Уход и... Инструменты Дизайн ногтей

Понятие химической связи и ее типы. Химическая связь. Как определить вид химической связи

Любое взаимодействие между атомами возможно лишь при наличии химической связи. Такая связь является причиной образования устойчивой многоатомной системы - молекулярного иона, молекулы, кристаллической решетки. Прочная химическая связь требует много энергии для разрыва, поэтому она и является базовой величиной для измерения прочности связи.

Условия образования химической связи

Образование химической связи всегда сопровождается выделением энергии. Этот процесс происходит за счет уменьшения потенциальной энергии системы взаимодействующих частиц - молекул, ионов, атомов. Потенциальная энергия образовавшейся системы взаимодействующих элементов всегда меньше энергии несвязанных исходящих частиц. Таким образом, основанием для возникновения химической связи в системе является спад потенциальной энергии ее элементов.

Природа химического взаимодействия

Химическая связь - это следствие взаимодействия электромагнитных полей, возникающих вокруг электронов и ядер атомов тех веществ, которые принимают участие в образовании новой молекулы или кристалла. После открытия теории строения атома природа этого взаимодействия стала более доступной для изучения.

Впервые идея об электрической природе химической связи возникла у английского физика Г. Дэви, который предположил, что молекулы образуются по причине электрического притяжения разноименно заряженных частиц. Данная идея заинтересовала шведского химика и естествоиспытателя И.Я. Берцеллиуса, который разработал электрохимическую теорию возникновения химической связи.

Первая теория, объяснявшая процессы химического взаимодействия веществ, была несовершенной, и со временем от нее пришлось отказаться.

Теория Бутлерова

Более успешная попытка объяснить природу химической связи веществ была предпринята русским ученым А.М.Бутлеровым. В основу своей теории этот ученый положил такие предположения:

  • Атомы в соединенном состоянии связаны друг с другом в определенном порядке. Изменение этого порядка служит причиной образования нового вещества.
  • Атомы связываются между собой по законам валентности.
  • Свойства вещества зависят от порядка соединения атомов в молекуле вещества. Иной порядок расположения становится причиной изменения химических свойств вещества.
  • Атомы, связанные между собой, наиболее сильно влияют друг на друга.

Теория Бутлерова объясняла свойства химических веществ не только их составом, но и порядком расположения атомов. Такой внутренний порядок А.М. Бутлеров назвал «химическим строением».

Теория русского ученого позволила навести порядок в классификации веществ и предоставила возможность определять строение молекул по их химическим свойствам. Также теория дала ответ на вопрос: почему молекулы, содержащие одинаковое количество атомов, имеют разные химические свойства.

Предпосылки создания теорий химической связи

В своей теории химического строения Бутлеров не касался вопроса о том, что такое химическая связь. Для этого тогда было слишком мало данных о внутреннем строении вещества. Лишь после открытия планетарной модели атома американский ученый Льюис принялся разрабатывать гипотезу о том, что химическая связь возникает посредством образования электронной пары, которая одновременно принадлежит двум атомам. Впоследствии эта идея стала фундаментом для разработки теории ковалентной связи.

Ковалентная химическая связь

Устойчивое химическое соединение может быть образовано при перекрытии электронных облаков двух соседних атомов. Результатом такого взаимного пересечения становится возрастающая электронная плотность в межъядерном пространстве. Ядра атомов, как известно, заряжены положительно, и поэтому стараются как можно ближе притянуться к отрицательно заряженному электронному облаку. Это притяжение значительно сильнее, чем силы отталкивания между двумя положительно заряженными ядрами, поэтому такая связь является устойчивой.

Впервые расчеты химической связи были выполнены химиками Гейтлером и Лондоном. Ими была рассмотрена связь между двумя атомами водорода. Простейшее наглядное представление о ней может выглядеть следующим образом:

Как видно, электронная пара занимает квантовое место в обоих атомах водорода. Такое двуцентровое размещение электронов получило название «ковалентная химическая связь». Ковалентная связь типична для молекул простых веществ и их соединений неметаллов. Вещества, созданные в результате ковалентной связи, обычно не проводят электрический ток или же являются полупроводниками.

Ионная связь

Химическая связь ионного типа возникает при взаимном электрическом притяжении двух противоположно заряженных ионов. Ионы могут быть простыми, состоящими из одного атома вещества. В соединениях подобного типа простые ионы - чаще всего положительно заряженные атомы металлов 1,2 группы, потерявшие свой электрон. Образование отрицательных ионов присуще атомам типичных неметаллов и оснований их кислот. Поэтому среди типичных ионных соединений имеется множество галогенидов щелочных металлов, например CsF, NaCl, и других.

