Error: не определено #11234. Рациональное выражение примеры. Преобразование рациональных выражений — Гипермаркет знаний. Задачи для самостоятельного решения
Уход и... Инструменты Дизайн ногтей

Рациональное выражение примеры. Преобразование рациональных выражений — Гипермаркет знаний. Задачи для самостоятельного решения

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение - это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения - это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2

Решение:

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования , а также несколько конкретных примеров данных преобразований.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

Любое дробное выражение (п. 48) можно записать в виде , где Р и Q - рациональные выражения, причем Q обязательно содержит переменные. Такую дробь - называют рациональной дробью.

Примеры рациональных дробей:

Основное свойство дроби выражается тождеством справедливым при условиях здесь - целое рациональное выражение. Это значит, что числитель и знаменатель рациональной дроби можно умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен.

Например, свойство дроби может быть использовано для перемены знаков у членов дроби. Если числитель и знаменатель дроби - умножить на -1, получим Таким образом, значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свои знак:

Например,

60. Сокращение рациональных дробей.

Сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Возможность такого сокращения обусловлена основным свойством дроби.

Для того чтобы сократить рациональную дробь, нужно числитель и знаменатель разложить на множители. Если окажется, что числитель и знаменатель имеют общие множители, то дробь можно сократить. Если общих множителей нет, то преобразование дроби посредством сокращения невозможно.

Пример. Сократить дробь

Решение. Имеем

Сокращение дроби выполнено при условии .

61. Приведение рациональных дробей к общему знаменателю.

Общим знаменателем нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби (см. п. 54).

Например, общим знаменателем дробей и служит многочлен так как он делится и на и на и многочлен и многочлен и многочлен и т. д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на Еыбранный. Такой простейший знаменатель называют иногда наименьшим общим знаменателем.

В рассмотренном выше примере общий знаменатель равен Имеем

Приведение данных дробей к общему знаменателю достигнуто путем умножения числителя и знаменателя первой дроби на 2. а числителя и знаменателя второй дроби на Многочлены называются дополнительными множителями соответственно для первой и второй дроби. Дополнительный множитель для данной дроби равен частному от деления общего знаменателя на знаменатель данной дроби.

Чтобы несколько рациональных дробей привести к общему знаменателю, нужно:

1) разложить знаменатель каждой дроби на множители;

2) составить общий знаменатель, включив в него в качестве сомножителей все множители полученных в п. 1) разложений; если некоторый множитель имеется в нескольких разложениях, то он берется с показателем степени, равным наибольшему из имеющихся;

3) найтн дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);

4) домножив числитель и знаменатель каждой дроби на дополнительный множитель, привести дробн к общему знаменателю.

Пример. Привести к общему знаменателю дроби

Решение. Разложим знаменатели на множители:

В общий знаменатель надо включить следующие множители: и наименьшее общее кратное чисел 12, 18, 24, т. е. . Значит, общий знаменатель имеет вид

Дополнительные множители: для первой дроби для второй для третьей Значит, получаем:

62. Сложение и вычитание рациональных дробей.

Сумма двух (и вообще любого конечного числа) рациональных дробей с одинаковыми знаменателями тождественно равна дроби с тем же знаменателем и с числителем, равным сумме числителей складываемых дробей:

Аналогично обстоит дело в случае вычитания дробей с одинаковыми знаменателями:

Пример 1. Упростить выражение

Решение.

Для сложения или вычитания рациональных дробей с разными знаменателями нужно прежде всего привести дроби к общему знаменателю, а затем выполнить операции над полученными дробями с одинаковыми знаменателями.

Пример 2. Упростить выражение

Решение. Имеем

63. Умножение и деление рациональных дробей.

Произведение двух (и вообще любого конечного числа) рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей перемножаемых дробей:

Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель - произведению внаменателя первой дроби на числитель второй дроби:

Сформулированные правила умножения и деления распространяются и на случай умножения или деления на многочлен: достаточно записать этот, многочлен в виде дроби со знаменателем 1.

Учитывая возможность сокращения рациональной дроби, полученной в результате умножения или деления рациональных дробей, обычно стремятся до выполнения этих операций разложить на множители числители и знаменатели исходных дробей.

Пример 1. Выполнить умножение

Решение. Имеем

Использовав правило умножения дробей, получаем:

Пример 2. Выполнить деление

Решение. Имеем

Использовав правило деления, получаем:

64. Возведение рациональной дроби в целую степень.

Чтобы возвести рациональную дробь - в натуральную степень , нужно возвести в эту степень отдельно числитель и знаменатель дроби; первое выражение - числитель, а второе выражение - знаменатель результата:

Пример 1. Преобразовать в дробь степень 3.

