Error: не определено #11234. Регрессионный анализ показал. Простые регрессионные планы. Множественное парное уравнение регрессии: оценка важности связи
Уход и... Инструменты Дизайн ногтей

Регрессионный анализ показал. Простые регрессионные планы. Множественное парное уравнение регрессии: оценка важности связи

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Понятие регрессии . Зависимость между переменными величинами x и y может быть описана разными способами. В частности, любую форму связи можно выразить уравнением общего вида , гдеy рассматривается в качестве зависимой переменной, или функции от другой – независимой переменной величины x, называемой аргументом . Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т.д. Изменение функции в зависимости от изменения одного или нескольких аргументов называется регрессией . Все средства, применяемые для описания корреляционных связей, составляет содержание регрессионного анализа .

Для выражения регрессии служат корреляционные уравнения, или уравнения регрессии, эмпирические и теоретически вычисленные ряды регрессии, их графики, называемые линиями регрессии, а также коэффициенты линейной и нелинейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение усредненных значений признакаY при изменении значений x i признака X , и, наоборот, показывают изменение средних значений признакаX по измененным значениям y i признака Y . Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней.

Различных форм и видов корреляционных связей много. Задача сводится к тому, чтобы в каждом конкретном случае выявить форму связи и выразить ее соответствующим корреляционным уравнением, что позволяет предвидеть возможные изменения одного признака Y на основании известных изменений другого X , связанного с первым корреляционно.

12.1 Линейная регрессия

Уравнение регрессии. Результаты наблюдений, проведенных над тем или иным биологическим объектом по корреляционно связанным признакам x и y , можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками. Довольно часто эта связь выглядит в виде прямой или может быть аппроксимирована прямой линией.

Линейная зависимость между переменными x и y описывается уравнением общего вида , гдеa, b, c, d, … – параметры уравнения, определяющие соотношения между аргументами x 1 , x 2 , x 3 , …, x m и функций .

В практике учитывают не все возможные, а лишь некоторые аргументы, в простейшем случае – всего один:

В уравнении линейной регрессии (1) a – свободный член, а параметр b определяет наклон линии регрессии по отношению к осям прямоугольных координат. В аналитической геометрии этот параметр называют угловым коэффициентом , а в биометрии – коэффициентом регрессии . Наглядное представление об этом параметре и о положении линий регрессии Y по X и X по Y в системе прямоугольных координат дает рис.1.

Рис. 1 Линии регрессии Y по X и X поY в системе

прямоугольных координат

Линии регрессии, как показано на рис.1, пересекаются в точке О (,), соответствующей средним арифметическим значениям корреляционно связанных друг с другом признаковY и X . При построении графиков регрессии по оси абсцисс откладывают значения независимой переменной X, а по оси ординат – значения зависимой переменной, или функции Y. Линия АВ, проходящая через точку О (,) соответствует полной (функциональной) зависимости между переменными величинамиY и X , когда коэффициент корреляции . Чем сильнее связь междуY и X , тем ближе линии регрессии к АВ, и, наоборот, чем слабее связь между этими величинами, тем более удаленными оказываются линии регрессии от АВ. При отсутствии связи между признаками линии регрессии оказываются под прямым углом по отношению друг к другу и .

Поскольку показатели регрессии выражают корреляционную связь двусторонне, уравнение регрессии (1) следует записывать так:

По первой формуле определяют усредненные значения при изменении признакаX на единицу меры, по второй – усредненные значения при изменении на единицу меры признакаY .

Коэффициент регрессии. Коэффициент регрессии показывает, насколько в среднем величина одного признака y изменяется при изменении на единицу меры другого, корреляционно связанного с Y признака X . Этот показатель определяют по формуле

Здесь значения s умножают на размеры классовых интервалов λ , если их находили по вариационным рядам или корреляционным таблицам.

Коэффициент регрессии можно вычислить минуя расчет средних квадратичных отклонений s y и s x по формуле

Если же коэффициент корреляции неизвестен, коэффициент регрессии определяют следующим образом:

Связь между коэффициентами регрессии и корреляции. Сравнивая формулы (11.1) (тема 11) и (12.5), видим: в их числителе одна и та же величина , что указывает на наличие связи между этими показателями. Эта связь выражается равенством

Таким образом, коэффициент корреляции равен средней геометрической из коэффициентов b yx и b xy . Формула (6) позволяет, во-первых, по известным значениям коэффициентов регрессии b yx и b xy определять коэффициент регрессии R xy , а во-вторых, проверять правильность расчета этого показателя корреляционной связи R xy между варьирующими признаками X и Y .

Как и коэффициент корреляции, коэффициент регрессии характеризует только линейную связь и сопровождается знаком плюс при положительной и знаком минус при отрицательной связи.

