Уход и... Инструменты Дизайн ногтей

Расстояние между прямыми в правильной треугольной призме. Нахождение расстояния между скрещивающимися прямыми

Если совсем подробно - то..

Очевидно, сечение о котором говорится в условии - это $%AA_1MN$%, где $%M$% и $%N$% - середины ребер $%B_1C_1$% и $%BC$% соответственно (и плоскость такого сечения, очевидно, перпендикулярна плоскостям оснований). Т.е. так как это сечение - квадрат, то высота призмы (ее боковое ребро) = высоте правильного треугольника $%AN = h = a\cdot \sqrt{3}/2 = 2\sqrt{7}\cdot \sqrt{3}/2 = \sqrt{21}$%.
Ищем расстояние между скрещивающимися $%A_1B$% и $%AM$%.

"Плохой" способ решения (пусть тоже будет, т.к. в других задачах подобное применяется часто). Строим плоскость, содержащую, например, прямую $%AM$% и параллельную прямой $%A_1B$% (можно было наоборот нарисовать плоскость, проходящую через $%A_1B$% и параллельную $%AM$%). Для этого: через т. $%M$% проводим прямую $%ME || A_1B$%; плоскость, заданная параллельными прямыми $%A_1B$% и $%AM$%, пересекает 2 параллельные плоскости оснований по ПАРАЛЛЕЛЬНЫМ прямым, т.е. если точка $%E$% принадлежит "нижнему" основанию, то должно быть $%A_1M || BE$% (т.е. $%BA_1ME$% - параллелограмм, и $%BE = A_1M = \sqrt{21}$%). Теперь по построению $%A_1B$% параллельна плоскости $%AME$% (т.к. $%A_1B || ME$%), и ищем расстояние от любой точки $%A_1B$% (например от точки $%B$%) до плоскости $%AME$%. Оно = высоте пирамиды $%BAME$%, проведенной из вершины $%B$% к основанию $%AME$%. Но построить такую высоту $%H$% сложно, поэтому ищем "через объем". С одной стороны $%V_{BAME} = 1/3\cdot S_{\Delta AME}\cdot H$%, а с другой стороны: $%V_{BAME} = 1/3\cdot S_{BAE} \cdot MN$% (т.к. высотой из точки $%M$% к основанию $%BAE$% будет высота призмы $%MN = \sqrt{21}$% (хотя высота будет при этом "находиться за пределами" самой пирамиды $%BAME$%, но это ничего не меняет)).
В $%\Delta ABE$% угол $%\angle ABE = 60^0 + 90^0 = 150^0$%, и площадь треуг-ка $%S_{ABE} = 1/2\cdot 2\sqrt{7} \cdot \sqrt{21} \cdot sin(150^0) = 7 \sqrt{3}/2$%. Т.е. объем пирамиды: $%V_{BAME} = 1/3\cdot 7\sqrt{3} /2 \cdot \sqrt{21} = 7\sqrt{7} /2$%
И остается найти площадь треугольника $%AME$%. Его стороны "знаем" (находим): $%AM = \sqrt{2} \cdot \sqrt{21} = \sqrt{42}$% (это диагональ квадрата), $%ME = A_1B = \sqrt{ (2\sqrt{7})^2 + (\sqrt{21})^2 } = \sqrt{ 28 + 21} = 7$%, и $%AE$% - из треугольника $%BAE$% по теореме косинусов: $% AE^2 = 21 + 28 - 2\cdot 2\sqrt{7} \cdot \sqrt{21}\cdot (-\sqrt{3})/2 = 49 + 2\cdot 7 \cdot 3 = 91$%. Т.е. (еще раз) стороны: $%AM = \sqrt{42}$%, $%ME = 7 = \sqrt{49}$% и $%AE = \sqrt{91}$%. Но $%91 = 42 + 49$%, т.е. $%AE^2 = AM^2 + ME^2$%, т.е. "по теореме обратной к теореме Пифагора" треугольник - прямоугольный ($%AM \perp ME$%). Тогда его площадь: $%S_{AME} = 1/2\cdot AM\cdot AE = 1/2\cdot 7\sqrt{42}$%.
То есть $%1/3\cdot 1/2 \cdot 7\sqrt{42} \cdot H = 7\sqrt{7}/2$%, откуда $%H = 3\sqrt{7}/\sqrt{42} = 3/\sqrt{6} = \sqrt{6}/2$% --расстояние от точки $%B$% (и от прямой $%A_1B$% до плоскости $%AME$% (равное расстоянию между скрещивающимися).