В отличие от ковалентной связи, ион не обладает насыщенностью: к иону или группе ионов может присоединиться различное число противоположно заряженных ионов. Количество присоединенных частиц ограничивается лишь линейными размерами взаимодействующих ионов, а также условием, при котором силы притяжения противоположно заряженных ионов должны быть больше, чем силы отталкивания одинаково заряженных частиц, участвующих в соединении ионного типа.

Водородная связь

Еще до создания теории химического строения опытным путем было замечено, что соединения водорода с различными неметаллами обладают несколько необычными свойствами. Например, температура кипения фтороводорода и воды значительно выше, чем это можно было ожидать.

Эти и другие особенности водородных соединений можно объяснить способностью атома Н + образовывать еще одну химическую связь. Такой тип соединения получил название «водородная связь». Причины возникновения водородной связи кроются в свойствах электростатических сил. Например, в молекуле фтороводорода общее электронное облако настолько смещено в сторону фтора, что пространство вокруг атома этого вещества насыщенно отрицательным электрическим полем. Вокруг атома водорода, лишенного своего единственного электрона, поле значительно слабее, и имеет положительных заряд. В результате возникает дополнительная взаимосвязь между положительными полями электронных облаков Н + и отрицательными F - .

Химическая связь металлов

Атомы всех металлов расположены в пространстве определенным образом. Порядок расположения атомов металлов называется кристаллической решеткой. При этом электроны различных атомов слабо взаимодействуют друг с другом, образуя общее электронное облако. Такой вид взаимодействия между атомами и электронами получил название «металлическая связь».

Именно свободным передвижением электронов в металлах можно объяснить физические свойства металлических веществ: электропроводность, теплопроводность, прочность, плавкость и другие.

Все известные на сегодняшний день химические элементы, расположенные в таблице Менделеева, подразделяются условно на две большие группы: металлы и неметаллы. Для того чтобы они стали не просто элементами, а соединениями, химическими веществами, могли вступать во взаимодействие друг с другом, они должны существовать в виде простых и сложных веществ.

Именно для этого одни электроны стараются принять, а другие - отдать. Восполняя друг друга таким образом, элементы и образуют различные химические молекулы. Но что позволяет им удерживаться вместе? Почему существуют вещества такой прочности, разрушить которую неподвластно даже самым серьезным инструментам? А другие, наоборот, разрушаются от малейшего воздействия. Все это объясняется образованием различных типов химической связи между атомами в молекулах, формированием кристаллической решетки определенного строения.

Виды химических связей в соединениях

Всего можно выделить 4 основных типа химических связей.

  1. Ковалентная неполярная. Образуется между двумя одинаковыми неметаллами за счет обобществления электронов, формирования общих электронных пар. В образовании ее принимают участие валентные неспаренные частицы. Примеры: галогены, кислород, водород, азот, сера, фосфор.
  2. Ковалентная полярная. Образуется между двумя разными неметаллами либо между очень слабым по свойствам металлом и слабым по электроотрицательности неметаллом. В основе также общие электронные пары и перетягивание их к себе тем атомом, сродство к электрону которого выше. Примеры: NH 3, SiC, P 2 O 5 и прочие.
  3. Водородная связь. Самая нестойкая и слабая, формируется между сильно электроотрицательным атомом одной молекулы и положительным другой. Чаще всего это происходит при растворении веществ в воде (спирта, аммиака и так далее). Благодаря такой связи могут существовать макромолекулы белков, нуклеиновых кислот, сложных углеводов и так далее.
  4. Ионная связь. Формируется за счет сил электростатического притяжения разнозаряженных ионов металлов и неметаллов. Чем сильнее различие по данному показателю, тем ярче выражен именно ионный характер взаимодействия. Примеры соединений: бинарные соли, сложные соединения - основания, соли.
  5. Металлическая связь, механизм образования которой, а также свойства, будут рассмотрены дальше. Формируется в металлах, их сплавах различного рода.

Существует такое понятие, как единство химической связи. В нем как раз и говорится о том, что нельзя каждую химическую связь рассматривать эталонно. Они все лишь условно обозначенные единицы. Ведь в основе всех взаимодействий лежит единый принцип - электронностатическое взаимодействие. Поэтому ионная, металлическая, ковалентная связь и водородная имеют единую химическую природу и являются лишь граничными случаями друг друга.

Металлы и их физические свойства

Металлы находятся в подавляющем большинстве среди всех химических элементов. Это объясняется их особыми свойствами. Значительная часть из них была получена человеком ядерными реакциями в лабораторных условиях, они являются радиоактивными с небольшим периодом полураспада.