Определение параметров линейной регрессии. Известно, что сумма квадратов отклонений вариант x i от средней есть величина наименьшая, т.е.. Эта теорема составляет основу метода наименьших квадратов. В отношении линейной регрессии [см. формулу (1)] требованию этой теоремы удовлетворяет некоторая система уравнений, называемыхнормальными :

Совместное решение этих уравнений относительно параметров a и b приводит к следующим результатам:

;

;

, откуда и.

Учитывая двусторонний характер связи между переменными Y и X , формулу для определения параметра а следует выразить так:

и . (7)

Параметр b , или коэффициент регрессии, определяют по следующим формулам:

Построение эмпирических рядов регрессии. При наличии большого числа наблюдений регрессионный анализ начинается с построения эмпирических рядов регрессии. Эмпирический ряд регрессии образуется путем вычисления по значениям одного варьирующего признака X средних значений другого, связанного корреляционно сX признака Y . Иными словами, построение эмпирических рядов регрессии сводится к нахождению групповых средних ииз соответствующих значений признаковY и X.

Эмпирический ряд регрессии – это двойной ряд чисел, которые можно изобразить точками на плоскости, а затем, соединив эти точки отрезками прямой, получить эмпирическую линию регрессии. Эмпирические ряды регрессии, особенно их графики, называемые линиями регрессии , дают наглядное представление о форме и тесноте корреляционной зависимости между варьирующими признаками.

Выравнивание эмпирических рядов регрессии. Графики эмпирических рядов регрессии оказываются, как правило, не плавно идущими, а ломаными линиями. Это объясняется тем, что наряду с главными причинами, определяющими общую закономерность в изменчивости коррелируемых признаков, на их величине сказывается влияние многочисленных второстепенных причин, вызывающих случайные колебания узловых точек регрессии. Чтобы выявить основную тенденцию (тренд) сопряженной вариации коррелируемых признаков, нужно заменить ломанные линии на гладкие, плавно идущие линии регрессии. Процесс замены ломанных линий на плавно идущие называют выравниванием эмпирических рядов и линий регрессий .

Графический способ выравнивания. Это наиболее простой способ, не требующий вычислительной работы. Его сущность сводится к следующему. Эмпирический ряд регрессии изображают в виде графика в системе прямоугольных координат. Затем визуально намечаются средние точки регрессии, по которым с помощью линейки или лекала проводят сплошную линию. Недостаток этого способа очевиден: он не исключает влияние индивидуальных свойств исследователя на результаты выравнивания эмпирических линий регрессии. Поэтому в тех случаях, когда необходима более высокая точность при замене ломанных линий регрессии на плавно идущие, используют другие способы выравнивания эмпирических рядов.

Способ скользящей средней. Суть этого способа сводится к последовательному вычислению средних арифметических из двух или трех соседних членов эмпирического ряда. Этот способ особенно удобен в тех случаях, когда эмпирический ряд представлен большим числом членов, так что потеря двух из них – крайних, что неизбежно при этом способе выравнивания, заметно не отразится на его структуре.

Метод наименьших квадратов. Этот способ предложен в начале XIX столетия А.М. Лежандром и независимо от него К. Гауссом. Он позволяет наиболее точно выравнивать эмпирические ряды. Этот метод, как было показано выше, основан на предположении, что сумма квадратов отклонений вариант x i от их средней есть величина минимальная, т.е.. Отсюда и название метода, который применяется не только в экологии, но и в технике. Метод наименьших квадратов объективен и универсален, его применяют в самых различных случаях при отыскании эмпирических уравнений рядов регрессии и определении их параметров.

Требование метода наименьших квадратов заключается в том, что теоретические точки линии регрессии должны быть получены таким образом, чтобы сумма квадратов отклонений от этих точек для эмпирических наблюденийy i была минимальной, т.е.

Вычисляя в соответствии с принципами математического анализа минимум этого выражения и определенным образом преобразуя его, можно получить систему так называемых нормальных уравнений , в которых неизвестными величинами оказываются искомые параметры уравнения регрессии, а известные коэффициенты определяются эмпирическими величинами признаков, обычно суммами их значений и их перекрестных произведений.

