Уход и... Инструменты Дизайн ногтей

Презентация по физике рентгеновское излучение. Рентгеновское излучение. В приборах для обнаружения следов взрывчатых веществ

Открытие рентгеновских лучей Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген умел наблюдать, умел замечать новое там, где многие ученые до него не обнаруживали ничего примечательного. Этот особый дар помог ему сделать замечательное открытие. В конце XIX века всеобщее внимание физиков привлек газовый разряд при малом давлении. При этих условиях в газоразрядной трубке создавались потоки очень быстрых электронов. В то время их называли катодными лучами. Природа этих лучей еще не была с достоверностью установлена. Известно было лишь, что эти лучи берут начало на катоде трубки. Занявшись исследованием катодных лучей, Рентген скоро заметил, что фотопластинка вблизи разрядной трубки оказывалась засвеченной даже в том случае, когда она была завернута в черную бумагу. После этого ему удалось наблюдать еще одно очень поразившее его явление. Бумажный экран, смоченный раствором платиносинеродистого бария, начинал светиться, если им обертывалась разрядная трубка. Причем когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.

Открытие рентгеновских лучей Ученый понял, что при работе разрядной трубки возникает какоето неизвестное ранее сильно проникающее излучение. Он назвал его Х-лучами. Впоследствии за этим излучением прочно укрепился термин «рентгеновские лучи» . Рентген обнаружил, что новое излучение появлялось в том месте, где катодные лучи (потоки быстрых электронов) сталкивались со стеклянной стенкой трубки. В этом месте стекло светилось зеленоватым светом. Последующие опыты показали, что Х-лучи возникают при торможении быстрых электронов любым препятствием, в частности металлическими электродами.

Свойства рентгеновских лучей Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от какихлибо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения.

Свойства рентгеновских лучей Сразу же возникло предположение, что рентгеновские лучи - это электромагнитные волны, которые излучаются при резком торможении электронов. В отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей рентгеновские лучи имеют гораздо меньшую длину волны. Их длина волны тем меньше, чем больше энергия электронов, сталкивающихся с препятствием. Большая проникающая способность рентгеновских лучей и прочие их особенности связывались именно с малой длиной волны. Но эта гипотеза нуждалась в доказательствах, и доказательства были получены спустя 15 лет после смерти Рентгена.

Дифракция рентгеновских лучей Если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию - явление, присущее всем видам волн. Сначала пропускали рентгеновские лучи через очень узкие щели в свинцовых пластинках, но ничего похожего на дифракцию обнаружить не удавалось. Немецкий физик Макс Лауэ предположил, что длина волны рентгеновских лучей слишком мала для того, чтобы можно было обнаружить дифракцию этих волн на искусственно созданных препятствиях. Ведь нельзя сделать щели размером 10 -8 см, поскольку таков размер самих атомов. А что если рентгеновские лучи имеют примерно такую же длину полны? Тогда остается единственная возможность - использовать кристаллы. Они представляют собой упорядоченные структуры, в которых расстояния между отдельными атомами по порядку величины равны размеру самих атомов, т. е. 10 -8 см. Кристалл с его периодической структурой и есть то естественное устройство, которое неизбежно должно вызвать заметную дифракцию волн, если длина их близка к размерам атомов.

Дифракция рентгеновских лучей И вот узкий пучок рентгеновских лучей был направлен на кристалл, за которым была расположена фотопластинка. Результат полностью согласовался с самыми оптимистическими ожиданиями. Наряду с большим центральным пятном, которое давали лучи, распространяющиеся по прямой, возникли регулярно расположенные небольшие пятнышки вокруг центрального пятна (рис. 50). Появление этих пятнышек можно было объяснить только дифракцией рентгеновских лучей на упорядоченной структуре кристалла. Исследование дифракционной картины позволило определить длину волны рентгеновских лучей. Она оказалась меньше длины волны ультрафиолетового излучения и по порядку величины была равна размерам атома (10 -8 см).