Теперь нормальный способ решения =)) Найдем плоскость, перпендикулярную прямой $%AM$%. "Прямая перпендикулярна плоскости, если она перпендикулярна двум не параллельным прямым, лежащим в этой плоскости". Очевидно, что $%AM \perp A_1N$% (т.к. это диагонали квадрата). Кроме того, $%AN$% - это проекция наклонной $%AM$% на "нижнее" основание. И если проекция $%AN \perp BC$%, то и наклонная $%AM\perp BC$% (теор. о 3-х перпендикулярах). Можно по-другому: сказать, что прямая $%BC$% лежит в плоскости основания, которая перпендикулярна плоскости $%ANM$%, при чем $%BC$% перпендикулярна $%AN$% - линии пересечения этих плоскостей, значит, $%BC$% перпендикулярна всей плоскости $%ANM$%, тогда и $%BC\perp AM$%. Таким образом $%AM\perp A_1N$% и $%AM\perp BC$%, значит, $%AM$% перпендикулярна плоскости $%BA_1N$%. Но прямая $%A_1B$% этой плоскости вообще принадлежит (ее даже проецировать на эту плоскость не надо). Т.е. построив из точки $%O$% (точки пересечения $%AM$% с плоскостью $%BA_1N$%) перпендикуляр к стороне $%BA_1$% (т.е. $%OT\perp A_1B$%)- получаем общий перпендикуляр двух скрещивающихся (его длина = расстоянию между ними). Треуг-к$%\Delta BNA_1$% - прямоугольный ($%\angle BNA_1 = 90^0)$%, и отрезок $%OT$% - это половина перпендикуляра к гипотенузе. А перп. к гипотенузе: $%NK = BN\cdot A_1N / A_1B = \sqrt{7}\cdot \sqrt{42}/7 = \sqrt{6}$%. И расстояние $%OT = \sqrt{6}/2$%

На сайте уже были рассмотрены некоторые типы задач по стереометрии, которые входят в единый банк заданий экзамена по математике. Например, задания про .

Призма называется правильной если её боковые перпендикулярны основаниям и в основаниях лежит правильный многоугольник. То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

В этой статье для вас задачи на решение призмы, в основании которой лежит правильный шестиугольник . Особенностей и сложностей в решении нет никаких. В чём суть? Дана правильная шестиугольная призма, требуется вычислить расстояние между двумя вершинами или найти заданный угол. Задачи на самом деле простые, в итоге решение сводится к нахождению элемента в прямоугольном треугольнике.

Используется теорема Пифагора и . Необходимо знание определений тригонометрических функций в прямоугольном треугольнике.

Обязательно посмотрите информацию о правильном шестиугольнике в . Ещё вам пригодится навык извлечения их большого числа. Можете на решение многогранников, там тоже вычисляли расстояние между вершинами и углы.

Кратко: что представляет собой правильный шестиугольник?

Известно, что в правильном шестиугольнике стороны равны. Кроме этого, углы между сторонами тоже равны .

*Противолежащие стороны параллельны.

Дополнительная информация

Радиус окружности описанной около правильного шестиугольника равен его стороне. *Это подтверждается очень просто: если мы соединим противоположные вершины шестиугольника, то получим шесть равных равносторонних треугольников. Почему равносторонних?

У каждого треугольника угол при его вершине лежащей в центре равен 60 0 (360:6=60). Так как у треугольника две стороны имеющие общую вершину в центре равны (это радиусы описанной окружности), то каждый угол при основании такого равнобедренного треугольника так же равен 60 градусам.

То есть правильный шестиугольник, образно говоря, состоит как бы из шести равных равносторонних треугольников.

Какой полезный для решения задач факт ещё следует отметить? Угол при вершине шестиугольника (угол между его соседними сторонами) равен 120 градусам.

*Умышленно не коснулись формул правильного N-угольника. Данные формулы мы подробно рассмотрим в будущем, здесь они просто не нужны.

Рассмотрим задачи:

272533. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 48. Найдите расстояние между точками A и E 1 .

Рассмотрим прямоугольный треугольник AA 1 E 1 . По теореме Пифагора:

*Угол между сторонами правильного шестиугольника равен 120 градусам.