Множественная линейная регрессия. Зависимость между несколькими переменными величинами принято выражать уравнением множественной регрессии, которая может быть линейной и нелинейной . В простейшем виде множественная регрессия выражается уравнением с двумя независимыми переменными величинами (x , z ):

где a – свободный член уравнения; b и c – параметры уравнения. Для нахождения параметров уравнения (10) (по способу наименьших квадратов) применяют следующую систему нормальных уравнений:

Ряды динамики. Выравнивание рядов. Изменение признаков во времени образует так называемые временные ряды или ряды динамики . Характерной особенностью таких рядов является то, что в качестве независимой переменной X здесь всегда выступает фактор времени, а зависимой Y – изменяющийся признак. В зависимости от рядов регрессии зависимость между переменными X и Y носит односторонний характер, так как фактор времени не зависит от изменчивости признаков. Несмотря на указанные особенности, ряды динамики можно уподобить рядам регрессии и обрабатывать их одними и теми же методами.

Как и ряды регрессии, эмпирические ряды динамики несут на себе влияние не только основных, но и многочисленных второстепенных (случайных) факторов, затушевывающих ту главную тенденцию в изменчивости признаков, которая на языке статистики называют трендом .

Анализ рядов динамики начинается с выявления формы тренда. Для этого временной ряд изображают в виде линейного графика в системе прямоугольных координат. При этом по оси абсцисс откладывают временные точки (годы, месяцы и другие единицы времени), а по оси ординат – значения зависимой переменной Y. При наличии линейной зависимости между переменными X и Y (линейного тренда) для выравнивания рядов динамики способом наименьших квадратов наиболее подходящим является уравнение регрессии в виде отклонений членов ряда зависимой переменной Y от средней арифметической ряда независимой переменнойX:

Здесь – параметр линейной регрессии.

Числовые характеристики рядов динамики. К числу основных обобщающих числовых характеристик рядов динамики относят среднюю геометрическую и близкую к ней среднюю арифметическуювеличины. Они характеризуют среднюю скорость, с какой изменяется величина зависимой переменной за определенные периоды времени:

Оценкой изменчивости членов ряда динамики служит среднее квадратическое отклонение . При выборе уравнений регрессии для описания рядов динамики учитывают форму тренда, которая может быть линейной (или приведена к линейной) и нелинейной. О правильности выбора уравнения регрессии обычно судят по сходству эмпирически наблюденных и вычисленных значений зависимой переменной. Более точным в решении этой задачи является метод дисперсионного анализа регрессии (тема 12 п.4).

Корреляция рядов динамики. Нередко приходится сопоставлять динамику параллельно идущих временных рядов, связанных друг с другом некоторыми общими условиями, например выяснить связь между производством сельскохозяйственной продукции и ростом поголовья скота за определенный промежуток времени. В таких случаях характеристикой связи между переменными X и Y служит коэффициент корреляции R xy (при наличии линейного тренда).

Известно, что тренд рядов динамики, как правило, затушевывается колебаниями членов ряда зависимой переменной Y. Отсюда возникает задача двоякого рода: измерение зависимости между сопоставляемыми рядами, не исключая тренд, и измерение зависимости между соседними членами одного и того же ряда, исключая тренд. В первом случае показателем тесноты связи между сопоставляемыми рядами динамики служит коэффициент корреляции (если связь линейна), во втором – коэффициент автокорреляции . Эти показатели имеют разные значения, хотя и вычисляются по одним и тем же формулам (см. тему 11).

Нетрудно заметить, что на значении коэффициента автокорреляции сказывается изменчивость членов ряда зависимой переменной: чем меньше члены ряда отклоняются от тренда, тем выше коэффициент автокорреляции, и наоборот.

Лекция 3.

Регрессионный анализ.

1) Числовые характеристики регрессии

2) Линейная регрессия

3) Нелинейная регрессия

4) Множественная регрессия

5) Использование MS EXCEL для выполнения регрессионного анализа

Контрольно-оценочное средство - тестовые задания

1. Числовые характеристики регрессии

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения.

Цели регрессионного анализа

  • Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными).
  • Предсказание значения зависимой переменной с помощью независимой(-ых).
  • Определение вклада отдельных независимых переменных в вариацию зависимой.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Для проведения регрессионного анализа первоначально необходимо познакомиться с базовыми понятиями статистики и теории вероятности.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение.

Случайные величине делят на две разновидности:

  • · дискретные, которые могут принимать только конкретные, заранее оговоренные значения (например, - значения чисел на верхней грани брошенной игральной кости или порядковые значения текущего месяца);
  • · непрерывные (чаще всего - значения некоторых физических величин: веса, расстояния, температуры и т.п.), которые по законам природы могут принимать любые значения, хотя бы и в некотором интервале.

Закон распределения случайной величины - это соответствие между возможными значениями дискретной случайной величины и ее вероятностями, обычно записывается в таблицу:

Статистическое определение вероятности выражается через относительную частоту случайного события, то есть находится как отношение количества случайных величин к общему числу случайных величин.