Применение рентгеновских лучей Рентгеновские лучи нашли себе много очень важных практических применений. В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний. Весьма обширны применения рентгеновских лучей в научных исследованиях. По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве - структуру кристаллов. Сделать это для неорганических кристаллических веществ оказалось не очень сложно. Но с помощью рентгеноструктурного анализа удается расшифровать строение сложнейших органических соединений, включая белки. В частности, была определена структура молекулы гемоглобина, содержащей десятки тысяч атомов.

Слайд 2

Исторические события: исполнилось 110 лет открытию рентгеновского излучения (1895-2005), 100 лет назад стало известно о характеристическом рентгеновском излучении (1906-2006). Значимость открытия Х-лучей для развития науки и понимания устройства мира невозможно переоценить. Вильгельм Конрад Рентген, немецкий физик.

Слайд 3

План:

Открытие Х-лучей Вильгельм Рентген Свойства рентгеновских лучей Дифракция рентгеновских лучей Устройство рентгеновской трубки Применение рентгеновских лучей: Медицина Научные исследования Рентгеноструктурный анализ Дефектоскопия

Слайд 4

Открытие Х-лучей

В 1895 году Вильгельм Рентген экспериментировал с одной из вакуумных трубок (Крукса). Он вдруг заметил, что некоторые находившиеся рядом кристаллы ярко засветились. Так как Рентген знал, что лучи, открытые раньше не могли проникнуть через стекло, чтобы произвести этот эффект, он предположил, что это должен быть новый вид лучей, которые он назвал Х-лучами, подчеркнув этим необычность их свойств.

Слайд 5

В самом деле, невидимые глазом лучи легко проникали через непрозрачную ткань, бумагу, дерево и даже металлы, засвечивая тщательно упакованную фотопленку. Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье. За открытие лучей, которые носят его имя, В. Рентгену ПЕРВУЮ в истории Нобелевскую премию по физике (1901 г.)

Слайд 6

Свойства рентгеновских лучей

Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, не отражались, не преломлялись, но и не отклонялись в магнитном поле.X-лучи обладали огромной проникающей мощью, которая ни с чем не была сравнима. Сразу же возникло предположение, что это электромагнитные волны, которые излучаются при резком торможении электронов. Доказательства этому были получены только спустя 15 лет после смерти Рентгена. Первая страница статьи В. Рентгена о Х-лучах

Слайд 7

Дифракция рентгеновских лучей

Узкий пучок рентгеновских лучей был направлен на кристалл, за которым была расположена фотопластинка. Вокруг центрального пятна на пластине возникли регулярно расположенные небольшие пятнышки. Их появление можно объяснить только дифракцией, присущей всем видам электромагнитных волн. А значит, и рентгеновское излучение – электромагнитное.

Слайд 8

РЕНТГЕНОВСКАЯ ТРУБКА – …электровакуумный прибор для получения рентгеновских лучей. Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными электродами - катодом и анодом Электроны, испускаемые катодом, ускоряются сильным электрическим полем в пространстве между электродами и бомбардируют анод. При ударе электронов об анод их кинетическая энергия частично преобразуется в энергию рентгеновского излучения.

Слайд 9

Схематическое изображение рентгеновской трубки.

X - рентгеновские лучи, K -катод, А – анод, С - теплоотвод, Uh – напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения Предыдущий слайд

Слайд 10

Общий вид рентгеновских трубок для структурного анализа (а), дефектоскопии (б) и медицинской (в) рентгено-диагностики

Слайд 11

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на живые организмы и может быть причиной лучевой болезни и рака. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. К возникновению рака ведёт повреждение наследственной информации ДНК. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Слайд 12

Применение рентгеновских лучей

В медицине В научных исследованиях: Рентгеноструктурный анализ Материаловедении Кристаллографии Химии Биологии Дефектоскопия

Слайд 13

Медицина

При помощи рентгеновских лучей можно просветить человеческое тело, в результате чего можно получить изображение костей и внутренних органов. Также используются для лечения раковых заболеваний.