Решение Решение.

При возведении дроби в целую отрицательную степень используется тождество справедливое при всех значениях переменных, при которых .

Пример 2. Преобразовать в дробь выражение

65. Преобразование рациональных выражений.

Преобразование любого рационального выражения сводится к сложению, вычитанию, умножению и делению рациональных дробей, а также к возведению дроби в натуральную степень. Всякое рациональное выражение можно преобразовать в дробь, числитель и знаменатель которой - целые рациональные выражения; в этом, как правило, состоит цель тождественных преобразований рациональных выражений.

Пример. Упростить выражение

66. Простейшие преобразования арифметических корней (радикалов).

При преобразовании арифметических корией используются их свойства (см. п. 35).

Рассмотрим несколько примеров на применение свойств арифметических корней для простейших преобразований радикалов. При этом все переменные будем считать принимающими только неотрицательные значения.

Пример 1. Извлечь корень из произведения

Решение. Применив свойство 1°, получим:

Пример 2. Вынести множитель из-под знака корня

Решение.

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования - упростить подкоренное выражение.

Пример 3. Упростить .

Решение. По свойству 3° имеем Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак кория. Имеем

Пример 4. Упростить

Решение. Преобразуем выражение, внеся множитель под знак корня: По свойству 4° имеем

Пример 5. Упростить

Решение. По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом, примере разделить указанные показатели на 3, то получим .

Пример 6. Упростить выражения:

Решение, а) По свойству 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения и из полученного результата извлечь корень той же степени. Значит,

б) Прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5° мы можем показатель корня показатель степени подкоренного выражения умножить на одно и то же натуральное число. Поэтому Далее имеем теперь в полученном результате раз делив показатели корня и степени подкоренного выражения На 3, получим .

Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.

Yandex.RTB R-A-339285-1

Определение и примеры рациональных выражений

Определение 1

Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.

Для примера имеем, что 5 , 2 3 · x - 5 , - 3 · a · b 3 - 1 c 2 + 4 a 2 + b 2 1 + a: (1 - b) , (x + 1) · (y - 2) x 5 - 5 · x · y · 2 - 1 11 · x 3 .

То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями.Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.

Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.

Основные виды преобразований рациональных выражений

Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.

Пример 1

Преобразовать рациональное выражение 3 · x x · y - 1 - 2 · x x · y - 1 .

Решение

Видно, что такое рациональное выражение – это разность 3 · x x · y - 1 и 2 · x x · y - 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид

3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 · 3 - 2 = x x · y - 1

Ответ: 3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 .

Пример 2

Выполнить преобразование 2 · x · y 4 · (- 4) · x 2: (3 · x - x) .

Решение

Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · (- 4) · x 2: (3 · x - x) = 2 · x · y 4 · (- 4) · x 2: 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.

Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · (- 4) · x 2: 2 · x = 2 · x · y 4 · (- 4) · x 2: 2: x .

Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что

2 · x · y 4 · (- 4) · x 2: 2: x = (2 · (- 4) : 2) · (x · x 2: x) · y 4 = - 4 · x 2 · y 4

Ответ: 2 · x · y 4 · (- 4) · x 2: (3 · x - x) = - 4 · x 2 · y 4 .

Пример 3

Преобразовать выражение вида x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 .

Решение

Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида (x · (x + 3) - (3 · x + 1)) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 = x 2 + 3 · x - 3 · x - 1 1 2 · 4 · x + 2 = x 2 - 1 2 · x + 2 .

Преобразуем в числителе формулу разности квадратов, тогда получаем, что

x 2 - 1 2 · x + 2 = (x - 1) · (x + 1) 2 · (x + 1) = x - 1 2

Ответ : x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 = x - 1 2 .

Представление в виде рациональной дроби

Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.

Пример 4

Представить в виде рациональной дроби a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a .

Решение

Данное выражение можно представить в виде a 2 - 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.

Следует начать с умножения, тогда получим, что

a 2 - 25 a + 3 · 1 a 2 + 5 · a = a - 5 · (a + 5) a + 3 · 1 a · (a + 5) = a - 5 · (a + 5) · 1 (a + 3) · a · (a + 5) = a - 5 (a + 3) · a

Производим представление полученного результата с исходное. Получим, что

a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a - 3 - a - 5 a + 3 · a

Теперь выполняем вычитание:

a + 5 a · a - 3 - a - 5 a + 3 · a = a + 5 · a + 3 a · (a - 3) · (a + 3) - (a - 5) · (a - 3) (a + 3) · a · (a - 3) = = a + 5 · a + 3 - (a - 5) · (a - 3) a · (a - 3) · (a + 3) = a 2 + 3 · a + 5 · a + 15 - (a 2 - 3 · a - 5 · a + 15) a · (a - 3) · (a + 3) = = 16 · a a · (a - 3) · (a + 3) = 16 a - 3 · (a + 3) = 16 a 2 - 9

После чего очевидно, что исходное выражение примет вид 16 a 2 - 9 .

