Error: не определено #11234. Основные положения теории развития органического мира таблица. Теория эволюции органического мира - реферат. Образование растений и животных
Уход и... Инструменты Дизайн ногтей

Основные положения теории развития органического мира таблица. Теория эволюции органического мира - реферат. Образование растений и животных

К сожалению, область теоретической биологии, занимающаяся эволюционной теорией, изначально является ареной столкновения классовых интересов. Оно и понятно: эволюционное учение ставит под сомнение религиозные догмы, а религия есть тысячелетиями апробированный способ увода угнетённых масс от борьбы за справедливый мир. Похоже, с этим связано и распространение обывательского, упрощённого взгляда на эволюционные теории среди населения. Поэтому мне пришлось отложить в сторону разговор о достижениях молекулярной биологии и генетики и заняться разъяснением соотношений существующих на сегодняшний день эволюционных учений.

Долгое время человечество находилось под не подлежащим сомнению влиянием креационистской парадигмы. Креациони́зм (от лат. creatio, род. п. creationis – творение) – мировоззренческая концепция, согласно которой основные формы органического мира (жизнь), человечество, планета Земля, а также мир в целом, рассматриваются как непосредственно созданные творцом или богом.

Креационизм существовал не всегда. Так, в австралийском племени арунта верят, что мир существует извечно. В незапамятные времена жили полузвери-полулюди, которые путём колдовства превращали одни предметы в другие; вопросом, откуда эти существа взялись, австралийцы даже не задаются. Они верят, что Солнце произошло от женщины с горящей головнёй, которая забралась на небо и там превратилась в костёр.

«Понятие «сотворение мира» сложилось в эпоху разложения первобытнообщинного строя. Гончарное производство способствовало образованию представления о том, что мир был вылеплен из глины. В Элефантине рассказывали о древнеегипетском боге Хнуме, который сформовал мир из нильской глины на гончарном круге, как горшечную посуду».

Так, видимо, возник библейский миф об Адаме, которого бог вылепил из глины.

Первые эволюционные парадигмы формировались в Древней Элладе. Так, Анаксимен (585 – 525 до н. э.) полагал, что люди произошли от рыб.

Эмпедокл (ок. 490 – ок. 430 до н.э.) полагал, что головы без шеи, руки без плеч, глаза без лбов, волосы, внутренние органы носились в пространстве в состоянии Вражды, но в порыве Любви соединялись в уродцев, кентавров и гермафродитов; лишь наиболее целесообразные формы выживали: происходило нечто подобное естественному отбору Дарвина…

«Так из смешения стихий бесконечные сонмы созданий

В образах многоразличных и дивных на вид происходят».

Эмпедокл, однако, не говорит об однонаправленности эволюционного процесса. Любовь и Вражда сменяют друг друга циклами, вначале был Золотой Век.

Аристотель же расположил живые существа от низших к высшим в знаменитой «лестнице природы».

Римлянин Лукреций Кар (ок. 99 до н. э. – 55 до н. э.) полагал, что бабочки раньше были цветками.

Путь всему этому нарождающемуся многоцветью эволюционной мысли был закрыт в средние века. На долгие века в Европе установилось господство креационистской парадигмы, формировавшейся жреческими кругами древних рабовладельческих государств Вавилона и Египта. Данная парадигма, наряду с другими мерами, надёжно обеспечивала классовое господство феодалов и начала подвергаться сомнению лишь после того как буржуазия приступила к установлению нового строя. Видов столько, сколько их сотворил бог.

Но уже Карл Линней (швед. Carl Linnaeus, Carl Linné, лат. Carolus Linnaeus, после получения дворянства в 1761 году – Карл фон Линней, Carl von Linné; 23 мая 1707, Росхульт – 10 января 1778, Уппсала), автор «Системы Природы» и принятой по сей день в биологии бинарной номенкулатуры (латинские родовое и видовое название, например Homo sapiens – Человек Разумный), к концу жизни полагал, что новые виды могут возникать в результате скрещивания. Линней отнёс человека к классу млекопитающих, к отряду приматов, вместе с обезьянами, полуобезьянами и с рядом животных, к приматам отношения не имеющим, например, с летучими мышами.

Первое целостное эволюционное учение принадлежит Жану Батисту Ламарку (фр. Jean-Baptiste Pierre Antoine de Monet Lamarck; 1 августа 1744 – 18 декабря 1829). Оно было изложено им в труде «Философия зоологии».

Подобно «лестнице существ» Аристотеля, Ламарк расположил живые существа по ступеням, уровням – градациям . Основной эволюции по Ламарку является «стремление к совершенствованию». Результаты упражнения или неупражнения органов передаются по наследству. Наиболее популярный пример Ламарка – с жирафами. Вначале изменились условия среды: предкам жирафов пришлось тянуть шею за листьями. Их шеи удлинялись, как мышцы при тренировке. Это передаётся по наследству.

Эволюция по Ламарку – плавная, как и по Дарвину, без резких скачков. В советское время взгляды, близкие ламарксистским, пытался протащить в биологию оппонент Вавилова, Трофим Лысенко, под этикеткой «советский творческий дарвинизм», чем нанёс немалый вред науке.

Однако, последние данные из области эпигенетических исследований, которые показывают, что характер экспрессии (реализации закодированной в нуклеиновых кислотах информации в белковые структуры) генов может меняться под воздействием внешних факторов (сама структура ДНК при этом не затрагивается), и эти изменения могут передаваться по наследству; а также – просто тот факт, что внешние факторы могут вызывать мутации, открывают путь неоламаркизму . Нет сомнений, что сам Ламарк полагал происхождение человека от обезьяны, хотя и вынужден был маскировать свои взгляды.

Бесповоротно путь эволюционному учению открыл Чарлз Ро́берт Да́рвин (англ. Charles Robert Darwin; 12 февраля 1809 – 19 апреля 1882). Во время кругосветного путешествия на корабле «Бигль» (1831 – 1836) юный Дарвин увидел эволюцию в пространстве.

Огромное количество животных в разных уголках земного шара, и главное – Галапагосские острова: панцири сухопутных черепах, варьирующие по форме, указывая на остров происхождения – всё это способствовало прозрению.

Клювы галапагосских вьюрков явились ключевым моментом для рождения у Дарвина идеи об изменяемости видов во времени.

Однако, Дарвин не торопился. Он продолжил собирать факты. В основу доказательств должны были быть положены материалы по селекции, успехами в которой всегда славилась Англия. Большую роль на учение Дарвина, на его представления о борьбе за существование, оказала теория Мальтуса, согласно которой неконтролируемый рост народонаселения должен привести к голоду на Земле.