Отрезок АЕ 1 является гипотенузой, АА 1 и А 1 Е 1 катеты. Ребро АА 1 нам известно. Катет А 1 Е 1 мы можем найти используя используя .

Теорема: Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними.

Следовательно

По теореме Пифагора:

Ответ: 96

*Обратите внимание, что 48 возводить в квадрат совсем не обязательно.

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 35. Найдите расстояние между точками B и E.

Сказано, что все рёбра равны 35, то есть сторона шестиугольника лежащего в основании равна 35. А так же, как уже сказано, радиус описанной около него окружности равен этому же числу.

Таким образом,

Ответ: 70

273353. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны сорока корням из пяти. Найдите расстояние между точками B и E 1 .

Рассмотрим прямоугольный треугольник BB 1 E 1 . По теореме Пифагора:

Отрезок B 1 E 1 равен двум радиусам описанной около правильного шестиугольника окружности, а её радиус равен стороне шестиугольника, то есть

Таким образом,


Ответ: 200

273683. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 45. Найдите тангенс угла AD 1 D.

Рассмотрим прямоугольный треугольник ADD 1 , в котором AD равно диаметру окружности, описанной вокруг основания. Известно, что радиус окружности, описанной вокруг правильного шестиугольника равен его стороне.

Таким образом,

Ответ: 2

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 23. Найдите угол DAB . Ответ дайте в градусах.

Рассмотрим правильный шестиугольник:

В нём углы между сторонами равны 120°. Значит,

Сама длина ребра не имеет значения, на величину угла она не влияет.

Ответ: 60

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 10. Найдите угол AC 1 C. Ответ дайте в градусах.

Рассмотрим прямоугольный треугольник AC 1 C:

Найдём AC . В правильном шестиугольнике углы между его сторонами равны 120 градусам, тогда по теореме косинусов для треугольника АВС :


Таким образом,

Значит, угол AC 1 C равен 60 градусам.

Ответ: 60

274453. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 10. Найдите угол AC 1 C. Ответ дайте в градусах.

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от "выигрышных" задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями "пространственного мышления" конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи - построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый "экран") до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче : "В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани". Ответ: .

Рисунок 1

h скр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, h скр и является расстоянием между ребром а и диагональю d .

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная h скр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная h скр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных - ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А 1 А перпендикулярна плоскости АВСD , то А 1 А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А 1 А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD - квадрат. Следовательно, DH - расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH - расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA 1 параллельна плоскости BB 1 D 1 D, B 1 D принадлежит этой плоскости, следовательно расстояние от AA 1 до плоскости BB 1 D 1 D равно расстоянию между прямыми AA 1 и B 1 D. Проведем AHBD. Также, AH B 1 B, следовательно AH(BB 1 D 1 D), следовательно AHB 1 D, т. е. AH - искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F 1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA 1 и ED 1 .

Рассмотрим плоскость E 1 EDD 1 . A 1 E 1 EE 1 , A 1 E 1 E 1 D 1 , следовательно

A 1 E 1 (E 1 EDD 1). Также A 1 E 1 AA 1 . Следовательно, A 1 E 1 является расстоянием от прямой AA 1 до плоскости E 1 EDD 1 . ED 1 (E 1 EDD 1)., следовательно AE 1 - расстояние от прямой AA 1 до прямой ED 1 . Находим A 1 E 1 из треугольника F 1 A 1 E 1 по теореме косинусов. Ответ:

б) AF и диагональю BE 1 .

Проведем из точки F прямую FH перпендикулярно BE. EE 1 FH, FHBE, следовательно FH(BEE 1 B 1), следовательно FH является расстоянием между прямой AF и (BEE 1 B 1), а значит и расстоянием между прямой AF и диагональю BE 1 . Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Задача 4.