Математическим ожиданием дискретной случайной величины X называется сумма произведений значений величины X на вероятности этих значений. Математическое ожидание обозначают или M (X ) .

n

= M (X ) = x 1 p 1 + x 2 p 2 +… + x n p n = S x i p i

i =1

Рассеяние случайной величины относительно её математического ожидания определяется с помощью числовой характеристики, называемой дисперсией. Проще говоря, дисперсия - это разброс случайной величины относительно среднего значения. Для понятия сущности дисперсии рассмотрим пример. Средняя заработная плата по стране составляет около 25 тысяч рублей. Откуда берется эта цифра? Скорее всего, складываются все зарплаты и делятся на количество работников. В данном случае очень большая дисперсия (минимальная зарплата около 4 тыс. руб., а максимальная - около 100 тыс. руб.). Если бы зарплата у всех была одинаковой, то дисперсия была бы равна нулю, и разброса бы не было.

Дисперсией дискретной случайной величины X называют математическое ожидание квадрата разности случайной величины и её математического ожидания:

D = M [ ((X - M (X)) 2 ]

Используя определение математического ожидания для вычисления дисперсии, получаем формулу:

D = S (x i - M (X)) 2 · p i

Дисперсия имеет размерность квадрата случайной величины. В тех случаях, когда нужно иметь числовую характеристику рассеяния возможных значений в той же размерности, что и сама случайная величина, используют среднее квадратичное отклонение.

Средним квадратичным отклонением случайной величины называют корень квадратный из её дисперсии.

Среднее квадратичное отклонение есть мера рассеяния значений случайной величины около ее математического ожидания.

Пример.

Закон распределения случайной величины Х задан следующей таблицей:

Найти её математическое ожидание, дисперсию и среднее квадратичное отклонение.

Используем приведенные выше формулы:

М (Х) = 1 · 0,1 + 2 · 0,4 + 4 · 0,4 + 5 · 0,1 = 3

D = (1-3) 2 · 0,1 + (2 - 3) 2 · 0,4 + (4 - 3) 2 · 0,4 + (5 - 3) 2 · 0,1 = 1,6

Пример.

В денежной лотерее разыгрывается 1 выигрыш в 1000 рублей, 10 выигрышей по 100 рублей и 100 выигрышей по 1 рублю при общем числе билетов 10000. Составьте закон распределения случайного выигрыша Х для владельца одного лотерейного билета и определите математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины.

X 1 = 1000, Х 2 = 100, Х 3 = 1, Х 4 = 0,

Р 1 = 1/10000 = 0,0001, Р 2 = 10/10000 = 0,001, Р 3 = 100/10000 = 0,01, Р 4 = 1 - (Р 1 + Р 2 + Р 3) = 0,9889.

Результаты поместим в таблицу:

Математическое ожидание - сумма парных произведений значения случайной величины на их вероятность. Для данной задачи его целесообразно вычислить по формуле

1000 · 0,0001 + 100 · 0,001 + 1 · 0,01 + 0 · 0,9889 = 0,21 рубля.

Получили настоящую «справедливую» цену билета.

D = S (x i - M (X)) 2 · p i = (1000 - 0,21) 2 0,0001 + (100 - 0,21) 2 0,001 +

+ (1 - 0,21) 2 0,01 + (0 - 0,21) 2 0,9889 ≈ 109,97

Функция распределения непрерывных случайных величин

Величину, которая в результате испытания примет одно возможное значение (при этом заранее неизвестно какое), называется случайной величиной. Как говорилось выше, случайные величины бывают дискретные (прерывные) и непрерывные.

Дискретной называют случайную величину, принимающую отдельные друг от друга возможные значения с определенными вероятностями, которые можно пронумеровать.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

До этого момента мы ограничивались только одной “разновидностью” случайных величин - дискретных, т.е. принимающих конечные значения.

Но теория и практика статистики требуют использовать понятие непрерывной случайной величины - допускающей любые числовые значения, из какого - либо интервала.

Закон распределения непрерывной случайной величины удобно задавать с помощью так называемой функции плотности вероятности. f (х). Вероятность Р (a < X < b) того, что значение, принятое случайной величиной Х, попадет в промежуток (a; b), определяется равенством

Р (a < X < b) = ∫ f (x ) dx

График функции f (х) называется кривой распределения. Геометрически вероятность попадания случайной величины в промежуток (a; b), равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми х = а, х = b.

P(a£X

Если от сложного события вычесть конечное либо счетное множество, вероятность наступления нового события останется неизменной.

Функция f(x) - числовая скалярная функция действительного аргумента x называется плотностью вероятности, и существует в точке x, если в этой точке существует предел:

Свойства плотности вероятности:

  1. Плотность вероятности является неотрицательной функцией, т. е. f(x) ≥ 0

(если все значения случайной величины Х заключены в промежутке (a;b), то последнее

равенство можно записать в виде ∫ f (x) dx = 1).