Эволюционное учение Дарвина – закономерный продукт развития капиталистического общества. Примечательно, что одновременно с Дарвином к тем же выводам пришёл исследователь природы Юго-Восточной Азии 35-летний Альфред Уоллес. В начале лета 1858 года Дарвину пришёл пакет с Малайских островов от Уоллеса, который просил Дарвина рассмотреть его, Уоллеса, теорию естественного отбора. Перед Дарвином даже не вставал вопрос: скрыть работу Уоллеса, ничего не знавшего о разработках Дарвина, или опубликовать собственную рукопись вперёд. Поступить не по-джентельменски Дарвин не мог. Он был человеком чести. Советом Дарвина выручили его друзья: геолог Чарльз Лайель и ботаник Джозеф Гукер. Они рекомендовали как можно скорее отправить в Линнеевское общество обе работы – короткое извлечение из книги Дарвина и очерк Уоллеса. «Дорогой сэр, – писали они секретарю общества. – Прилагаемые работы касаются вопроса об образовании разновидностей и представляют результаты исследований двух неутомимых натуралистов – мистера Чарльза Дарвина и мистера Альфреда Уоллеса». Дарвин не уставал сообщать публике, что работа Уоллеса лучше, но и Уоллес не отставал от Дарвина, он говорил, что лучше работа Дарвина… Однако, символом эволюционного учения, как нам известно, история распорядилась сделать Чарлза Дарвина.


Чем же характеризуется учение Чарлза Дарвина? Это необходимо обозначить сразу, чтобы понять отношение к классическому дарвинизму иных эволюционных учений. Дарвин выделил 2 основных типа изменчивости: определённую (групповую ) и неопределённую (индивидуальную) . При определённой изменчивости всё потомство организма изменяется похожим образом под влиянием факторов среды. Теперь эту изменчивость называют модификационной или ненаследственной . Например, карликовый рост вследствие нехватки пищи. Этот тип изменчивости не наследуется.

Неопределённая изменчивость теперь называется наследственной или мутационной. Фактором эволюции является последняя.

Комбинативной (при скрещивании) изменчивости Дарвин не отводил решающей роли в эволюции. Другие факторы эволюции по Дарвину – борьба за существование и естественный отбор (от англ. «selection» – может быть переведено как «естественная селекция»). Эволюция по Дарвину носит случайный характер. Мелкие случайные изменения служат материалом для естественного отбора. Если при искусственном отборе селектором выступает человек, и подбирает он качества, выгодные себе, то при естественном отборе селектор – природа: сохраняются и производят потомство особи с качествами, полезными для выживания. Отдельно следует упомянуть бессознательный отбор . Человек не ставит цели, он, например, просто не отправляет хороших несушек на мясо, и яйценоскость кур с поколениями повышается. Эволюция по Дарвину – медленный поступательный процесс, без резких скачков. Количество постепенно переходит в новое качество. Эволюция по Дарвину не имеет конечной определённой цели. Виды имеют преимущественно монофилетическое происхождение, а эволюционный процесс развивается по принципу дивергенции: виды распадаются на роды, роды – на семейства, семейства – на отряды, отряды – на классы и т. д., как дерево. Микроэволюция (формирование новых видов) и макроэволюция (формирование крупных таксонов, например, классов) по Дарвину суть один процесс.

Микроэволюцию внутри видов и дарвиновский естественный отбор мы можем наблюдать в природе в реальном времени. Так, обычные для Англии бабочки пяде́ницы берёзовые (Biston betularia) являются классическим примером. Меланистическая форма carbonaria впервые привлекла к себе внимание как редкий мутант в 1848 г. в Манчестере. В период между 1848 и 1898 гг. частота этой формы в промышленных районах быстро возрастала; она стала обычной формой, тогда как типичная сероватая форма стала редкой. Частота аллеля, обусловливающего чёрную окраску, согласно оценкам, повысилась с 1 до 99% за 50 поколений с 1848 по 1898 г. Причина – появление копоти и сажи на стволах берёзы, вследствие роста промышленности, что сделало форму со светлыми крыльями уязвимой для птиц и дало преимущество форме с тёмными крыльями. Это явление называется индустриальным меланизмом.

Теория Дарвина быстро завоевала популярность, но также быстро, под напором критики, её потеряла. На конец XIX – начало XX века уже очень немногие биологи разделяли концепцию естественного отбора, однако, сама идея эволюции органического мира с появлением учения Дарвина в их среде не подвергалась сомнению более никогда. В этом основная заслуга Дарвина: он открыл путь для эволюционной теории и будет вызывать ненависть у религиозных апологетов до самого окончания эпохи классового общества.

В 20-е годы XX века зарождается Синтетическая Теория Эволюции (СТЭ), которая представляет собой синтез дарвинизма и популяционной генетики и является господствующей парадигмой в современной биологии. Происходит реабилитация дарвинизма. Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды об эволюции доминантности. В англоязычной литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского, Дж. Хаксли, Э. Майра, Б. Ренша, Дж. Стеббинса. Это, конечно, далеко не полный список. Только из русских учёных, по меньшей мере, следовало бы назвать И. И. Шмальгаузена, Н. В. Тимофеева-Ресовского, Г. Ф. Гаузе, Н. П. Дубинина, А. Л. Тахтаджяна. Из британских учёных велика роль Дж. Б. С. Холдейна-младшего, Д. Лэка, К. Уоддингтона, Г. де-Бира. Немецкие историки среди активных создателей СТЭ называют имена Э. Баура, В. Циммермана, В. Людвига, Г. Хеберера и других.

Наиболее яркое отличие СТЭ от классического дарвинизма: основная единица эволюции в ней уже не отдельный организм, но популяция, т. е. совокупность организмов одного вида, существующих на определённой территории или акватории в условиях свободной панмиксии , т. е. обмена генами. Репродуктивная изоляция , например, географическая (ограничение панмиксии вследствие появления географических преград, например, проливов или горных массивов, что мешает свободному скрещиванию), или генетико-этологическая (возникшие различия в поведении, например, в сигналах взаимодействия партнёров, мешают скрещиванию), или любая другая, ведёт к видообразованию. Всякая популяция имеет определённый набор мутаций, немногие из которых полезные, но большинство – вредные. Поэтому, образно выражаясь, у популяции имеется множество точек опоры в форме совокупности различных аллелей генов, что повышает её устойчивость, предоставляет возможность пластично реагировать на изменения условий окружающей среды.