Слайд 14

Рентгеноструктурный анализ

По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве – структуру кристаллов.

Слайд 15

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгено-дифракционный анализ). Известным примером является определение структуры ДНК.

Слайд 16

Кроме того, при помощи рентгеновских лучей может быть определен химический состав вещества. В электроннолучевом микроскопе анализируемое вещество облучается электронами или Х-лучами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Этот аналитический метод называется рентгено-флюоресцентным анализом.

Слайд 17

Рентгеновская дефектоскопия

Метод обнаружения раковин в отливках, трещин в рельсах, проверки качества сварных швов и т.д. Основана на изменении поглощения рентгеновских лучей в изделии при наличии в нем полости или инородных включений. Рентгеновский дефектоскоп

Посмотреть все слайды

Слайд 1

Рентгеновское излучение

Электромагнитные волны, энергия фотонов, которых лежит на школе электромагнитных волн между ультрафиолетовым излучением и гамма-излучением. - не видимое глазом электромагнитное излучение с длиной волн 10−7-10−12м.

Слайд 2

История открытия

Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале физико-медицинского общества. В некоторых кругах утверждается, что рентгеновские лучи были уже получены до этого. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки

Слайд 3

Лабораторные источники -Рентгеновская трубка

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh -напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения

Слайд 4

Рентгеновская трубка

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод.

Слайд 5

Трубка Крукса

Слайд 6

Современная рентгеновская трубка

Слайд 7

Лабораторные источники -Ускорители частиц

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению

Слайд 8

Линейный ускоритель электронов для Австралийского синхротрона.

Слайд 9

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Слайд 10

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов

Слайд 12

В материаловедении, кристаллограф и, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК. Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества.

Слайд 13

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Слайд 14

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей. Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи.

ВПАКЕНОРАВИДЫТРЛБЬГЮИЗЛУЧЕНИЯЧАВФРИЕТОРГШЬИНФРАКРАСНОЕОТЫЛНШВРГДЖБЖУЛЬТРАФИОЛЕТОВОЕРОКУАВФМОНШТРЕНТРЕНОВСКОЕСЯНГР .


Виды излучений: инфракрасное, ультрафиолетовое, рентгеновское

Урок физики в 11 классе

Учитель: Власова О.В.

НОУ СОШ №47 ОАО «РЖД»

п. Инголь Красноярского края


Видимый спектр

400ТГц 800ТГц

760нм 380нм


История открытия инфракрасного излучения

Английский астроном и физик

Вильям Гершель.


История открытия

За красной полосой видимого температура термометра повышается.


  • Атомы и молекулы вещества.
  • Все тела при любой температуре.

Источники инфракрасного излучения

Солнце.

Лампы накаливания.


Волновой и частотный диапазон инфракрасного излучения

  • Длина волны

λ = 8*10 -7 – 2*10 -3 м.

  • Частота

υ= 3*10 11 – 4*10 14 Гц.


Свойства инфракрасного излучения

  • Невидимо.
  • Производит химическое действие на фотопластинки.
  • Вода и водяные пары не прозрачны.
  • Поглощаясь веществом, нагревает его.

Биологическое действие

В режиме высоких температур опасно для глаз, может привести к повреждению зрения или слепоте.

Средства защиты:

специальные инфракрасные очки.


Инфракрасный обогреватель

Тепловизор

Термограмма


Применение инфракрасного излучения

В приборах ночного видения:

  • биноклях;
  • очках;
  • прицелах для стрелкового оружия;
  • ночных фото и видеокамерах.

Тепловизор - устройство для наблюдения за распределением температуры исследуемой поверхности.

Применение ИК излучения

Термограмма - изображение в инфракрасных лучах, показывающее картину распределения температурных полей .


Инфракрасное излучение в медицине

Термограммы используют в медицине для диагностики заболеваний.


Применение инфракрасного излучения в тепловизорах

Контроль за тепловым состоянием объектов.


Инфракрасное излучение в строительстве

Проверка качества строительных материалов и утеплителей .