Однако большинство - это природные элементы, которые формируют целые горные породы и руды, входят в состав большинства важных соединений. Именно из них люди научились отливать сплавы и изготавливать массу прекрасных и важных изделий. Это такие, как медь, железо, алюминий, серебро, золото, хром, марганец, никель, цинк, свинец и многие другие.

Для всех металлов можно выделить общие физические свойства, которые объясняет схема образования металлической связи. Какие же это свойства?

  1. Ковкость и пластичность. Известно, что многие металлы можно прокатать даже до состояния фольги (золото, алюминий). Из других получают проволоку, металлические гибкие листы, изделия, способные деформироваться при физическом воздействии, но тут же восстанавливать форму после прекращения его. Именно эти качества металлов и называют ковкостью и пластичностью. Причина этой особенности - металлический тип связи. Ионы и электроны в кристалле скользят относительно друг друга без разрыва, что и позволяет сохранять целостность всей структуры.
  2. Металлический блеск. Это также объясняет металлическая связь, механизм образования, характеристики ее и особенности. Так, не все частицы способны поглощать или отражать световые волны одинаковой длины. Атомы большинства металлов отражают коротковолновые лучи и приобретают практически одинаковую окраску серебристого, белого, бледно-голубоватого оттенка. Исключениями являются медь и золото, их окраска рыже-красная и желтая соответственно. Они способны отражать более длинноволновое излучение.
  3. Тепло- и электропроводность. Данные свойства также объясняются строением кристаллической решетки и тем, что в ее образовании реализуется металлический тип связи. За счет "электронного газа", движущегося внутри кристалла, электрический ток и тепло мгновенно и равномерно распределяются между всеми атомами и ионами и проводятся через металл.
  4. Твердое агрегатное состояние при обычных условиях. Здесь исключением является лишь ртуть. Все остальные металлы - это обязательно прочные, твердые соединения, равно как и их сплавы. Это также результат того, что в металлах присутствует металлическая связь. Механизм образования такого типа связывания частиц полностью подтверждает свойства.

Это основные физические характеристики для металлов, которые объясняет и определяет именно схема образования металлической связи. Актуален такой способ соединения атомов именно для элементов металлов, их сплавов. То есть для них в твердом и жидком состоянии.

Металлический тип химической связи

В чем же ее особенность? Все дело в том, что такая связь формируется не за счет разнозаряженных ионов и их электростатического притяжения и не за счет разности в электроотрицательности и наличия свободных электронных пар. То есть ионная, металлическая, ковалентная связь имеют несколько разную природу и отличительные черты связываемых частиц.

Всем металлам присущи такие характеристики, как:

  • малое количество электронов на (кроме некоторых исключений, у которых их может быть 6,7 и 8);
  • большой атомный радиус;
  • низкая энергия ионизации.

Все это способствует легкому отделению внешних неспаренных электронов от ядра. При этом свободных орбиталей у атома остается очень много. Схема образования металлической связи как раз и будет показывать перекрывание многочисленных орбитальных ячеек разных атомов между собой, которые в результате и формируют общее внутрикристаллическое пространство. В него подаются электроны от каждого атома, которые начинают свободно блуждать по разным частям решетки. Периодически каждый из них присоединяется к иону в узле кристалла и превращает его в атом, затем снова отсоединяется, формируя ион.

Таким образом, металлическая связь - это связь между атомами, ионами и свободными электронами в общем кристалле металла. Электронное облако, свободно перемещающееся внутри структуры, называют "электронным газом". Именно им объясняется большинство металлов и их сплавов.

Как конкретно реализует себя металлическая химическая связь? Примеры можно привести разные. Попробуем рассмотреть на кусочке лития. Даже если взять его размером с горошину, атомов там будут тысячи. Вот и представим себе, что каждый из этих тысяч атомов отдает свой валентный единственный электрон в общее кристаллическое пространство. При этом, зная электронное строения данного элемента, можно увидеть количество пустующих орбиталей. У лития их будет 3 (р-орбитали второго энергетического уровня). По три у каждого атома из десятков тысяч - это и есть общее пространство внутри кристалла, в котором "электронный газ" свободно перемещается.

Вещество с металлической связью всегда прочное. Ведь электронный газ не позволяет кристаллу рушиться, а лишь смещает слои и тут же восстанавливает. Оно блестит, обладает определенной плотностью (чаще всего высокой), плавкостью, ковкостью и пластичностью.