И. И. Шмальгаузен ввёл понятия стабилизирующего и движущего отбора . При неизменных условиях окружающей среды все отклонения от нормы отсеиваются, это стабилизирующий отбор, но стоит условиям среды начать меняться, включается движущий отбор, и преимущество получают мутантные аллели генов.

Я не стану останавливаться на СТЭ подробно, дабы не перегружать статью, которая задумывалась как научно-популярная. Математические модели СТЭ сложны и являются, по сути, обоснованиями, объясняющими существующие противоречия. Отмечу лишь, что в основе СТЭ, как и в классическом дарвинизме – концепция тихогенеза – эволюции на основе случайностей. Микроэволюция и макроэволюция суть одно и то же, различаются лишь масштабы. Эволюция не имеет конечной цели, никуда не направлена. Предпочтение отдаётся дивергенции и монофилетическому происхождению видов. Эволюция, согласно СТЭ, есть медленный поступательный процесс, без революционных скачков.

Иногда возражения обывателей против дарвиновского учения кружатся вокруг реальных противоречий. Вопрос о переходной форме между обезьяной и человеком, разумеется, не может вызывать ничего кроме недоумения и сожаления по поводу безграмотности населения.

Иное дело – вопрос о переходных формах между, например, пресмыкающимися и птицами… В самом деле: ну прыгал с ветки на ветку предок, пусть даже не птицы, но белки-летяги, ну возникла случайная мутация: небольшая складочка кожи. Какое она могла иметь эволюционное значение? Разве могла такая складочка кожи сыграть решающую роль в выживании, сделать прыжки более эффективными, если, конечно, не возникла сразу большая складка с аэродинамическими характеристиками? Карточный домик дарвиновского медленного поступательного процесса путём мелких случайных изменений начинает шататься, и, кажется, вот-вот рухнет… Конечно, можно подойти к проблеме философски: человек никогда не летал, мозг его не понимает гениальной простоты стремления к полёту на уровне интуиции, и принцип «рождённый ползать летать не может» распространяется также на лёгкость эволюционистской мысли. И тем не менее, совершенство аэродинамической конструкции птицы завораживает, как и сами птицы… Не знаю, как вы, а я не раз на парах мечтал о том, как вылетаю в окно верхнего этажа, пролетаю над деревьями…

Что и говорить, вопрос макроэволюции – больной вопрос в биологии, и пока он не будет закрыт, едва ли можно ожидать прекращения реакционной болтовни в этой сфере. К сожалению, и образованные люди нередко тешат себя самообманом, якобы они всё поняли по Дарвину, игнорируя когнитивный диссонанс. Так что, возникновение теории номогенеза – эволюции на основе закономерностей Льва Семёновича Берга (2 (15) марта 1876- 24 декабря 1950) едва ли можно полагать случайным.

Человек энциклопедических знаний, географ, геолог, палеонтолог, почвовед, лимнолог, ихтиолог, этнограф, Берг изложил свои взгляды на эволюцию в книге «Номогенез, или эволюция на основе закономерностей» (Петроград, 1922), в которых полностью противопоставил своё учение Дарвину. Эволюционный процесс по Бергу, в отличие от Дарвина, не случаен, но закономерен. Происхождение видов полифилетично – от многих тысяч исходных форм. В дальнейшем эволюция развивалась преимущественно конвергентно. Как в случае с рыбой акулой, рептилией ихтиозавром и млекопитающим дельфином: в водной среде они приобрели одинаковую обтекаемую форму с плавниками, несмотря на то, что предки одних – четвероногие, других – изначально водные животные. Эволюция по Бергу это не сплошное появление новых признаков, как у Дарвина, но в значительной мере – развёртывание уже существующих задатков, как растение из почки внутри семени, в которой уже обозначены листочки, стебелёк и корешок. Эволюция происходит резко, скачками (сальтациями), затрагивая одновременно громадные массы особей на огромных территориях, на основе мутаций де Фриза. Виды резко отграничены один от другого, и никаких переходных форм не существует. Естественный отбор и борьба за существование не являются факторами прогресса, они охраняют норму.

В работе «Закон гомологических рядов в наследственной изменчивости», изложенной в виде доклада на III Всероссийском селекционном съезде в Саратове 4 июня 1920 года, единомышленником Берга Вавиловым было введено понятие «гомологические ряды в наследственной изменчивости». Формулируется закон Вавилова так: «Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов». Закон гомологических рядов, как и периодическая система элементов Д. И. Менделеева в химии, позволяет на основании знания общих закономерностей изменчивости предсказать существование в природе не известных ранее форм с ценными для селекции признаками. Так, ранее были известны лишь многосемянные плоды сахарной свеклы: семена срастались в соплодие, клубочек, и при прорастании лишние проростки приходилось удалять вручную. Однако, у дикорастущих видов свеклы были обнаружены экземпляры с односемянными плодами. Исходя из знания закона Вавилова, исследователи взялись за поиски односемянных мутантов и у сахарной свеклы; на основе обнаруженных мутантов были получены современные сорта этой культуры. Также Николаю Вавилову принадлежит высказывание о том, что «Селекция представляет собой эволюцию, направляемую волей человека».

Открытие горизонтального переноса генов (см. мою ) позволяет предположить возможность распространения полезных мутаций посредством вирусов среди таксономически далёких друг от друга групп. Почему, например, не допустить, что саблезубые животные среди различных отрядов и даже инфраклассов млекопитающих появились и вымерли сопряжённо, таким образом, не случайно. Также в пользу теории Берга свидетельствует факт ограниченности возможных эволюционных направлений. Иногда просто не существует соответствующих ферментных путей, что делает, например, невозможным возникновение в процессе эволюции млекопитающих с синей шерстью.

Отдельное положение, следует заметить, занимают эволюционные идеи И. А. Ефремова. Этот исследователь признаёт прогрессивную роль естественного отбора, но вслед за Бергом предпочтение отдаёт конвергенции. По мнению Ефремова, чем выше энергетический уровень гомеостаза (поддержание постоянства внутренней среды) у организма, тем уже диапазон возможных эволюционных направлений. Таким образом, эволюция по Ефремову подобна скручивающейся спирали и носит ярко выраженный финалистический характер: предполагает конечную высшую цель – человека. Ефремов идёт дальше и приходит к выводу о закономерности человеческой формы для других планет.

«Никакой скороспелой разумной жизни в низших формах вроде плесени, тем более – мыслящего океана быть не может» .