Ответ: a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 - 9 .

Пример 5

Представить x x + 1 + 1 2 · x - 1 1 + x в виде рациональной дроби.

Решение

Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x - 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · (x + 1) 1 · (x + 1) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1

Следует, что x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 x + 1 2 · x - 1 1 + x

Получившаяся дробь может быть записана как 2 · x + 1 x + 1: 2 · x - 1 1 + x .

После деления придем к рациональной дроби вида

2 · x + 1 x + 1: 2 · x - 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x - 1 = 2 · x + 1 · (1 + x) (x + 1) · (2 · x - 1) = 2 · x + 1 2 · x - 1

Можно решить это иначе.

Вместо деления на 2 · x - 1 1 + x производим умножение на обратную ей 1 + x 2 · x - 1 . Применим распределительное свойство и получаем, что

x x + 1 + 1 2 · x - 1 1 + x = x x + 1 + 1: 2 · x - 1 1 + x = x x + 1 + 1 · 1 + x 2 · x - 1 = = x x + 1 · 1 + x 2 · x - 1 + 1 · 1 + x 2 · x - 1 = x · 1 + x (x + 1) · 2 · x - 1 + 1 + x 2 · x - 1 = = x 2 · x - 1 + 1 + x 2 · x - 1 = x + 1 + x 2 · x - 1 = 2 · x + 1 2 · x - 1

Ответ: x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 2 · x - 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

>>Математика:Преобразование рациональных выражений

Преобразование рациональных выражений

Этот параграф подводит итог всему тому, что мы, начиная с 7-го класса, говорили о математическом языке, о математической символике, о числах, переменных, степенях, многочленах и алгебраических дробях . Но сначала совершим небольшой экскурс в прошлое.

Вспомните, как в младших классах обстояло дело с изучением чисел и числовых выражений.

А, скажем, к дроби можно приклеить только один ярлык - рациональное число.

Аналогично обстоит дело с алгебраическими выражениями: первый этап их изучения - числа, переменные, степени («цифры»); второй этап их изучения - одночлены («натуральные числа»); третий этап их изучения - многочлены («целые числа»); четвертый этап их изучения - алгебраические дроби
(«рациональные числа»). При этом каждый следующий этап как бы вбирает в себя предыдущий: так, числа, переменные, степени - частные случаи одночленов; одночлены - частные случаи многочленов; многочлены - частные случаи алгебраических дробей. Между прочим, в алгебре используют иногда и такие термины: многочлен - целое выражение , алгебраическая дробь - дробное выражение (это лишь усиливает аналогию).

Продолжим упомянутую аналогию. Вы знаете, что любое числовое выражение после выполнения всех входящих в его состав арифметических действий принимает конкретное числовое значение - рациональное число (разумеется, оно может оказаться и натуральным числом, и целым числом, и дробью - это неважно). Точно так же любое алгебраическое выражение, составленное из чисел и переменных с помощью арифметических операций и возведения в натуральную степень , после выполнения преобразований принимает вид алгебраической дроби и опять-таки, в частности, может получиться не дробь, а многочлен или даже одночлен). Для таких выражений в алгебре используют термин рациональное выражение.

Пример. Доказать тождество

Решение.
Доказать тождество - это значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. В алгебре тождества доказывают различными способами:

1) выполняют преобразования левой части и получают в итоге правую часть;

2) выполняют преобразования правой части и получают в итоге левую часть;

3) по отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение;

4) составляют разность левой и правой частей и в результате ее преобразований получают нуль.

Какой способ выбрать - зависит от конкретного вида тождества , которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ.

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание).

Выполним преобразования по действиям, опираясь на те правила, алгоритмы , что были выработаны в предыдущих параграфах.

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и b, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; b), кроме тех, при которых выполняется хотя бы одно из равенств:

2а - b = 0, 2а + b = 0, b = 0.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн , видеоматериал по математике для 8 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Эта статья посвящена преобразованию рациональных выражений , преимущественно дробно рациональных, – одному из ключевых вопросов курса алгебры для 8 классов. Сначала мы напомним, выражения какого вида называют рациональными. Дальше остановимся на проведении стандартных преобразований с рациональными выражениями, таких как группировка слагаемых, вынесение за скобки общих множителей, приведение подобных слагаемых и т.п. Наконец, научимся представлять дробные рациональные выражения в виде рациональных дробей.