Рассмотрим теперь функцию F(х) = Р (Х < х). Эта функция называется функцией распределения вероятности случайной величины Х. Функция F(х) существует как для дискретных, так и для непрерывных случайных величин. Если f (x) - функция плотности распределения вероятности

непрерывной случайной величины Х, то F (х) = ∫ f(x) dx = 1).

Из последнего равенства следует, что f (x) = F" (x)

Иногда функцию f(x) называют дифференциальной функцией распределения вероятности, а функцию F(x) - интегральной функцией распределения вероятности.

Отметим важнейшие свойства функции распределения вероятности:

  1. F (х) - неубывающая функция.
  2. F (- ∞) = 0.
  3. F (+ ∞) = 1.

Понятие функции распределения является центральным в теории вероятностей. Используя это понятие, можно дать другое определение непрерывной случайной величины. Случайная величина называется непрерывной, если ее интегральная функция распределения F(х) непрерывна.

Числовые характеристики непрерывных случайных величин

Математическое ожидание, дисперсия и другие параметры любых случайных величин практически всегда вычисляются по формулам, вытекающим из закона распределения.

Для непрерывной случайной величины математическое ожидание вычисляется по формуле:

М (Х) = ∫ x · f(x ) dx

Дисперсия:

D (X) = ∫ (x - М (Х)) 2 f (x ) dx или D (X) = ∫ x 2 f(x ) dx - (М (Х)) 2

2. Линейная регрессия

Пусть составляющие Х и Y двумерной случайной величины (Х, Y) зависимы. Будем считать, что одну из них можно приближенно представить как линейную функцию другой, например

Y ≈ g(Х) = α + βХ, и определим параметры α и β с помощью метода наименьших квадратов.

Определение. Функция g(Х) = α + βХ называется наилучшим приближением Y в смысле метода наименьших квадратов, если математическое ожидание М(Y - g(Х)) 2 принимает наименьшее возможное значение; функцию g(Х) называют среднеквадратической регрессией Y на Х.

Теорема Линейная средняя квадратическая регрессия Y на Х имеет вид:

где - коэффициент корреляции Х иY.

Коэффициенты уравнения.

Можно проверить, что при этих значениях функция функция F(α, β)

F (α, β ) = M (Y - α - βX )² имеет минимум, что доказывает утверждение теоремы.

Определение. Коэффициент называется коэффициентом регрессии Y на Х , а прямая - - прямой среднеквадратической регрессии Y на Х .

Подставив координаты стационарной точки в равенство, можно найти минимальное значение функции F(α, β), равное Эта величина называется остаточной дисперсией Y относительно Х и характеризует величину ошибки, допускаемой при замене Y на

g(Х) = α+βХ. При остаточная дисперсия равна 0, то есть равенство является не приближенным, а точным. Следовательно, при Y и Х связаны линейной функциональной зависимостью. Аналогично можно получить прямую среднеквадратической регрессии Х на Y:

и остаточную дисперсию Х относительно Y. При обе прямые регрессии совпадают. Сопоставив уравнения регрессии У на Х и Х на У и решив систему из уравнений, можно найти точку пересечения прямых регрессии - точку с координатами (т х, т у), называемую центром совместного распределения величин Х и Y.

Алгоритм составления уравнений регрессии рассмотрим из учебника В. Е. Гмурмана «Теория вероятности и математическая статистика» стр. 256.

1) Составить расчетную таблицу, в которой будут записаны номера элементов выборки, варианты выборки, их квадраты и произведение.

2) Вычислить сумму по всем столбцам, кроме номера.

3) Вычислить средние значения для каждой величины, дисперсии и средне квадратические отклонения.

5) Проверить гипотезу о существовании связи между Х и У.

6) Составить уравнения обеих линий регрессии и изобразить графики этих уравнений.

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии

Коэффициент b=

Получим искомое уравнение линии регрессии У на Х:

У = 0,202 Х + 1,024

Аналогично уравнение регрессии Х на У:

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии pxy:

Коэффициент b=

Х = 4,119У - 3,714

3. Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы разных степеней

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Парабола второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению, оценка параметров которого при помощи Метода наименьших квадратов приводит к системе уравнений:

Парабола второй степени обычно применяется в случаях, когда для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.

Равносторонняя гипербола может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины товарооборота. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы x и процентом прироста заработной платы y .

Гипербола приводится к линейному уравнению простой заменой: . Также можно использовать Метод наименьших квадратов для составления системы линейных уравнений.

Аналогичным образом приводятся к линейному виду зависимости: , и другие.