Тем не менее, Ефремов был знаком с номогенезом Берга и говорить о конвергенции, либо случайном совпадении, как в случае с Дарвином и Уоллесом, в данном случае не приходится.

Иван Ефремов

К сожалению, финализм есть лазейка для протаскивания теистических взглядов в эволюционную теорию, чем и пользуется В. И. Назаров . Если у эволюции есть цель, то должен быть и творец, демон креационизма – тут как тут…

Нельзя также не остановиться на концепции автоэволюции цитогенетика Лима де Фариа (1991). Кратко говоря, в основе эволюции по Лима де Фариа лежат те же закономерности, которые заставляют воду застывать в виде красивой снежинки. И Лима де Фариа приводит в своей книге «Эволюция без отбора» фотографии листовидного чистого висмута в самородной форме и лист растения, кристаллы льда и молодые побеги папоротника… Галактики сравниваются с раковинами моллюсков… Это современная форма номогенеза. Самоорганизация материи изучается синергетикой .

Были и другие попытки ответить на вопрос, как реализовалась макроэволюция. Например, теория «обнадёживающих уродов» (hopeful monsters) Гольдшмидта (нем. Richard Baruch-Benedikt Goldschmidt; 12 апреля 1878 – 24 апреля 1958).

Идея проста. Макроэволюционные скачки реализуются через появление уродов, резко аномальных форм, подобных сиамских близнецам, не имеющих в большинстве случаев шансов на выживание. Но иногда уроды рождаются обнадёживающими… Так могла возникнуть уродливая, непропорционально большая складка кожи у белки-летяги, однако вопрос о том, как динозавры стали птицами всё равно остаётся туманным…

Теория симбиогенеза (термин, выдвинутый впервые Мережковским в 1905 г.) ныне практически не вызывает сомнений у биологов. Органоиды клетки, такие как хлоропласты или митохондрии когда-то были бактериями-симбионтами, т. е. существовали на взаимовыгодных основах (такая форма симбиоза называется мутуализмом ) внутри предковой эукаритической клетки, а впоследствии утратили независимость, стали её элементами. Тому существуют серьёзные доказательства: митохондрии и пластиды имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя – бактерий. Размножаются эти органоиды делением (причём делятся иногда независимо от деления клетки), никогда не синтезируются de novo. Собственный генетический материал – кольцевая ДНК – как у бактерий; имеют свой аппарат синтеза белка – рибосомы , и др. доказательства. Симбиогенез является для нас как минимум примером одного из возможных путей загадочной макроэволюции, и это недарвиновский путь.

Да и наследственная информация может передаваться не только через нуклеиновые кислоты, но и через белки, например, прионы .

Обзор эволюционных теорий можно продолжать очень долго. Интересующиеся могут ознакомиться, например, с книгой В. И. Назарова «Эволюция не по Дарвину», относясь, разумеется, критически к написанному там. Однако я на этом обзор и завершу.

Но вернёмся к началу статьи. Родившись в биологии, современный эволюционизм вскоре охватил все прочие естественные науки, стал глобальным. Но, увы, сфера эволюционных теорий продолжает оставаться ареной классовой борьбы. Теория Дарвина, логичная для мира капиталистической конкуренции, к сожалению, служит нередко оправданием рыночной борьбы за существование, которая преподносится как благо и источник прогресса. Конечно, Дарвин был сыном своего времени, он осмыслял реальность как человек своей формации, но никогда в его задачи не входило рождение уродцев вроде социал-дарвинизма, решительно осуждённого биологами всего мира, социал-дарвинизма, предполагающего естественный отбор в человеческом обществе. Так расисты аргументировали свои античеловеческие взгляды, дескать цвет кожи ведь дарвиновская адаптация? Напротив, в человеческом обществе роль естественного отбора сводится к минимуму, а уровень мутагенеза в связи с новыми технологиями (например, атомные реакторы) возрастает, что требует скорейшего развития методов генотерапии. Сыграл на руку современным либералам Трофим Лысенко: их полные крокодиловых слёз вопли о том, за что репрессировали академика Вавилова, не смолкают до сих пор. Остаётся открытым вопрос о целесообразности рассмотрения недарвиновских теорий среди школьников. Наша система образования устроена так, что у последних нет возможностей глубокого погружения в мир эволюционных теорий, а Дарвин в массовом сознании – символ эволюционного учения; любая критика Дарвина может быть воспринята неверно, как аргумент в пользу болтовни из жёлтых газет, дескать, Дарвина опровергли, и человек не произошёл от обезьяны.

За всем этим как-то теряются и мечты Ефремова о встрече с красавицами с других планет, и загадки доисторических эпох, такие как кембрийский взрыв, и возможность человека как царя природы направить эволюцию таким способом, чтобы избавить биосферу от всякой боли… Когда-нибудь мы поймём, что такое эволюция, окончательно. Когда-нибудь мы увидим эволюцию на других планетах, и свершится революция в наших знаниях по этому вопросу, ведь появится с чем сравнивать! Когда-нибудь…

Литература:

  1. Шахнович М. И. Мифы о сотворении мира, М.: Знание, 1968
  2. Чарлз Дарвин. Происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь, М.: Просвещение, 1987
  3. Ефремов И. А. Космос и палеонтология, М.: Знание, 1972
  4. Назаров В. И. Эволюция не по Дарвину, М.: ЛКИ, 2007

«...твердо помнить должно,

что видимые телесные на Земле вещи

и весь мир не в таком состоянии

были с начала от создания,

как ныне находим,

но великие происходили

в нем перемены...»

М. В. ЛОМОНОСОВ

Масса Земли составляет около 4´10 18 тонн, а возраст - около 4,5-5 млрд лет. Считают, что жизнь возникла на Земле примерно 3,5-3,8 млрд лет назад.

Она оказала существенное влияние на атмосферу, которая изменялась от окисляющей к неокисляющей.

Огромное разнообразие живых форм, населяющих сейчас Землю, является результатом длительного процесса эволюции, под которой понимают развитие организмов во времени или процесс исторического преобразования на Земле, результатом которого является многообразие современного живого мира. Термин «эволюция» (от лат. evolutio - развертываю) был введен в науку в 1762 г. швейцарским натуралистом Ш. Бонна (1720-1793).

Вначале эволюция шла очень медленно. Первыми и единственными живыми обитателями Земли в течение 3 млрд лет были микроорганизмы. Многоклеточные появились после четырех пятых времени начала существования Земли. Эволюция человека заняла несколько последних миллионов лет. Центральным моментом эволюции является филогенез (от греч. phyle - племя, genesis - развитие), - процесс возникновения и развития вида, т. е. эволюцию вида.