Где еще реализуется металлическая связь? Примеры веществ:

  • металлы в виде простых структур;
  • все сплавы металлов друг с другом;
  • все металлы и их сплавы в жидком и твердом состоянии.

Конкретных примеров можно привести просто неимоверное количество, ведь металлов в периодической системе более 80!

Металлическая связь: механизм образования

Если рассматривать его в общем виде, то основные моменты мы уже обозначили выше. Наличие свободных и электронов, легко отрывающихся от ядра вследствие малой энергии ионизации, - вот главные условия для формирования данного типа связи. Таким образом, получается, что она реализуется между следующими частицами:

  • атомами в узлах кристаллической решетки;
  • свободными электронами, которые были у металла валентными;
  • ионами в узлах кристаллической решетки.

В итоге - металлическая связь. Механизм образования в общем виде выражается следующей записью: Ме 0 - e - ↔ Ме n+ . Из схемы очевидно, какие частицы присутствуют в кристалле металла.

Сами кристаллы могут иметь разную форму. Это зависит от конкретного вещества, с которым мы имеем дело.

Типы кристаллов металлов

Данная структура металла или его сплава характеризуется очень плотной упаковкой частиц. Ее обеспечивают ионы в узлах кристалла. Сами по себе решетки могут быть разных геометрических форм в пространстве.

  1. Объемноцентрическая кубическая решетка - щелочные металлы.
  2. Гексагональная компактная структура - все щелочноземельные, кроме бария.
  3. Гранецентрическая кубическая - алюминий, медь, цинк, многие переходные металлы.
  4. Ромбоэдрическая структура - у ртути.
  5. Тетрагональная - индий.

Чем и чем ниже он располагается в периодической системе, тем сложнее его упаковка и пространственная организация кристалла. При этом металлическая химическая связь, примеры которой можно привести для каждого существующего металла, является определяющей при построении кристалла. Сплавы имеют очень разнообразные организации в пространстве, некоторые из них до сих пор еще не до конца изучены.

Характеристики связи: ненаправленность

Ковалентная и металлическая связь имеют одну очень ярко выраженную отличительную черту. В отличие от первой, металлическая связь не является направленной. Что это значит? То есть электронное облако внутри кристалла движется совершенно свободно в его пределах в разных направлениях, каждый из электронов способен присоединяться к абсолютно любому иону в узлах структуры. То есть взаимодействие осуществляется по разным направлениям. Отсюда и говорят о том, что металлическая связь - ненаправленная.

Механизм ковалентной связи подразумевает образование общих электронных пар, то есть облаков перекрывания атомов. Причем происходит оно строго по определенной линии, соединяющей их центры. Поэтому говорят о направленности такой связи.

Насыщаемость

Данная характеристика отражает способность атомов к ограниченному или неограниченному взаимодействию с другими. Так, ковалентная и металлическая связь по этому показателю опять же являются противоположностями.

Первая является насыщаемой. Атомы, принимающие участие в ее образовании, имеют строго определенное количество валентных внешних электронов, принимающих непосредственное участие в образовании соединения. Больше, чем есть, у него электронов не будет. Поэтому и количество формируемых связей ограничено валентностью. Отсюда насыщаемость связи. Благодаря данной характеристике большинство соединений имеет постоянный химический состав.

Металлическая и водородная связи, напротив, ненасыщаемые. Это объясняется наличием многочисленных свободных электронов и орбиталей внутри кристалла. Также роль играют ионы в узлах кристаллической решетки, каждый из которых может стать атомом и снова ионом в любой момент времени.

Еще одна характеристика металлической связи - делокализация внутреннего электронного облака. Она проявляется в способности небольшого количества общих электронов связывать между собой множество атомных ядер металлов. То есть плотность как бы делокализуется, распределяется равномерно между всеми звеньями кристалла.

Примеры образования связи в металлах

Рассмотрим несколько конкретных вариантов, которые иллюстрируют, как образуется металлическая связь. Примеры веществ следующие:

  • цинк;
  • алюминий;
  • калий;
  • хром.

Образование металлической связи между атомами цинка: Zn 0 - 2e - ↔ Zn 2+ . Атом цинка имеет четыре энергетических уровня. Свободных орбиталей, исходя из электронного строения, у него 15 - 3 на р-орбитали, 5 на 4 d и 7 на 4f. Электронное строение следующее: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 0 4d 0 4f 0 , всего в атоме 30 электронов. То есть две свободные валентные отрицательные частицы способны перемещаться в пределах 15 просторных и никем не занятых орбиталей. И так у каждого атома. В итоге - огромное общее пространство, состоящее из пустующих орбиталей, и небольшое количество электронов, связывающих всю структуру воедино.