Равносторонняя гипербола и полулогарифмическая кривая используют для описания кривой Энгеля (математическое описание взаимосвязи доли расходов на товары длительного пользования и общих сумм расходов (или доходов)). Уравнения, в которых входят, применяются в исследованиях урожайности, трудоемкости сельскохозяйственного производства.

4. Множественная регрессия

Множественная регрессия - уравнение связи с несколькими независимыми переменными:

где - зависимая переменная (результативный признак);

Независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

линейная -

степенная -

экспонента -

гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Для ее решения может быть применен метод определителей:

где - определитель системы;

Частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии - уравнение регрессии в стандартизированном масштабе, к уравнению множественной регрессии в стандартизированном масштабе применим МНК.

5. Использование MS EXCEL для выполнения регрессионного анализа

Регрессионный анализ устанавливает формы зависимости между случайной величиной Y (зависимой) и значениями одной или нескольких переменных величин (независимых), причем значения последних считаются точно заданными. Такая зависимость обычно определяется некоторой математической моделью (уравнением регрессии), содержащей несколько неизвестных параметров. В ходе регрессионного анализа на основании выборочных данных находят оценки этих параметров, определяются статистические ошибки оценок или границы доверительных интервалов и проверяется соответствие (адекватность) принятой математической модели экспериментальным данным.

В линейном регрессионном анализе связь между случайными величинами предполагается линейной. В самом простом случае в парной линейной регрессионной модели имеются две переменные Х и Y. И требуется по n парам наблюдений (X1, Y1), (X2, Y2), ..., (Xn, Yn) построить (подобрать) прямую линию, называемую линией регрессии, которая «наилучшим образом» приближает наблюдаемые значения. Уравнение этой линии y=аx+b является регрессионным уравнением. С помощью регрессионного уравнения можно предсказать ожидаемое значение зависимой величины y, соответствующее заданному значению независимой переменной x. В случае, когда рассматривается зависимость между одной зависимой переменной Y и несколькими независимыми X1, X2, ..., Xm, говорят о множественной линейной регрессии.

В этом случае регрессионное уравнение имеет вид

y = a 0 +a 1 x 1 +a 2 x 2 +…+a m x m ,

где a0, a1, a2, …, am - требующие определения коэффициенты регрессии.

Коэффициенты уравнения регрессии определяются при помощи метода наименьших квадратов, добиваясь минимально возможной суммы квадратов расхождений реальных значений переменной Y и вычисленных по регрессионному уравнению. Таким образом, например, уравнение линейной регрессии может быть построено даже в том случае, когда линейная корреляционная связь отсутствует.

Мерой эффективности регрессионной модели является коэффициент детерминации R2 (R-квадрат). Коэффициент детерминации может принимать значения между 0 и 1 определяет, с какой степенью точности полученное регрессионное уравнение описывает (аппроксимирует) исходные данные. Исследуется также значимость регрессионной модели с помощью F-критерия (Фишера) и достоверность отличия коэффициентов a0, a1, a2, …, am от нуля проверяется с помощью критерия Стьюдента.

В Excel экспериментальные данные аппроксимируются линейным уравнением до 16 порядка:

y = a0+a1x1+a2x2+…+a16x16

Для получения коэффициентов линейной регрессии может быть использована процедура «Регрессия» из пакета анализа. Также полную информацию об уравнении линейной регрессии дает функция ЛИНЕЙН. Кроме того, могут быть использованы функции НАКЛОН и ОТРЕЗОК для получения параметров регрессионного уравнения и функция ТЕНДЕНЦИЯ и ПРЕДСКАЗ для получения предсказанных значений Y в требуемых точках (для парной регрессии).

Рассмотрим подробно применение функции ЛИНЕЙН (известные_y, [известные_x], [константа], [статистика]): известные_у - диапазон известных значений зависимого параметра Y. В парном регрессионном анализе может иметь любую форму; в множественном должен быть строкой либо столбцом; известные_х - диапазон известных значений одного или нескольких независимых параметров. Должен иметь ту же форму, что и диапазон Y (для нескольких параметров - соответственно несколько столбцов или строк); константа - логический аргумент. Если исходя из практического смысла задачи регрессионного анализа необходимо, чтобы линия регрессии проходила через начало координат, то есть свободный коэффициент был равен 0, значение этого аргумента следует положить равным 0 (или «ложь»). Если значение положено 1 (или «истина») или опущено, то свободный коэффициент вычисляется обычным образом; статистика - логический аргумент. Если значение положено 1 (или «истина»), то дополнительно возвращается регрессионная статистика (см таблицу), используемая для оценки эффективности и значимости модели. В общем случае для парной регрессии y=аx+b результат применения функции ЛИНЕЙН имеет вид:

Таблица. Выводной диапазон функции ЛИНЕЙН для парного регрессионного анализа

В случае множественного регрессионного анализа для уравнения y=a0+a1x1+a2x2+…+amxm в первой строке выводятся коэффициенты am,…,a1,а0, во второй - стандартные ошибки для этих коэффициентов. В 3-5 строках за исключением первых двух столбцов, заполненных регрессионной статистикой, будет получено значение #Н/Д.