Представления о развитии жизни отражены в теории эволюции, которая основывается на данных об общих закономерностях и движущих силах развития живой природы. Она представляет собой синтез достижений дарвинизма, биологии, генетики, морфологии, физиологии, экологии, биогеоценологии и других наук. В наше время теория эволюции, основу которой составляет дарвинизм, - это наука об общих законах развития органической природы, методологическая основа всех специальных биологических дисциплин.

В этом разделе мы рассмотрим теорию эволюции. Будут приведены также данные о происхождении жизни, о микроэволюции и видообразовании, а также о ходе, главных направлениях и доказательствах эволюции. В самостоятельных главах мы излагаем сведения об эволюции систем органов животных и о происхождении человека.

Глава XIV

ТЕОРИЯ ЭВОЛЮЦИИ

Представления об эволюции до

ЧарлзаДарвина

Эволюция протекает на всех уровнях организации живой материи и на каждом уровне характеризуется новообразованием структур и появлением новых функций. Объединение структур и функций одного уровня сопровождается переходом живых систем на более высокий эволюционный уровень.

Проблемы происхождения и эволюции жизни на Земле принадлежали и принадлежат к числу величайших проблем естествознания. Эти проблемы привлекали к себе внимание человеческого ума с самых незапамятных времен. Они являлись предметом интереса всех философских и религиозных систем. Однако в разные эпохи и на разных ступенях развития человеческой культуры проблемы происхождения и эволюции жизни решались по-разному.

В основе современной теории эволюции лежит теория Ч. Дарвина. Но эволюционизм существовал и до Ч. Дарвина. Поэтому, чтобы лучше понимать современную теорию эволюции, важно знать о взглядах на мир до Ч. Дарвина, о том, как развивались идеи эволюционизма.

Самыми древними взглядами на природу были мистические, по которым жизнь связывали с силами природы. Но уже у самых истоков культуры в древней Греции на смену мистическим истолкованиям природы приходят начала других представлений. В тот период возникла и стала развиваться доктрина абиогенеза и спонтанного самозарождения, в соответствии с которой признавалось, что живые организмы возникают спонтанно из неживого материала. Тогда же появились и эволюционные идеи. Например, Эмпедокл (490-430 гг. до н. э.) считал, что первые живые существа возникли из четырех элементов мировой материи (огонь, воздух, вода и земля) и что для природы характерно закономерное развитие, выживание тех организмов, которые наиболее гармонично (целесообразно) устроены. Эти мысли были очень важными для дальнейшего распространения идеи о естественном происхождении живых существ.

Демокрит (460-370 гг. до н. э.) считал, что мир состоит из множества мельчайших частиц, которые находятся в движении, и что жизнь является не результатом творения, а результатом действия механических сил самой природы, приводящих к самозарождению. По Демокриту самозарождение живых существ происходит из ила и воды в результате сочетания атомов при их механическом движении, когда мельчайшие частицы влажной земли встречаются и соединяются с атомами огня. Самозарождение представлялось случайным процессом.

Предполагая, что черви, клещи и другие организмы возникают из росы, ила, навоза, волос, пота, мяса, моллюски из влажной земли, а рыбы из морской тины и т. д., Платон (427-347 гг. до н. э.) утверждал, что живые существа образуются в результате соединения пассивной материи с активным началом (формой), представляющим собой душу, которая затем движет организмом.

Аристотель (384-322 гг. до н. э.) утверждал, что растения и животные возникают из неживого материала. В частности, он утверждал, что некоторые животные возникают из разложившегося мяса. Признавая реальность материального мира и постоянство его движения, сравнивая организмы между собой, Аристотель пришел к заключению о «лестнице природы», отражающей последовательность организмов, начинающуюся с неорганических тел и продолжающуюся через растения к губкам и асцидиям, а затем к свободно живущим морским организмам. Однако, признавая развитие, Аристотель не допускал мысли о развитии низших организмов к высшим.

Взгляды Аристотеля оказали влияние на века, ибо последующие греческие и римские философские школы полностью разделили идею самопроизвольного зарождения, которая все больше и больше наполнялась мистическим содержанием. Описания различных случаев самозарождения даны Цицероном, Овидием, позднее Сенекой, Пли-нием, Плутархом и Апулеем. Идея изменяемости прослеживается во взглядах древних философов Индии, Китая, Месопотамии, Египта. Раннее христианство обосновывало доктрину абиогенеза примерами из Библии. Подчеркивалось, что самозарождение действует от сотворения мира до наших дней.

В течение средних веков (V-XV вв.) вера в самопроизвольное самозарождение была господствующей среди ученых того времени, ибо философская мысль тогда могла существовать лишь в качестве богословской мысли. Поэтому сочинения средневековых ученых содержат многочисленные описания самозарождения насекомых, червей, рыб. Тогда часто считали, что даже львы возникли из камней пустыни. Знаменитый врач средневековья Парацельс (1498-1541) приводил рецепт «изготовления» гомункулуса (человека) путем помещения спермы человека в тыкву. Как известно, Мефистофель из трагедии Гёте «Фауст» называл себя повелителем крыс, мышей, мух, лягушек, клопов и вшей, чем И. Гёте подчеркивал чрезвычайные возможности самозарождения.

Средневековье не внесло новых идей в представления о развитии органического мира. Напротив, в тот период царило креационисти-ческое представление о возникновении живого в результате акта творения, о постоянстве и неизменности существующих живых форм. Вершиной креационизма было создание лестницы тел природы: бог - ангел - человек - животные, растения, мицеллы.

Гарвей (1578-1667) допускал, что черви, насекомые и другие животные могли зарождаться в результате гниения, но при действии особых сил. Ф. Бэкон (1561-1626) считал, что мухи, муравьи и лягушки могут самопроизвольно возникать при гниении, однако к вопросу подходил материалистически, отрицая непреодолимую грань между неорганическим и органическим. Р. Декарт (1596-1650) также признавал самопроизвольное зарождение, но отрицал участие в нем духовного начала. По Р. Декарту самозарождение - это естественный процесс, наступающий при определенных (непонятных) условиях.

Оценивая взгляды выдающихся деятелей прошлого, можно сказать, что доктрина самозарождения не подвергалась сомнению вплоть до середины XVII в. Метафизичность воззрений в XVII-XVIII вв. особенно проявлялась в представлениях о неизменности видов и органической целесообразности, которые считались результатом мудрости творца и жизненной силы.