Навигация по странице.

Определение и примеры рациональных выражений

Рациональные выражения являются одним из видов выражений , изучаемых на уроках алгебры в школе. Дадим определение.

Определение.

Выражения, составленные из чисел, переменных, скобок, степеней с целыми показателями, соединенных с помощью знаков арифметических действий +, −, · и:, где деление может быть обозначено чертой дроби, называются рациональными выражениями .

Приведем несколько примеров рациональных выражений: .

Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями , то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены , а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений .

В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями . При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями ), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей .

Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.

Основные виды преобразований рациональных выражений

С рациональными выражениями можно проводить любые из основных тождественных преобразований , будь то группировка слагаемых или множителей, приведение подобных слагаемых, выполнение действий с числами и т.п. Обычно целью выполнения этих преобразований является упрощение рационального выражения .

Пример.

.

Решение.

Понятно, что данное рациональное выражение представляет собой разность двух выражений и , причем данные выражения являются подобными, так как имеют одинаковую буквенную часть. Таким образом, мы можем выполнить приведение подобных слагаемых :

Ответ:

.

Понятно, что при проведении преобразований с рациональными выражениями, как, впрочем, и с любыми другими выражениями, нужно оставаться в рамках принятого порядка выполнения действий .

Пример.

Выполните преобразование рационального выражения .

Решение.

Мы знаем, что сначала выполняются действия в скобках. Поэтому в первую очередь преобразуем выражение в скобках: 3·x−x=2·x .

Теперь можно подставить полученный результат в исходное рациональное выражение: . Так мы пришли к выражению, содержащему действия одной ступени – сложение и умножение.

Избавимся от скобок в конце выражения, применив свойство деления на произведение: .

Наконец, мы можем сгруппировать числовые множители и множители с переменной x, после чего выполнить соответствующие действия с числами и применить : .

На этом преобразование рационального выражения завершено, и в результате мы получили одночлен.

Ответ:

Пример.

Преобразуйте рациональное выражение .

Решение.

Сначала преобразуем числитель и знаменатель. Такой порядок преобразования дробей объясняется тем, что черта дроби по своей сути есть другое обозначение деления, и исходное рациональное выражение по сути есть частное вида , а действия в скобках выполняются в первую очередь.

Итак, в числителе выполняем действия с многочленами, сначала умножение, затем – вычитание, а в знаменателе сгруппируем числовые множители, и вычислим их произведение: .

Еще представим числитель и знаменатель полученной дроби в виде произведения: вдруг возможно сокращение алгебраической дроби . Для этого в числителе воспользуемся формулой разности квадратов , а в знаменателе вынесем двойку за скобки, имеем .

Ответ:

.

Итак, начальное знакомство с преобразованием рациональных выражений можно считать состоявшимся. Переходим, так сказать, к самому сладкому.

Представление в виде рациональной дроби

Наиболее часто конечной целью преобразования выражений является упрощение их вида. В этом свете самым простым видом, к которому можно преобразовать дробно рациональное выражение, является рациональная (алгебраическая) дробь, и в частном случае многочлен, одночлен или число.

А любое ли рациональное выражение возможно представить в виде рациональной дроби? Ответ утвердительный. Поясним, почему это так.

Как мы уже сказали, всякое рациональное выражение можно рассматривать как многочлены и рациональные дроби, соединенные знаками плюс, минус, умножить и разделить. Все соответствующие действия с многочленами дают многочлен или рациональную дробь. В свою очередь любой многочлен можно преобразовать в алгебраическую дробь, записав его со знаменателем 1 . А сложение, вычитание, умножение и деление рациональных дробей в результате дают новую рациональную дробь. Следовательно, выполнив все действия с многочленами и рациональными дробями в рациональном выражении, мы получим рациональную дробь.

Пример.

Представьте в виде рациональной дроби выражение .

Решение.

Исходное рациональное выражение представляет собой разность дроби и произведения дробей вида . Согласно порядку выполнения действий мы сначала должны выполнить умножение, а уже потом – сложение.

Начинаем с умножения алгебраических дробей :

Подставляем полученный результат в исходное рациональное выражение: .

Мы пришли к вычитанию алгебраических дробей с разными знаменателями:

Итак, выполнив действия с рациональными дробями, составляющими исходное рациональное выражение, мы его представили в виде рациональной дроби .

Ответ:

.

Для закрепления материала разберем решение еще одного примера.

Пример.

Представьте рациональное выражение в виде рациональной дроби.