Вводить функцию ЛИНЕЙН следует как формулу массива, выделив вначале массив нужного размера для результата (m+1 столбец и 5 строк, если требуется регрессионная статистика) и завершив ввод формулы нажатием CTRL+SHIFT+ENTER.

Результат для нашего примера:

Кроме этого в программе имеется встроенная функция - Анализ данных на вкладке Данные.

С помощью нее можно также выполнять регрессионный анализ:

На слайде - результат регрессионного анализа, выполненного с помощью Анализа данных.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

Переменная X 1

Уравнения регрессии, которые мы смотрели ранее также построены в MS Excel. Для их выполнения сначала строится Точечная диаграмма, затем через контекстное меню выбираем - Добавить линию тренда. В новом окне ставим галочки - Показывать уравнение на диаграмме и поместить на диаграмму величину достоверности апроксимации (R^2).

Литература:

  1. Теория вероятностей и математическая статистика. Гмурман В. Е. Учебное пособие для вузов. - Изд. 10-е, стер. - М.: Высш. шк., 2010. - 479с.
  2. Высшая математика в упражнениях и задачах. Учебное пособие для вузов / Данко П. Е., Попов А. Г., Кожевникова Т. Я., Данко С. П. В 2 ч. - Изд. 6-е, стер. - М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и образование» , 2007. - 416 с.
    1. 3. http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F - некоторые сведения о регрессионном анализе

Регрессионный анализ исследует зависимость определенной величины от другой величины или нескольких других величин. Регрессионный анализ применяется преимущественно в среднесрочном прогнозировании, а также в долгосрочном прогнозировании. Средне- и долгосрочный периоды дают возможность установления изменений в среде бизнеса и учета влияний этих изменений на исследуемый показатель.

Для осуществления регрессионного анализа необходимо:

    наличие ежегодных данных по исследуемым показателям,

    наличие одноразовых прогнозов, т.е. таких прогнозов, которые не поправляются с поступлением новых данных.

Регрессионный анализ обычно проводится для объектов, имеющих сложную, многофакторную природу, таких как, объем инвестиций, прибыль, объемы продаж и др.

При нормативном методе прогнозирования определя­ются пути и сроки достижения возможных состояний явле­ния, принимаемых в качестве цели. Речь идет о прогнози­ровании достижения желательных состояний явления на основе заранее заданных норм, идеалов, стимулов и целей. Такой прогноз отвечает на вопрос: какими путями можно достичь желаемого? Нормативный метод чаще применяется для программ­ных или целевых прогнозов. Используются как количествен­ное выражение норматива, так и определенная шкала воз­можностей оценочной функции

В случае использования количественного выражения, например физиологических и рациональных норм потреб­ления отдельных продовольственных и непродовольствен­ных товаров, разработанных специалистами для различных групп населения, можно определить уровень потребления этих товаров на годы, предшествующие достижению ука­занной нормы. Такие расчеты называют интерполяцией. Интерполяция - это способ вычисления показателей, недо­стающих в динамическом ряду явления, на основе установ­ленной взаимосвязи. Принимая фактическое значение по­казателя и значение его нормативов за крайние члены ди­намического ряда, можно определить величины значений внутри этого ряда. Поэтому интерполяцию считают норма­тивным методом. Ранее приведенная формула (4), исполь­зуемая в экстраполяции, может применяться в интерполя­ции, где у п будет характеризовать уже не фактические данные, а норматив показателя.

В случае использования в нормативном методе шкалы (поля, спектра) возможностей оценочной функции, т. е. фун­кции распределения предпочтительности, указывают при­мерно следующую градацию: нежелательно - менее же­лательно - более желательно - наиболее желательно - оптимально (норматив).

Нормативный метод прогнозирования помогает выра­ботать рекомендации по повышению уровня объективнос­ти, следовательно, эффективности решений.

Моделирование , пожалуй, самый сложный метод про­гнозирования. Математическое моделирование означает опи­сание экономического явления посредством математичес­ких формул, уравнений и неравенств. Математической ап­парат должен достаточно точно отражать прогнозный фон, хотя полностью отразить всю глубину и сложность прогно­зируемого объекта довольно трудно. Термин "модель" об­разован от латинского слова modelus, что означает "мера". Поэтому моделирование правильнее было бы считать не методом прогнозирования, а методом изучения аналогично­го явления на модели.