Однако вопреки господству метафизических представлений в XVI-XVII вв. все же происходит ломка догматического мышления средневековья, обостряется борьба против духовной диктатуры церкви, возникает и углубляется процесс познания, который привел в XVIII в. к существенной аргументации против теории абиогенеза и к возбуждению интереса к эволюционизму.

Осуществив в 1665 г. ряд экспериментов с мясом и мухами, Ф. Реди (1626-1697) пришел к заключению, что личинки, возникающие в гниющем мясе, являются личинками насекомых, и что такие личинки никогда не возникнут, если мясо поместить в закрытый контейнер, недоступный для насекомых, т. е. для откладывания ими яиц. Этими экспериментами Ф. Реди опроверг доктрину самозарождения высших организмов из неживого материала. Однако в материалах и рассуждениях Ф. Реди не исключалась мысль о спонтанном самозарождении микроорганизмов и гельминтов в кишечнике человека и животных. Следовательно, сама идея самозарождения еще продолжала существовать.

В 1765 г. Л. Спаланцани (1729-1799) во многих опытах показал, что развитие микробов в растительных и мясных настоях исключается кипячением последних. Он выявил также значение времени кипячения и герметичности сосудов. Его заключение сводилось к тому, что если герметичные сосуды с настоями кипятить достаточное время и исключить проникновение в них воздуха, то в таких настоях микроорганизмы никогда не возникнут. Однако Л. Спа-ланцани не сумел убедить своих современников в невозможности самозарождения микроорганизмов. Идею самозарождения жизни продолжали защищать многие выдающиеся философы и естествоиспытатели того времени (И. Кант, Г. Гегель, X. Гей-Люссак и др.).

В 1861-1862 гг. Л. Пастер представил развернутые доказательства невозможности самозарождения в настоях и растворах органических веществ. Экспериментально он доказал, что источником загрязнений всех растворов являются бактерии, находящиеся в воздухе. Исследования Л. Пастера произвели огромное впечатление на современников. Англичанин Д. Тиндаль (1820-1893) нашел, что некоторые формы микробов очень резистентны, выдерживая нагревание до 5 часов. Поэтому он разработал метод дробной стерилизации, называемый сейчас тиндализацией.

Опровержение доктрины абиогенеза сопровождалось формированием представлений о вечности жизни. В самом деле, если самозарождение жизни невозможно, рассуждали многие философы и ученые, то тогда жизнь вечна, автономна, рассеяна во Вселенной. Но как она попала на Землю? Чтобы ответить на этот вопрос, шведский ученый Аррениус (1859-1927) в начале нашего века (1912) сформулировал гипотезу панспермии, в соответствии с которой жизнь существует во вселенной и переносится в простейших формах с одного небесного тела на другое, включая Землю, под давлением световых лучей. Сторонники этой гипотезы считали, что перенос жизни на Землю возможен и с помощью метеоритов. Однако гипотеза панспермии вызывала возражения в том плане, что в космическом пространстве действуют факторы, которые губительны для микроорганизмов и что эти факторы исключают циркуляцию микроорганизмов за пределами Земной атмосферы. Становилось все более ясным, что жизнь уникальна, что истоки жизни следует искать на Земле.

Не меньшее значение в то время имел вопрос о «естественном родстве» организмов. Речь шла о группировке организмов на основе их естественного родства, о допущении, что отдельные организмы могли произойти от общих родоначальников. Например, Ж. Бюффон считал, что могли быть «общие родоначальники» для нескольких семейств, в частности для млекопитающих, им допускалось 38 общих родоначальников. В России мысль о происхождении организмов ряда видов от общих родоначальников развивал П. С. Пал-лас (1741-1811).

Далее, привлекал внимание вопрос о факторе времени в изменении организмов. В частности, значение фактора времени для существования Земли и формирования на Земле органических форм признавали И. Кант (1724-1804), Д. Дидро, Ж. Бюффон, М. В. Ломоносов (1711-1765), А. Н. Радищев (1749-1802), А. А. Каверзнев (1748-?). И. Кант определял возраст Земли в несколько миллионов лет, а М. В. Ломоносов писал, что время, которое было необходимо для создания организмов, является большим церковного исчисления. Признание фактора времени имело несомненное значение для исторического понимания развития организмов. Однако представления о времени в тот период сводились лишь к мысли о неединовременнос-ти появления организмов разных видов, но не к признанию развития организмов во времени.

Важное значение тогда имел вопрос о последовательности природных тел. Значительный вклад в формирование идеи последовательности природных тел принадлежит Ш. Боннэ и Г. Лейбницу. В России эту идею поддерживал А. Н. Радищев. Не имея достаточных знаний об организмах, Ш. Боннэ, Г. Лейбниц и другие натуралисты того времени возродили аристотелевскую «лестницу природы» . Расположив на ней организмы по ступеням (на главной ступени оказался человек), они создали «лестницу существ», в которой имелись непрерывные переходы от Земли и камней к Богу. Ступеней в лестнице было столько, сколько есть животных. Отражая мысль о единстве и связи живых форм, об усложнении организмов, «лестница существ» в целом явилась порождением метафизического мышления, ибо ее ступени отражали простое соседство, но не результат исторического развития.

Существенное внимание в те времена привлекал вопрос о «прототипе» и единстве плана строения организмов. Допуская существование исходного существа, многие признавали единый план строения организмов. Дискуссии по этому вопросу имели важное значение для последующих представлений об общности происхождения.

Для многих большой интерес привлекал вопрос о трансформации организмов. Например, французский натуралист Б. де Маис (1696-1738) считал, что в море живут вечные семена жизни, которые дают начало морским живым формам, трансформирующимся затем в земные организмы. Отмечая позитивную роль трансформизма в эволюционизме, следует все же отметить, что он был механическим и исключал мысль о развитии, об историзме.

Наконец, центром внимания в то время был вопрос о возникновении органической целесообразности. Многие философы и натуралисты признавали, что целесообразность не изначальна, что она возникла естественным путем в результате браковки дисгармонических организмов. Обсуждение этого вопроса продвигало эволюционизм, но не достигало существенного результата, ибо появление одной формы рассматривалось независимо от появления другой.

Итак, к концу XVIII в. появились идеи, противоречащие представлениям о неизменяемости видов, но они не сложились в систему взглядов, а метафизичность мышления мешала полностью отвергнуть религию и взглянуть на природу по-новому. Первым, кто специально обратился к изучению проблем эволюции, был французский ученый Ж.-Б. Ламарк (1744-1829). Созданное им учение явилось завершением предыдущих поисков многих натуралистов и философов, пытавшихся осмыслить возникновение и развитие органического мира.