Применение инфракрасного излучения

Дистанционное управление.


Общая протяжённость волоконно-оптических линий связи составляет более 52 тысяч километров.


Применение инфракрасного излучения на железной дороге

Предоставление света в волоконно-оптические системы связи инфракрасными лазерами.


На железнодорожном транспорте применяются

одно-, двух- и трёх кабельные способы организации линий связи. Оптические кабели содержат

4, 8 и 16 волокон.


Волоконное – оптическая система связи

Одновременная передача

10 миллионов телефонных разговоров и

1 миллиона видеосигналов.


Волоконное – оптическая система связи

Время жизни волокна, превышает 25 лет.



Применение инфракрасного излучения на железной дороге

Управление подвижным составом из центра диспетчерского управления перевозками.



История открытия

Немецкий физик Иоганн Вильгельм Риттер.

Английский ученый

У. Волластон.


Источники УФ излучения

  • Солнце, звезды.
  • Высокотемпературная плазма.
  • Твердые тела с

температурой

выше 1000 0 С.

  • Все тела нагретые

свыше 3000 0 С.

  • Кварцевые лампы.
  • Электрическая дуга.

Волновой и частотный диапазон ультрафиолетового излучения

  • Длина волны

λ = 10 -8 – 4*10 -7 м.

  • Частота

υ= 8*10 14 – 3*10 15 Гц.


Свойства ультрафиолетового излучения

  • Невидимо.
  • Все свойства электромагнитных волн (отражение, интерференция, дифракция и другие).
  • Ионизирует воздух.
  • Кварц прозрачен, стекло – нет.

Биологическое действие

  • Убивает микроорганизмы.
  • В небольших дозах способствует образованию витаминов группы Д, росту и укреплению организма.
  • Загар.
  • В больших дозах вызывает изменение в развитии клеток и обмене веществ, ожог кожи, поражение глаз.

Способы защиты:

стеклянные очки и крем от загара.


Особенности ультрафиолетового излучения

С увеличением высоты на каждые 1000 м

уровень ультрафиолета

возрастает на 12 %.


Применение Ультрафиолетового излучения

Создание светящихся красок.

Детектор валют.

Загар.

Изготовление печатей.


в медицине

Бактерицидные лампы и облучатели.

Лазерная биомедицина.

Дезинфекция.

В косметологии – солярийные лампы.


в Пищевой промышленности

Стерилизация (обеззараживание) воды, воздуха и различных поверхностей.


Применение Ультрафиолетового излучения в Криминалистике

В приборах для обнаружения следов взрывчатых веществ.


в Полиграфии

Производство печатей и штампов.


Для защиты денежных знаков

  • Защита банковских карт и денежных знаков от подделки.
  • Детектор валют.



Срок службы лампы накаливания не более 1000часов.

Световая отдача 10-100 лм/Вт.


Применение ультрафиолетового излучения на железной дороге

Срок службы светодиодов

50000 часов

и более.

Световая отдача превышает

120 лм/Вт и постоянно растет.


Применение ультрафиолетового излучения на железной дороге

Излучатель

с малым температурным сдвигом по длине волны и большим сроком жизни.



История открытия

Немецкий физик Вильгельм Рентген.

Удостоен

Нобелевской премии.


Источники рентгеновского излучения

  • Свободные электроны движущиеся с большим ускорением.
  • Электроны внутренних оболочек атомов, изменяющие свои состояния.
  • Звезды и галактики.
  • Радиоактивный распад ядер.
  • Лазер .
  • Рентгеновская трубка.

Волновой и частотный диапазон рентгеновского излучения

  • Длина волны

λ = 10 -8 – 10 -12 м.

  • Частота

υ= 3 . 10 16 – 3 . 10 20 Гц.


Свойства рентгеновского излучения

  • Невидимо.
  • Все свойства электромагнитных волн (отражение, интерференция, дифракция и другие).
  • Большая проникающая способность.
  • Сильное биологическое действие.
  • Высокая химическая активность.
  • Вызывает у некоторых веществ свечение – флюоресценцию.