Рисунок 11

а) Плоскости BAA 1 B 1 и DEE 1 D 1 параллельны, так как AB || ED и AA 1 || EE 1 . ED 1 DEE 1 D 1 , AA 1 (BAA 1 B 1), следовательно, расстояние между прямыми AA 1 и ED 1 равно расстоянию между плоскостями BAA 1 B 1 и DEE 1 D 1 . A 1 E 1 AA 1 , A 1 E 1 A 1 B 1 , следовательно, A 1 E 1 BAA 1 B 1 . Аналогично доказываем, что A 1 E 1 (DEE 1 D 1). Т.о., A 1 E 1 является расстоянием между плоскостями BAA 1 B 1 и DEE 1 D 1 , а значит, и между прямыми AA 1 и ED 1 . Находим A 1 E 1 из треугольника A 1 F 1 E 1 , который является равнобедренным с углом A 1 F 1 E 1 , равным . Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE 1 находится аналогично.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A 1 C обеим параллельным плоскостям (AB 1 D 1 || BC 1 D). B 1 CBC 1 и BC 1 A 1 B 1 , следовательно, прямая BC 1 перпендикулярна плоскости A 1 B 1 C, и следовательно, BC 1 A 1 C. Также, A 1 CBD. Следовательно, прямая A 1 C перпендикулярна плоскости BC 1 D. Вычислительная же часть задачи особых трудностей не вызывает, так как h скр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A 1 AB 1 D 1 и CC 1 BD.

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на "экран"

Задача 5. Все та же "классическая" задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится "экран" - диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A 1 B 1 CD. C 1 F (A 1 B 1 CD), т. к. C 1 FB 1 C и C 1 FA 1 B 1 . Тогда проекцией C 1 D на "экран" будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a .

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль "экрана", перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH - искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

\(\blacktriangleright\) Скрещивающиеся прямые – это прямые, через которые нельзя провести одну плоскость.

Признак скрещивающихся прямых: если первая прямая пересекает плоскость, в которой лежит вторая прямая, в точке, не лежащей на второй прямой, то такие прямые скрещиваются.

\(\blacktriangleright\) Т.к. через одну из скрещивающихся прямых проходит ровно одна плоскость, параллельная другой прямой, то расстояние между скрещивающимися прямыми - это расстояние между одной из этих прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Таким образом, если прямые \(a\) и \(b\) скрещиваются, то:

Шаг 1. Провести прямую \(c\parallel b\) так, чтобы прямая \(c\) пересекалась с прямой \(a\) . Плоскость \(\alpha\) , проходящая через прямые \(a\) и \(c\) , и будет плоскостью, параллельной прямой \(b\) .

Шаг 2. Из точки пересечения прямых \(a\) и \(c\) (\(a\cap c=H\) ) опустить перпендикуляр \(HB\) на прямую \(b\) (первый способ).

Или из любой точки \(B"\) прямой \(b\) опустить перпендикуляр на прямую \(c\) (второй способ).


В зависимости от условия задачи какой-то из этих двух способов может быть гораздо удобнее другого.

Задание 1 #2452

Уровень задания: Легче ЕГЭ

В кубе \(ABCDA_1B_1C_1D_1\) , ребро которого равно \(\sqrt{32}\) , найдите расстояние между прямыми \(DB_1\) и \(CC_1\) .

Прямые \(DB_1\) и \(CC_1\) скрещиваются по признаку, т.к. прямая \(DB_1\) пересекает плоскость \((DD_1C_1)\) , в которой лежит \(CC_1\) , в точке \(D\) , не лежащей на \(CC_1\) .


Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой \(CC_1\) и плоскостью, проходящей через \(DB_1\) параллельно \(CC_1\) . Т.к. \(DD_1\parallel CC_1\) , то плоскость \((B_1D_1D)\) параллельна \(CC_1\) .
Докажем, что \(CO\) – перпендикуляр на эту плоскость. Действительно, \(CO\perp BD\) (как диагонали квадрата) и \(CO\perp DD_1\) (т.к. ребро \(DD_1\) перпендикулярно всей плоскости \((ABC)\) ). Таким образом, \(CO\) перпендикулярен двум пересекающимся прямым из плоскости, следовательно, \(CO\perp (B_1D_1D)\) .

\(AC\) , как диагональ квадрата, равна \(AB\sqrt2\) , то есть \(AC=\sqrt{32}\cdot \sqrt2=8\) . Тогда \(CO=\frac12\cdot AC=4\) .

Ответ: 4

Задание 2 #2453

Уровень задания: Сложнее ЕГЭ

Дан куб \(ABCDA_1B_1C_1D_1\) . Найдите расстояние между прямыми \(AB_1\) и \(BC_1\) , если ребро куба равно \(a\) .

1) Заметим, что эти прямые скрещиваются по признаку, т.к. прямая \(AB_1\) пересекает плоскость \((BB_1C_1)\) , в которой лежит \(BC_1\) , в точке \(B_1\) , не лежащей на \(BC_1\) .
Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой \(BC_1\) и плоскостью, проходящей через \(AB_1\) параллельно \(BC_1\) .