Ж.-Б. Ламарк был деистом, т. к. считал, что первопричиной материи и движения является творец, но дальнейшее развитие происходит благодаря естественным причинам. По Ламарку творец осуществил лишь первый акт, создавая самые простые формы, которые затем развивались, дав начало всему многообразию на основе естественных законов. Ламарк был также антивиталистом. Считая, что живое возникает из неживого, он рассматривал самозарождение в качестве естественного закономерного процесса, являющегося начальным пунктом эволюции. Признавая развитие от простого к сложному и опираясь на «лестницу существ», Ламарк пришел к заключению о градации, в которой он увидел отражение истории жизни, развитие одних форм из других. Ламарк считал, что развитие от простейших форм до самых сложных составляет главное содержание истории всего органического мира, включая и историю человека. Однако, доказывая эволюцию видов, Ламарк полагал, что они текучи и между ними нет границ, т. е. фактически он отрицал существование видов.

Главными причинами развития живой природы по Ламарку является врожденное стремление организмов к усложнению через совершенствование. По Ламарку, эволюция идет на основе внутреннего стремления к прогрессу, а положения об упражнениях и неупражнениях органов и о передаче по наследству приобретенных под влиянием среды признаков являются законами. Как думал Ламарк, факторы среды влияют на растения и простые организмы прямо, «вылепливая» из них, как из глины, нужные формы, т. е. изменения среды приводят к изменению видов. На животных факторы среды влияют косвенно.

Изменения среды приводят к изменению потребностей животных, изменение потребностей ведет к изменению привычек, а изменение привычек сопровождается использованием или неиспользованием тех или иных органов. В обоснование этих взглядов Ламарк приводил многие примеры. Например, форма тела змей, как он считал, является результатом привычки этих животных ползать по земле, а длинная шея жирафа обязана необходимости доставать плоды на деревьях.

Использование (упражнение) органа сопровождается его дальнейшим развитием, тогда как неиспользование органа - деградацией. Изменения, индуцированные внешними условиями (обстоятельствами), наследуются потомством, накапливаются и ведут к переходу одного вида в другой.

Исторические заслуги Ламарка заключаются в том, что ему удалось показать развитие от простого к сложному и обратить внимание на неразрывную связь организма со средой. Однако обосновать эволюционное учение Ламарку все же не удалось, ибо ему не удалось выяснить подлинные механизмы эволюции. Как отмечал К. А. Тимирязев (1843-1920), Ламарку не удалось объяснить важнейший вопрос, касающийся целесообразности организмов. Учение Ламарка содержало элементы натурфилософии и идеализма, поэтому ему не удалось убедить современников в том, что эволюция действительно имеет место в природе.


Похожая информация.


Эволюция (от лат. evolutio – развёртывание), в широком смысле – синоним развития; процессы изменения (преим. необратимого), протекающие в живой и неживой природе, а также в социальных системах. Эволюция может вести к усложнению, дифференциации, повышению уровня организации системы (прогресс) или же, наоборот, к понижению этого уровня (регресс). В узком смысле в понятие эволюция включают лишь постепенные количественные изменения, противопоставляя его развитию, как качественному сдвигу, то есть революции. В реальных процессах развития революция и эволюция (в узком смысле) служат в равной мере необходимыми компонентами и образуют противоречивое единство.

Эволюция в широком смысле этого слова обозначает постепенное изменение сложных систем во времени. Говорят об эволюции звезд и галактик, ландшафтов и биоценозов, языков и общественных систем.

Биологическая эволюция – это наследственное изменение свойств и признаков живых организмов в ряду поколений. В ходе биологической эволюции достигается и постоянно поддерживается согласование между свойствами живых организмов и условиями среды, в которой они живут. Поскольку условия постоянно меняются, в том числе и в результате жизненной активности самих организмов, а выживают и размножаются только те особи, которые наилучшим образом приспособлены к жизни в измененных условиях среды, то свойства и признаки живых существ постоянно меняются. Условия жизни на Земле бесконечно разнообразны, поэтому приспособление организмов к жизни в этих разных условиях породило в ходе эволюции фантастическое разнообразие жизненных форм.

Движущие силы эволюции, их взаимосвязь .

1. Учение Ч. Дарвина о движущих силах эволюции. Движущие силы эволюции: наследственная изменчивость, борьба за существование, естественный отбор.

2. Наследственная изменчивость. Причина наследственных изменений - изменение генов и хромосом, перекомбинация (сочетание) родительских признаков у потомства. Полезные, вредные и нейтральные наследственные изменения. Случайный, ненаправленный характер наследственных изменений. Роль наследственной изменчивости в эволюции: поставка материала для действия естественного отбора.

4. Формы борьбы за существование:

Борьба с неблагоприятными условиями неживой природы (абиотическими факторами). Влияние на любой организм неблагоприятных условий: избытка или недостатка влаги, света, повышенной или пониженной температуры воздуха. Пример: гибель или угнетение особей светолюбивого растения в условиях недостаточной освещенности;

Внутривидовая борьба за существование - взаимоотношения между особями одного вида. Наибольшая напряженность внутривидовой борьбы вследствие сходства потребностей у особей одного вида (необходимость сходной пищи, освещенности, почвы и др.).

5. Естественный отбор - процесс выживания особей с полезными в данных условиях среды наследственными изменениями и их последующее размножение. Отбор - следствие борьбы за существование, главный фактор эволюции, сохраняющий особей преимущественно с полезными в определенных условиях среды наследственными изменениями. Отбирающий фактор - условия внешней среды: высокая или низкая температура воздуха; избыток или недостаток влаги, света, пищи.

6. Механизм действия естественного отбора:

Появление у особей наследственных изменений (полезных, вредных, нейтральных);

Сохранение в результате борьбы за существование, естественного отбора преимущественно особей с полезными в данных условиях среды наследственными изменениями;

Размножение особей с полезными изменениями, увеличение их численности;

Преимущественное выживание особей с изменениями, соответствующими среде обитания, среди потомства, их размножение и передача полезных изменений части потомков;

Распространение полезных в данных условиях среды наследственных изменений.

7. Взаимосвязь движущих сил эволюции. Неоднородность особей вида вследствие наследственной изменчивости, поставляющей материал для действия борьбы за существование и для естественного отбора. Обострение взаимоотношений между особями в результате борьбы за существование. Сохранение особей преимущественно с полезными наследственными изменениями естественным отбором как следствие борьбы за существование.