В широком смысле моделями называются заместители объекта исследования, находящиеся с ним в таком сход­стве, которое позволяет получить новое знание об объек­те. Модель следует рассматривать как математическое опи­сание объекта. В этом случае модель определяется как яв­ление (предмет, установка), которое находиться в некотором соответствии с изучаемым объектом и может его замещать в процессе исследования, представляя информацию об объекте.

При более узком понимании модели она рассматрива­ется как объект прогнозирования, ее исследование позво­ляет получить информацию о возможных состояниях объек­та в будущем и путях достижения этих состояний. В этом случае целью прогнозной модели является получение ин­формации не об объекте вообще, а только о его будущих состояниях. Тогда при построении модели бывает невозмож­но провести прямую проверку ее соответствия объекту, так как модель представляет собой только его будущее состояние, а сам объект в настоящее время может отсут­ствовать или иметь иное существование.

Модели могут быть материальными и идеальными.

В экономике используются идеальные модели. Наиболее совершенной идеальной моделью количественного описания социально-экономического (экономического) явления является математическая модель, использующая числа, формулы, уравнения, алгоритмы или графическое представление. С помощью экономических моделей определяют:

    зависимость между различными экономическими по­казателями;

    различного рода ограничения, накладываемые на по­казатели;

    критерии, позволяющие оптимизировать процесс.

Содержательное описание объекта может быть пред­ставлено в виде его формализованной схемы, которая ука­зывает, какие параметры и исходную информацию нужно собрать, чтобы вычислить искомые величины. Математичес­кая модель в отличие от формализованной схемы содержит конкретные числовые данные, характеризующие объект Разработка математической модели во многом зависит от представления прогнозиста о сущности моделируемого про­цесса. На основе своих представлений он выдвигает рабочую гипотезу, с помощью которой создается аналитическая за­пись модели в виде формул, уравнений и неравенств. В ре­зультате решения системы уравнений получают конкретные параметры функции, которыми описывается изменение ис­комых переменных величин во времени.

Порядок и последовательность работы как элемент организации прогнозирования определяется в зависимости от применяемого метода прогнозирования. Обычно эта ра­бота выполняется в несколько этапов.

1-й этап - прогнозная ретроспекция, т. е. установле­ние объекта прогнозирования и прогнозного фона. Работа на первом этапе выполняется в такой последовательности:

    формирование описания объекта в прошлом, что включает предпрогнозный анализ объекта, оценку его параметров, их значимости и взаимных связей,

    определение и оценка источников информации, по­рядка и организации работы с ними, сбор и разме­щение ретроспективной информации;

    постановка задач исследования.

Выполняя задачи прогнозной ретроспекции, прогнозис­ты исследуют историю развития объекта и прогнозного фона с целью получения их систематизированного описания.

2-й этап - прогнозный диагноз, в ходе которого ис­следуется систематизированное описание объекта прогно­зирования и прогнозного фона с целью выявления тенден­ций их развития и выбора моделей и методов прогнозиро­вания. Работа выполняется в такой последовательности:

    разработка модели объекта прогноза, в том числе формализованное описание объекта, проверка сте­пени адекватности модели объекту;

    выбор методов прогнозирования (основного и вспо­могательных), разработка алгоритма и рабочих про­грамм.

3-й этап - протекция, т. е. процесс обширной разра­ботки прогноза, в том числе: 1) расчет прогнозируемых па­раметров на заданный период упреждения; 2) синтез от­дельных составляющих прогноза.

4-й этап - оценка прогноза, в том числе его верифи­кация, т. е. определение степени достоверности, точности и обоснованности.

В ходе проспекции и оценки на основании предыдущих этапов решаются задачи прогноза и его оценка.

Указанная этапность является примерной и зависит от основного метода прогнозирования.

Результаты прогноза оформляются в виде справки, док­лада или иного материала и представляются заказчику.

В прогнозировании может быть указана величина отклонения прогноза от действительного состояния объекта, которая называется ошибкой прогноза, которая рассчитывается по формуле:

;
;
. (9.3)

Источники ошибок в прогнозировании

Основными источниками могут быть:

1. Простое перенесение (экстраполяция) данных из прошлого в будущее (например, отсутствие у фирмы иных вариантов прогноза, кроме 10% роста продаж).

2. Невозможность точно определить вероятность события и его воздействия на исследуемый объект.

3. Непредвиденные трудности (разрушительные события), влияющие на осуществление плана, например, внезапное увольнение начальника отдела сбыта.

В целом точность прогнозирования повышается по мере накопления опыта прогнозирования и отработки его методов.