Биологическое действие

  • Является ионизирующим.
  • Вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.


В медицине

Диагностика

Рентгенотерапия




  • Дефектоскопия.
  • Рентгеноструктурный анализ.



ОБЩИЕ

  • Все ЭМВ одной физической природы.
  • Возникают при ускоренном движении электрических зарядов.

Всем ЭМВ присущи свойства: интерференция, дифракция, отражение, поляризация, преломление, поглощение.

Распространяются в вакууме со скоростью 300 000 км/с.


СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

РАЗЛИЧИЯ

С увеличением частоты происходит:

  • Уменьшение длины волны.

Увеличение энергии излучения.

Более слабое поглощение веществом.

Увеличение проникающей способности.

Более сильное проявление квантовых свойств.

Усиление вредного влияния на живые организмы.


Ультрафиолетовое

излучение

излучение

Инфракрасное

излучение

Радиоволны

Гамма-излучение

Ускоренно движущийся

Открытие рентгена. В 1894 году, когда Рентген был избран ректором университета, он приступил к экспериментальным исследованиям электрического разряда в стеклянных вакуумных трубках. Вечером 8 ноября 1895 года Рентген, как обычно, работал в своей лаборатории, занимаясь изучением катодных лучей. Около полуночи, почувствовав усталость, он собрался уходить, Окинув взглядом лабораторию, погасил свет и хотел было закрыть дверь, как вдруг заметил в темноте какое-то светящееся пятно. Оказывается, светился экран из синеродистого бария. Почему он светится? Солнце давно зашло, электрический свет не мог вызвать свечения, катодная трубка выключена, да и вдобавок закрыта черным чехлом из картона. Рентген еще раз посмотрел на катодную трубку и упрекнул себя: оказывается, он забыл ее выключить. Нащупав рубильник, ученый выключил трубку. Исчезло и свечение экрана; включил трубку вновь - и вновь появилось свечение. Значит, свечение вызывает катодная трубка! Но каким образом? Ведь катодные лучи задерживаются чехлом, да и воздушный метровый промежуток между трубкой и экраном для них является броней. Так началось рождение открытия.

Слайд 5 из презентации «Рентгеновские лучи физика» к урокам физики на тему «Ионизирующее излучение»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке физики, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Рентгеновские лучи физика.ppt» можно в zip-архиве размером 576 КБ.

Скачать презентацию

Ионизирующее излучение

«Рентгеновские лучи физика» - Январь, 1896 год… Но каким образом? Руководитель: Баева Валентина Михайловна. Так началось рождение открытия. Рентгеновские лучи обладают такими же свойствами, как световые лучи. Открытие рентгена. Рентгеновские лучи. Исчезло и свечение экрана; включил трубку вновь - и вновь появилось свечение. В 1862 году Вильгельм поступил в Утрехтскую техническую школу.

«Ультрафиолетовое излучение» - Ультрафиолетовое излучение. Приёмники излучения. Биологическое действие. Высокотемпературная плазма. Свойства. Солнце, звёзды, туманности и другие космические объекты. Ультрафиолетовое излучение подразделяется: Для длины волны меньше 105 нм прозрачных материалов практически нет. История открытия. Применяют фотоэлектрические приёмники.

«Инфракрасное излучение» - Применение. Чем теплее объект, тем быстрее он излучает. Большие дозы могут вызывать повреждения глаз и ожог кожи. Можно получать фотографии в ультрафиолетовых лучах (см.рис.1). Земля излучает в окружающее пространство инфракрасное (тепловое) излучение. 50% энергии излучения Солнца приходится именно на инфракрасные лучи.

«Виды излучений физика» - При бета распаде из ядра вылетает электрон. Чернобыльская авария. Время, за которое распадается половина атомов, называется периодом полураспада. Современные взгляды на радиоактивность. Различных объяснений причин Чернобыльской аварии много. Оказалось, что излучение неоднородно, а представляет собой смесь «лучей».