Для этого проведем \(AD_1\) - она параллельна \(BC_1\) . Следовательно, по признаку плоскость \((AB_1D_1)\parallel BC_1\) .

2) Опустим перпендикуляр \(C_1H\) на эту плоскость и докажем, что точка \(H\) упадет на продолжение отрезка \(AO\) , где \(O\) – точка пересечения диагоналей квадрата \(A_1B_1C_1D_1\) .
Действительно, т.к. по свойству квадрата \(C_1O\perp B_1D_1\) , то по теореме о трех перпендикуляр проекция \(HO\perp B_1D_1\) . Но \(\triangle AB_1D_1\) равнобедренный, следовательно, \(AO\) – медиана и высота. Значит, точка \(H\) должна лежать на прямой \(AO\) .

3) Рассмотрим плоскость \((AA_1C_1)\) .


\(\triangle AA_1O\sim \triangle OHC_1\) по двум углам (\(\angle AA_1O=\angle OHC_1=90^\circ\) , \(\angle AOA_1=\angle HOC_1\) ). Таким образом,

\[\dfrac{C_1H}{AA_1}=\dfrac{OC_1}{AO} \qquad (*)\]

По теореме Пифагора из \(\triangle AA_1O\) : \

Следовательно, из \((*)\) теперь можно найти перпендикуляр

Ответ:

\(\dfrac a{\sqrt3}\)

Задание 3 #2439

Уровень задания: Сложнее ЕГЭ

\(OK\) перпендикулярен прямой \(A_1B\) .
Действительно, проведем \(KH\parallel B_1C_1\) (следовательно, \(H\in AB_1\) ). Тогда т.к. \(B_1C_1\perp (AA_1B_1)\) , то и \(KH\perp (AA_1B_1)\) . Тогда по теореме о трех перпендикулярах (т.к. проекция \(HO\perp A_1B\) ) наклонная \(KO\perp A_1B\) , чтд.
Таким образом, \(KO\) – искомое расстояние.

Заметим, что \(\triangle AOK\sim \triangle AC_1B_1\) (по двум углам). Следовательно,

\[\dfrac{AO}{AC_1}=\dfrac{OK}{B_1C_1} \quad \Rightarrow \quad OK=\dfrac{\sqrt6\cdot \sqrt2}{2\sqrt3}=1.\]

Расстояние между двумя прямыми.

Задание С2

В правильной треугольной призме АВСА1В1С1,
все ребра которой равны 1, найдите расстояние между прямыми АВ и СВ1

Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.

Чтобы найти расстояние между двумя скрещивающимися прямыми, нужно:

1. Через одну из прямых провести плоскость, параллельную второй прямой.

2. Из любой точки первой прямой опустить перпендикуляр на плоскость и найти его длину. То есть задача сводится к нахождению расстояния от точки до плоскости.

Это можно сделать геометрическим методом или с помощью метода координат..jpg" align="left" width="132" height="168">

Докажем, что плоскость МСС1 перпендикулярна прямой АВ, и, следовательно, плоскости А1В1С:

Отрезок МС является медианой, и, следовательно, высотой равностороннего треугольника АВС. Прямая КМ параллельна прямой СС1 и, следовательно, перпендикулярна АВ. То есть прямая АВ перпендикулярна двум пересекающимся прямым плоскости МСС1 , и, следовательно перпендикулярна плоскости.

Теперь рассмотрим в плоскости МСС1 прямоугольный треугольник МКС и проведем в нем высоту МР:

Длина высоты МР треугольника и есть расстояние между прямыми АВ и СВ1, которой нам нужно найти.

Чтобы найти высоту МР, выразим два раза площадь треугольника МКС

Поместим нашу призму в систему координат. Если мы решаем задачу с кубом или прямоугольным параллелепипедом, то выбор системы координат очевиден: мы помещаем начало координат в одну из вершин куба, а оси направляем вдоль ребер. В случае призмы это не столь очевидно.

Нам надо выбрать систему координат таким образом, чтобы координаты точки М и точек А1, В1 и С, задающих плоскость А1В1С вычислялись наиболее простым способом и содержали как можно больше нулей. Поэтому удобно выбрать систему координат вот таким образом:

Запишем координаты нужных нам точек: