действительных чисел.


Сравнение действительных чисел и действия над ними выполняются по правилам, известным из школьного курса математики.


Задача 60. Найти три первых десятичных знака суммы 0,333… + 1,57079…


Решение. Возьмем десятичные приближения слагаемых с четырьмя десятичными знаками:


0,3333 < 0,3333… < 0,3334


1,5707 < 1,57079… < 1,5708.


Складываем: 1,9040 ≤ 0,333… + 1,57079… < 1,9042.


Следовательно, 0,333… + 1,57079…= 1,904…


Задача 61. Найти два первых десятичных знака произведения a × b , если а = 1,703604… и b = 2,04537…


Решение. Берем десятичные приближения данных чисел с тремя десятичными знаками:


1,703 < a <1,704 и 2,045 < b < 2,046. По определению произведения действительных чисел имеем:


1,703 × 2,045 ≤ a × b < 1,704 × 2,046 или 3,483 ≤ ab < 3,486.


Таким образом, a × b = 3,48…


Упражнения для самостоятельной работы


1. Запишите десятичные приближения иррационального числа π = 3,1415… по недостатку и по избытку с точностью до:


а) 0,1; б) 0,01; в) 0,001.


2. Найдите первые три десятичных знака суммы a + b , если:


а) а = 2,34871…, b = 5,63724…; б) а = , b = π; в) а = ; b = ; г) а = ; b = .


В данной статье собраны основные сведения про действительные числа . Сначала дано определение действительных чисел и приведем примеры. Дальше показано положение действительных чисел на координатной прямой. А в заключение разобрано, как действительные числа задаются в виде числовых выражений.

Навигация по странице.

Определение и примеры действительных чисел

Действительные числа в виде выражений

Из определения действительных чисел понятно, что действительными числами являются:

  • любое натуральное число ;
  • любое целое число ;
  • любая обыкновенная дробь (как положительная, так и отрицательная);
  • любое смешанное число;
  • любая десятичная дробь (положительная, отрицательная, конечная, бесконечная периодическая, бесконечная непериодическая).

Но очень часто действительные числа можно видеть в виде , и т.п. Более того, сумма, разность, произведение и частное действительных чисел также представляют собой действительные числа (смотрите действия с действительными числами ). К примеру, - это действительные числа.

А если пойти дальше, то из действительных чисел с помощью арифметических знаков, знаков корня, степеней, логарифмических, тригонометрических функций и т.п. можно составлять всевозможные числовые выражения, значения которых также будут действительными числами. Например, значения выражений и есть действительные числа.

В заключение этой статьи заметим, что следующим этапом расширения понятия числа является переход от действительных чисел к комплексным числам .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Урок №2.

Тема урока. Действительные числа.

Цель урока. Ввести понятие действительного числа. Действия с действительными числами.

Ход урока.

I. Организационный момент. Сообщение темы и цели урока.

II . Повторение пройденного материала.

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения знаний (самостоятельная работа).

1 вариант. 2 вариант.

1. Найдите значения выражений:

1) ; 2) ; 3) 1) 2) 3)

2. Вычислить:

1) 2) 1) 2)

3) 4) 3) ; 4)

III . Изучение нового материала.

1.Рациональных чисел недостаточно для решения задач измерения. Так диагональ квадрата с единичной стороной не может быть измерена, если использовать только рациональные числа(2,5т.л. до н.э.)

Для задач измерения можно выбрать стандартную величину - длину отрезка и задать числа геометрически – отрезками, а точнее их отношениями к выбранному единичному отрезку (единице масштаба). Если назвать числом отношение отрезка к единичному, то возникает задача записи числа. Удобна запись числа в виде десятичной дроби, отражающей некоторый процесс измерения.

Измеряя диагональ квадрата со стороной 1, мы сначала отложим целый

единичный отрезок и получим число 1. В остатке будем откладывать деся-

тую часть единичного отрезка. Она отложится 4 раза, и останется отрезок

длины, меньшей . Получим десятичную дробь 1,4. Затем делим

снова на 10 частей, откладываем новый отрезок в остатке и записываем

результат. Получим последовательность десятичных дробей с увеличива-

ющимся количеством знаков после запятой: 1; 1.4; 1,41; 1,414; 1,4142;… .

Эту последовательность удобно представить в виде одной беско-

нечной десятичной дроби 1,414213562373095…, которую и можно считать

числом. Итак, по определению действительное число – это бесконечная

непериодическая десятичная дробь.

2. Конечная десятичная дробь. Рациональное число, представленное

Дробью, в знаменателе которой стоят только двойки и пятерки, запишется

конечной десятичной дробью, так как на каком-то шаге десятичный процесс измерения закончится – некоторая доля единичного отрезка отложится в остатке целое число раз.

Например:

Если у некоторой несократимой дроби в знаменателе есть простые числа, отличные от 2 и 5, то процесс десятичного измерения станет периодическим, и цифры (одна или несколько) начнут периодически повторяться.

Например:

3. Иррациональные числа – это числа, не являющиеся рациональными. Они записываются бесконечными непериодическими десятичными дробями.

Например: .

Объединение множества рациональных и иррациональных чисел образует множество действительных чисел R . ( ).

4 . Зачем понадобились действительные числа, и хватает ли их для решения задач?

Добавление к рациональным числам иррациональных чисел было вызвано необходимостью измерения длины любых отрезков. С помощью так построенных действительных чисел можно измерять многие другие величины, которые были названы скалярными .

5 . Почему диагональ квадрата со стороной, равной единице, нельзя измерить рациональным числом?