Металлическая связь между атомами алюминия: AL 0 - e - ↔ AL 3+ . Тринадцать электронов атома алюминия располагаются на трех энергетических уровнях, которых им явно хватает с избытком. Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 1 3d 0 . Свободных орбиталей - 7 штук. Очевидно, что электронное облако будет небольшим по сравнению с общим внутренним свободным пространством в кристалле.

Металлическая связь хрома. Данный элемент особый по своему электронному строению. Ведь для стабилизации системы происходит провал электрона с 4s на 3d орбиталь: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 4p 0 4d 0 4f 0 . Всего 24 электрона, из которых валентных получается шесть. Именно они уходят в общее электронное пространство на образование химической связи. Свободных орбиталей 15, то есть все равно намного больше, чем требуется для заполнения. Поэтому хром - также типичный пример металла с соответствующей связью в молекуле.

Одним из самых активных металлов, реагирующих даже с обычной водой с возгоранием, является калий. Чем объясняются такие свойства? Опять же во многом - металлическим типом связи. Электронов у этого элемента всего 19, но вот располагаются они аж на 4 энергетических уровнях. То есть на 30 орбиталях разных подуровней. Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 0 4p 0 4d 0 4f 0 . Всего два с очень низкой энергией ионизации. Свободно отрываются и уходят в общее электронное пространство. Орбиталей для перемещения на один атом 22 штуки, то есть очень обширное свободное пространство для "электронного газа".

Сходство и различие с другими видами связей

В целом данный вопрос уже рассматривался выше. Можно только обобщить и сделать вывод. Главными отличительными от всех других типов связи чертами именно металлических кристаллов являются:

  • несколько видов частиц, принимающих участие в процессе связывания (атомы, ионы или атом-ионы, электроны);
  • различное пространственное геометрическое строение кристаллов.

С водородной и ионной связью металлическую объединяет ненасыщаемость и ненаправленность. С ковалентной полярной - сильное электростатическое притяжение между частицами. Отдельно с ионной - тип частиц в узлах кристаллической решетки (ионы). С ковалентной неполярной - атомы в узлах кристалла.

Типы связей в металлах разного агрегатного состояния

Как мы уже отмечали выше, металлическая химическая связь, примеры которой приведены в статье, образуется в двух агрегатных состояниях металлов и их сплавов: твердом и жидком.

Возникает вопрос: какой тип связи в парах металлов? Ответ: ковалентная полярная и неполярная. Как и во всех соединениях, находящихся в виде газа. То есть при длительном нагревании металла и перевода его из твердого состояния в жидкое связи не рвутся и кристаллическая структура сохраняется. Однако когда речь заходит о переводе жидкости в парообразное состояние, кристалл разрушается и металлическая связь преобразуется в ковалентную.

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Внутримолекулярные химические связи

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными .

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов , в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.

– это способность атома притягивать (удерживать) внешние (валентные) электроны . Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А: В . Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4<ΔЭО<2 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .

Основные типы химических связей — ковалентная , ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

Ковалентная связь этохимическая связь, образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами ) или атомов одного элемента.

Основные свойства ковалентных связей

  • направленность ,
  • насыщаемость ,
  • полярность ,
  • поляризуемость .

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 108 о 28′.

Насыщаемость — это спосбность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется .

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .

Пример . Рассмотрим строение молекулы водорода H 2 . Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Люьиса неплохо помогают при работе с элементами второго периода.

H . + . H = H:H

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

Дипольный момент неполярных связей равен 0.

Примеры : H 2 (H-H), O 2 (O=O), S 8 .

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами ) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Примеры: HCl, CO 2 , NH 3 .

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А . + . В= А:В

2. образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: + B= А:В

При этом один из атомов предоставляет неподеленную электронную пару (донор ), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей .

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH 4 + , в ионах органических аминов , например, в ионе метиламмония CH 3 -NH 2 + ;

– в комплексных соединениях , химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO 3 , NaNO 3 , в некоторых других соединениях азота;

– в молекуле озона O 3 .

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении . Кратность связи достаточно легко можно определить из значения атомов, образующих молекулу.

Например , в молекуле водорода H 2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O 2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

В молекуле азота N 2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

Длину химической связи можно примерно оценить по радиусам атомов , образующих связь, или по кратности связи , если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.

Энергия связи

Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается , т.к. увеличивается длина связи.

Ионная химическая связь

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов .

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

Пример . Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11Na ) 2 ) 8 ) 1 — 1e = +11Na +) 2 ) 8

Пример . Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17Cl ) 2 ) 8 ) 7 + 1e = +17Cl ) 2 ) 8 ) 8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы , но и группы атомов . Например: ион аммония NH 4 + , сульфат-ион SO 4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na 2 + SO 4 2- .

Наглядно обобщим различие между ковалентными и ионным типами связи :

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов , образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов . Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями .

Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы . Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь , т.к. общие электроны удерживают катионы металлов, расположенные слоями, вместе , создавая таким образом достаточно прочную металлическую кристаллическую решетку . При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

Межмолекулярные взаимо-действия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляеются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами . Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодейстий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения .

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь . Она характерна прежде всего для соединений фтора с водородом , а также кислорода с водородом , в меньшей степени азота с водородом .

Водородные связи возникают между следующими веществами:

фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H 2 O (пар, лед, жидкая вода):

раствор аммиака и органических аминов — между молекулами аммиака и воды;

органические соединения, в которых связи O-H или N-H : спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение тепературы кипения.

Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H 2 O-H 2 S-H 2 Se-H 2 Te мы не наблюдаем линейное изменение температур кипения.

А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается.
Ионная связь ненаправленная и не насыщаемая.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H 2 (одна общая пара электронов; H одновалентен);
б) NN N 2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH 4 + (четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную . Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.
Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3 -гибридизация. Например:
sp -гибридизация - в молекулах C 2 H 2 , BeH 2 , CO 2 (линейное строение);
sp 2 -гибридизация - в молекулах C 2 H 4 , C 6 H 6 , BF 3 (плоская треугольная форма);
sp 3 -гибридизация - в молекулах CCl 4 , SiH 4 , CH 4 (тетраэдрическая форма); NH 3 (пирамидальная форма); H 2 O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr 2 , Ca 2 Cu, Cu 5 Zn 8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.

Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH 2 , H—O—H ··· NH 3 , H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.
Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные . Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H 2 , O 2 , N 2 , Cl 2 , Br 2 , S 8 , P 4 и другие простые вещества; CO 2 , SO 2 , N 2 O 5 , H 2 O, HCl, HF, NH 3 , CH 4 , C 2 H 5 OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO 2 , SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na +) 2 (SO 4 2-), (K +) 3 (PO 4 3-), (NH 4 +)(NO 3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).

Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Задачи и тесты по теме "Тема 10. "Химическая связь. Строение вещества"."

  • Типы химической связи - Строение вещества 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Заданий: 9 Тестов: 1

Проработав эту тему, Вы должны усвоить следующие понятия: химическая связь, межмолекулярная связь, ионная связь, ковалентная связь, металлическая связь, водородная связь, простая связь, двойная связь, тройная связь, кратные связи, неполярная связь, полярная связь, электроотрицательность, поляризация связи, - и -связь, гибридизация атомных орбиталей, энергия связи.

Вы должны знать классификацию веществ по типу строения, по типу химической связи, зависимость свойств простых и сложных веществ от типа химической связи и типа "кристаллической решетки".

Вы должны уметь: определять тип химической связи в веществе, тип гибридизации, составлять схемы образования связей, пользоваться понятием электроотрицательность, рядом электроотрицательностей; знать как меняется электроотрицательность у химических элементов одного периода, и одной группы для определения полярности ковалентной связи.

Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


Рекомендованная литература:
  • О. С. Габриелян, Г. Г. Лысова. Химия 11 кл. М., Дрофа, 2002.
  • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Каждый атом обладает некоторым числом электронов.

Вступая в химические реакции, атомы отдают, приобретают, либо обобществляют электроны, достигая наиболее устойчивой электронной конфигурации. Наиболее устойчивой оказывается конфигурация с наиболее низкой энергией (как в атомах благородных газов). Эта закономерность называется "правилом октета" (рис. 1).

Рис. 1.

Это правило применимо ко всем типам связей . Электронные связи между атомами позволяют им формировать устойчивые структуры, от простейших кристаллов до сложных биомолекул, образующих, в конечном счете, живые системы. Они отличаются от кристаллов непрерывным обменом веществ. При этом многие химические реакции протекают по механизмам электронного переноса , которые играют важнейшую роль в энергетических процессах в организме.

Химическая связь - это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую их комбинацию .

Природа химической связи универсальна: это электростатическая сила притяжения между отрицательно заряженными электронами и положительно заряженными ядрами, определяемая конфигурацией электронов внешней оболочки атомов. Способность атома образовывать химические связи называется валентностью , или степенью окисления . С валентностью связано понятие о валентных электронах - электронах, образующих химические связи, то есть находящихся на наиболее высокоэнергетических орбиталях. Соответственно, внешнюю оболочку атома, содержащую эти орбитали, называют валентной оболочкой . В настоящее время недостаточно указать наличие химической связи, а необходимо уточнить ее тип: ионная, ковалентная, диполь-дипольная, металлическая.

Первый тип связи - ионная связь

В соответствии с электронной теорией валентности Льюиса и Косселя, атомы могут достичь устойчивой электронной конфигурации двумя способами: во-первых, теряя электроны, превращаясь в катионы , во-вторых, приобретая их, превращаясь в анионы . В результате электронного переноса благодаря электростатической силе притяжения между ионами с зарядами противоположного знака образуется химическая связь, названная Косселем «электровалентной » (теперь ее называют ионной ).

В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп - соответственно, халькогенов и галогенов ). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.

Рис. 2.

Рис. 3. Ионная связь в молекуле поваренной соли (NaCl)

Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях .

Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов . Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается.

Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ‑ ОН-групп, в частности, триэтиламин N(С 2 Н 5) 3) ; растворимые основания называют щелочами .

Водные растворы кислот вступают в характерные реакции:

а) с оксидами металлов - с образованием соли и воды;

б) с металлами - с образованием соли и водорода;

в) с карбонатами - с образованием соли, СO 2 и Н 2 O .

Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН ‑ . Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание - вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:

Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

1) NH 4 + и NH 3

2) HCl и Сl

Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте - сильное сопряженное основание.

Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака - кислотой.

1) СН 3 СООН + Н 2 O Н 3 O + + СН 3 СОО ‑ . Здесь молекула уксусной кислоты донирует протон молекуле воды;

2) NH 3 + Н 2 O NH 4 + + ОН ‑ . Здесь молекула аммиака акцептирует протон от молекулы воды.

Таким образом, вода может образовывать две сопряженные пары:

1) Н 2 O (кислота) и ОН ‑ (сопряженное основание)

2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

В первом случае вода донирует протон, а во втором - акцептирует его.

Такое свойство называется амфипротонностью . Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными . В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

Таким образом, характерное свойство ионной связи - полное перемещение нары связывающих электронов к одному из ядер. Это означает, что между ионами существует область, где электронная плотность почти нулевая.

Второй тип связи - ковалентная связь

Атомы могут образовывать устойчивые электронные конфигурации путем обобществления электронов.

Такая связь образуется, когда пара электронов обобществляется по одному от каждого атома. В таком случае обобществленные электроны связи распределены между атомами поровну. Примерами ковалентной связи можно назвать гомоядерные двухатомные молекулы Н 2 , N 2 , F 2 . Этот же тип связи имеется у аллотропов O 2 и озона O 3 и у многоатомной молекулы S 8 , а также у гетероядерных молекул хлороводорода НСl , углекислого газа СO 2 , метана СH 4 , этанола С 2 Н 5 ОН , гексафторида серы SF 6 , ацетилена С 2 Н 2 . У всех этих молекул электроны одинаково общие, а их связи насыщенные и направлены одинаково (рис. 4).

Для биологов важно, что у двойной и тройной связей ковалентные радиусы атомов по сравнению с одинарной связью уменьшены.

Рис. 4. Ковалентная связь в молекуле Сl 2 .

Ионный и ковалентный типы связей - это два предельных случая множества существующих типов химических связей, причем на практике большинство связей промежуточные.

Соединения двух элементов, расположенных в противоположных концах одного или разных периодов системы Менделеева, преимущественно образуют ионные связи. По мере сближения элементов в пределах периода ионный характер их соединений уменьшается, а ковалентный - увеличивается. Например, галогениды и оксиды элементов левой части периодической таблицы образуют преимущественно ионные связи (NaCl, AgBr, BaSO 4 , CaCO 3 , KNO 3 , CaO, NaOH ), а такие же соединения элементов правой части таблицы - ковалентные (Н 2 O, СO 2 , NH 3 , NO 2 , СН 4 , фенол C 6 H 5 OH , глюкоза С 6 H 12 О 6 , этанол С 2 Н 5 ОН ).

Ковалентная связь, в свою очередь, имеет еще одну модификацию.

У многоатомных ионов и в сложных биологических молекулах оба электрона могут происходить только из одного атома. Он называется донором электронной пары. Атом, обобществляющий с донором эту пару электронов, называется акцептором электронной пары. Такая разновидность ковалентной связи названа координационной (донорно-акцепторной , или дативной ) связью (рис. 5). Этот тип связи наиболее важен для биологии и медицины, поскольку химия наиболее важных для метаболизма d-элементов в значительной степени описывается координационными связями.

Pиc. 5.

Как правило, в комплексном соединении атом металла выступает акцептором электронной пары; наоборот, при ионных и ковалентных связях атом металла является донором электрона.

Суть ковалентной связи и ее разновидности - координационной связи - можно прояснить с помощью еще одной теории кислот и оснований, предложенной ГН. Льюисом. Он несколько расширил смысловое понятие терминов «кислота» и «основание» по теории Бренстеда-Лоури. Теория Льюиса объясняет природу образования комплексных ионов и участие веществ в реакциях нуклеофильного замещения, то есть в образовании КС.

Согласно Льюису, кислота - это вещество, способное образовывать ковалентную связь путем акцептирования электронной пары от основания. Льюисовым основанием названо вещество, обладающее неподеленной электронной парой, которое, донируя электроны, образует ковалентную связь с Льюисовой кислотой.

То есть теория Льюиса расширяет круг кислотно-основных реакций также на реакции, в которых протоны не участвуют вовсе. Причем сам протон, по этой теории, также является кислотой, поскольку способен акцептировать электронную пару.

Следовательно, согласно этой теории, катионы являются Льюисовыми кислотами, а анионы - Льюисовыми основаниями. Примером могут служить следующие реакции:

Выше отмечено, что подразделение веществ на ионные и ковалентные относительное, поскольку полного перехода электрона от атомов металла к акцепторным атомам в ковалентных молекулах не происходит. В соединениях с ионной связью каждый ион находится в электрическом поле ионов противоположного знака, поэтому они взаимно поляризуются, а их оболочки деформируются.

Поляризуемость определяется электронной структурой, зарядом и размерами иона; у анионов она выше, чем у катионов. Наибольшая поляризуемость среди катионов - у катионов большего заряда и меньшего размера, например, у Hg 2+ , Cd 2+ , Pb 2+ , Аl 3+ , Тl 3+ . Сильным поляризующим действием обладает Н + . Поскольку влияние поляризации ионов двустороннее, она значительно изменяет свойства образуемых ими соединений.

Третий тип связи - диполь-дипольная связь

Кроме перечисленных типов связи, различают еще диполь-дипольные межмолекулярные взаимодействия, называемые также вандерваалъсовыми .

Сила этих взаимодействий зависит от природы молекул.

Выделяют взаимодействия трех типов: постоянный диполь - постоянный диполь (диполь-дипольное притяжение); постоянный диполь - индуцированный диполь (индукционное притяжение); мгновенный диполь - индуцированный диполь (дисперсионное притяжение, или лондоновские силы; рис. 6).

Рис. 6.

Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3 , SO 2 , Н 2 O, C 6 H 5 Cl ), причем сила связи составляет 1-2 дебая (1Д = 3,338 × 10 ‑30 кулон-метра - Кл × м).

В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро - протон - оголяется и перестает экранироваться электронами.

Поэтому атом превращается в крупный диполь.

Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы - внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 7).

Рис.7.

Водородная и вандерваальсовая связи значительно слабее, чем ионная, ковалентная и координационная. Энергия межмолекулярных связей указана в табл. 1.

Таблица 1. Энергия межмолекулярных сил

Примечание : Степень межмолекулярных взаимодействий отражают показатели энтальпии плавления и испарения (кипения). Ионным соединениям требуется для разделения ионов значительно больше энергии, чем для разделения молекул. Энтальпии плавления ионных соединений значительно выше, чем молекулярных соединений.

Четвертый тип связи - металлическая связь

Наконец, имеется еще один тип межмолекулярных связей - металлический : связь положительных ионов решетки металлов со свободными электронами. В биологических объектах этот тип связи не встречается.

Из краткого обзора типов связей выясняется одна деталь: важным параметром атома или иона металла - донора электронов, а также атома - акцептоpa электронов является его размер .

Не вдаваясь в детали, отметим, что ковалентные радиусы атомов, ионные радиусы металлов и вандерваальсовы радиусы взаимодействующих молекул увеличиваются по мере возрастания их порядкового номера в группах периодической системы. При этом значения радиусов ионов - наименьшие, а вандерваальсовых радиусов - наибольшие. Как правило, при движении вниз по группе радиусы всех элементов увеличиваются, причем как ковалентные, так и вандерваальсовы.

Наибольшее значение для биологов и медиков имеют координационные (донорно-акцепторные ) связи, рассматриваемые координационной химией.

Медицинская бионеорганика. Г.К. Барашков