6. Действия над действительными числами.

Бесконечная десятичная дробь – это последовательность приближений конечными десятичными дробями к данному действительному числу. Для выполнения арифметических операций над ними эти операции делаются с конечными десятичными дробями.

Например: . Получим:

Аналогично (с помощью калькулятора).

Действительные числа можно изобразить точками на числовой оси. Если два числа b изображены точками на числовой оси, то расстояние между А и В равно модулю разности чисел a u b : Свойства:

I v . Закрепление пройденного материала.

1. Ответить на вопросы.

1) Всякое ли целое число является рациональным? (Да)

2) Является ли число иррациональным? (Нет)

3) Всегда ли сумма рациональных чисел является рациональным числом? (Нет. Сумма периодических дробей.)

4) Может ли при сложении иррациональных чисел получиться рациональное число? (Нет)

5) Может ли частное от деления рационального числа на иррациональное быть рациональным числом? (Нет)

6) Всегда ли квадрат иррационального числа является рациональным числом? (Нет. ).

2. Решение примеров.

1) Приведите примеры рациональных и иррациональных чисел.

2) Укажите рациональные и иррациональные числа:

3) Верно ли, что: а) . б)

Пусть некоторое число х Î R + сначала изменили на а, а потом на в, причем число х настолько велико, что оба эти изменения не выводят из множестваR + . Назовем суммой чисел а и в действительное число, выражающее результирующее изменение. Например, если сначала сделать изменение на 4, а потом на 7, число 12 перейдет сначала в 16, а потом 16 перейдет в 23. Но чтобы 12 перешло в 23, надо изменить его на 11, значит, 4 + 7 = 11, как и должно быть. Если же сначала сделать изменение на –4, а потом на –7, то 12 перейдет сначала в 8; а потом в 1. Но чтобы из 12 получить 1, надо изменить 12 на –11. Отсюда следует, что (–4) + (–7) = –11.

Вообще, если а и в – положительные действительные числа и
х > а + в, то при изменении на –в число х а переходит в (x а) в, т.е. в х –(а + в ). Но чтобы получить х – (а + в ),надо изменить х на
–(а + в ). Это показывает, что (–а ) + (–в ) = – (а + в ).

Рассмотрим теперь сложение чисел противоположных знаков. Начнем со случая, когда слагаемые – противоположные числа. Очевидно, что если изменить число х сначала на а , а потом на –а, то получим снова х. Иными словами, х + (а + (–а )) = х. Так как, с другой стороны, и х + 0 = х, то надо положить а + (–а ) = 0. Итак, сумма противоположных чисел равна нулю.

Теперь найдем сумму а + (–в ) в общем случае (мы считаем, что а и в – положительные числа, а потому –в отрицательно). Если а > в, то
а = (а в ) + в, и потому а + (–в ) = (а в )+ в + (–в ). Но последовательные изменения числа х на а в, в и –в можно заменить изменением на а в (изменения на в и –в взаимно уничтожаются). Поэтому положим а + (–в ) = а в, если а > в. Очевидно, что при а > в и (–в ) + а = а в.

Пусть теперь а < в. В этом случае мы имеем –в = (–а )+ (–(в а )), и потому а + (–в ) = а + (–а ) + (–(в а )) = – (в а ). Значит, при a < в надо положить а + (–в ) = – (в а ). Тот же результат получится при сложении –в и а : (–в ) + а = –(в а ).

Полученные правила сложения действительных чисел можно сформулировать в виде следующего определения.

Определение. При сложении двух действительных чисел одного и того же знака получится число того же знака, модуль которого равен сумме модулей слагаемых. При сложении чисел различного знака получается число, знак которого совпадает со знаком слагаемого, имеющего больший модуль, а модуль равен разности большего и меньшего модулей слагаемых. Сумма противоположных чисел равна нулю, а сложение с нулем не меняет числа.

Легко проверить, что сложение в R обладает свойствами коммутативности, ассоциативности и сократимости. Из данного выше определения видно, что нуль – нейтральный элемент относительно сложения, т.е.

а + 0= а.

Вычитание в множестве R определяется как операция, обратная сложению. Поскольку каждое число в в R имеет противоположное ему число –в, такое, что в + (–в ) = 0, то вычитание числа в равносильно сложению с числом –в: а в = а + (–в ).

В самом деле, для любых а и в имеем:

(а + (–в )) + в = а + ((–в ) + в ) = а, а это и означает, что а в = а + (–в ).

Для положительных чисел а и в , таких, что а > в, их разность
а в была изменением, при котором в переходит в а. По аналогии с этим назовем для любых действительных чисел а и в число а в изменением, переводящим в в а . Оно переводит точку 0 в точку а в. Как и для положительных действительных чисел это изменение геометрически изображается направленным отрезком, идущим из точки в в точку а. Его длина равна расстоянию от начала отсчета до точки
а в, т.е. модулю числа а в. Мы доказали следующее важное утверждение:

Длина отрезка, идущего из точки в в точку а, равна |а в |.

Введем в множество R отношение порядка. Будем считать, что
а > в в том и только в том случае, когда разность а в положительна. Легко доказать, что это отношение антисимметрично и транзитивно, т.е. является отношением строгого порядка. При этом для любых а и в из R справедливо одно и только одно из отношений: а = в , а < в, в < а, т.е. отношение порядка в R линейно. Поскольку а – 0 = а, то а > 0, если a Î R + , и а < 0, еслиа Î R – .

Нетрудно доказать, что если а > в, то для любого с Î R имеем
а + с > в + с.