Важно отметить, что основы научной теории эволюции заложил Ч. Дарвин. Как господствующее эволюционное учение дарвинизм существовал с 1859 до 1900 гг., т.е. до переоткрытия законов Г. Менделя. До конца 20-х годов текущего столетия данные генетики противопоставлялись эволюционной теории, наследственная изменчивость (мутационная, комбинативная) рассматривалась в качестве главного фактора эволюции, естественному отбору отводилась второстепенная роль. Таким образом, уже в начальный период своего становления генетика была использована для создания новых концепций эволюции. Сам по себе этот факт знаменателен: он свидетельствовал о тесной связи генетики с эволюционной теорией, но время их объединения было еще впереди. Различного рода критика дарвинизма была широко распространена вплоть до возникновения СТЭ.

Исключительную роль в развитии эволюционного учения сыграла популяционная генетика, исследующая микроэволюционные процессы в природных популяциях. Основана она выдающимися отечественными учеными С.С. Четвериковым и Н.В. Тимофеевым-Ресовским.

Начавшееся в 20-х годах объединение дарвинизма и генетики способствовало расширению и углублению синтеза дарвинизма с другими науками. 30 40-е годы принято считать периодом становления синтетической теории эволюции.

В западных странах обновленный дарвинизм, или синтетическая теория эволюции, приобрел широкое признание среди ученых уже в 40-х годах, хотя всегда были и есть отдельные крупные исследователи, занимающие антидарвиновские позиции.

Основные положения СТЭ выводятся как следствия из закона Харди-Вайнберга. Известно, что понимание сущности и значения закона вызывает у школьников затруднение, хотя его математический аппарат прост и доступен всем, кто знаком с алгеброй средней школы. Важно сосредоточить внимание учащихся не только на определении закона частоты генов и генотипов в популяции не меняются в ряду поколений, — его условиях бесконечно большая популяция, случайное свободное скрещивание особей, отсутствие мутационного процесса, естественного отбора и других факторов, — математической модели AA p2 + Aa 2 p + aaq2 = 1, — но и на практическом применении закона.

Современная наука обладает очень многими фактами, доказывающими существование эволюционного процесса. Это данные биохимии, генетики, эмбриологии, анатомии, систематики, биогеографии, палеонтологии и многих других дисциплин. Основными доказательствами на сегодняшний день являются:

данные систематики, отражающие ход эволюционных преобразований;

эмбриологические доказательства, полученные при изучении развития зародышей хордовых, подтвердившие справедливость закона зародышевого сходства К. Бэра. Кроме того, было показано, что в процессе своего индивидуального развития организм проходит стадии, отражающие филогенез данного вида. На основании этих данных был сформулирован биогенетический закон (Ф. Мюллер, Э. Геккель);

клеточное строение;

данные сравнительной анатомии;

данные, полученные при селекционной работе;

доказательства существования естественного отбора в природе (меланизация насекомых);

универсальность генетического кода;

единство организации генетического материала и реализации генетической информации;

универсальность аккумулятора энергии в живой клетке – АТФ;

генетические доказательства. Филогенетически близкие виды имеют сходство в строении генов;

сходство в строении белков организмов, относящихся к близким таксономическим группам;

экспериментальные доказательства. Моделирование эволюционных процессов на живых организмах (моделях).

Современные представления о факторах эволюции – результат развития дарвинизма, генетики и экологии. Ч. Дарвин в своем классическом труде «Происхождение видов» решил вопрос о главных движущих силах (факторах) эволюционного процесса. Он выделил следующие факторы: наследственность, изменчивость и естественный отбор. Кроме того, Ч. Дарвин указал на важную роль ограничения свободного скрещивания особей вследствие их изоляции друг от друга, возникшей в процессе эволюционного расхождения видов.

В современном представлении факторами эволюционного процесса являются наследственная изменчивость, естественный отбор, дрейф генов, изоляция, миграция особей и др. Все организмы образуют естественные группы со сходными анатомическими признаками входящих в них особей. Крупные группы последовательно делятся на более мелкие, представители которых обладают все большим количеством общих черт. Давно известно, что организмы сходного анатомического строения близки и по своему эмбриональному развитию. Однако иногда даже существенно различающиеся виды, например черепахи и птицы, на ранних стадиях индивидуального развития почти неразличимы. Эмбриология и анатомия организмов настолько тесно коррелируют между собой, что таксономисты (специалисты в области классификации) при разработке схем распределения видов по отрядам и семействам в равной степени используют данные обеих этих наук. Такая корреляция неудивительна, поскольку анатомическое строение – конечный результат эмбрионального развития.

Направление эволюции каждой систематической группы определяется взаимоотношениями между особенностями среды, в которой протекает эволюция данного таксона, и его генетической организацией, которая сложилась в ходе его предшествующей эволюции.

Дивергенция. Наиболее часто в ходе эволюции мы наблюдаем дивергенцию или расхождение признаков у видов, происходящих от общего предка. Дивергенция начинается на популяционном уровне, Она обусловлена различиями в условиях среды, в которых обитают и к которым по-разному приспосабливаются под действием естественного отбора дочерние виды. Определенную роль в дивергенции играет и дрейф генов. Дивергенция обусловливает увеличение числа видов и продолжается на уровне надвидовых таксонов. Именно дивергентной эволюцией обусловлено поразительное разнообразие живых существ.

Ярким примером дивергенции может служить изменение конечностей млекопитающих в ходе их приспособления к разным условиям среды

Конвергенция (схождение признаков) наблюдается в тех случаях, когда неродственные таксоны приспосабливаются к одинаковым условиям. О конвергенции говорят в тех случаях, когда обнаруживается внешнее сходство в строении и функционировании какого-либо органа, имеющего у сравниваемых групп живых организмов совершенно разное происхождение. Например, крыло стрекозы и летучей мыши имеют общие черты в строении и функционировании, но формируются в ходе эмбрионального развития из совершенно разных клеточных элементов и контролируются разными группами генов. Такие органы называют аналогичным. Они внешне сходны, но различны по происхождению, они не имеют филогенетической общности. Сходство в строении глаз у млекопитающих и головоногих моллюсков - другой пример конвергенции. Они возникли независимо в ходе эволюции и формируются в онтогенезе из разных зачатков.

Общие и частные приспособления. Вопросы о возможных путях эволюционного процесса разработал А. Н. Северцов. Один из главных таких путей, по Северцову, - ароморфоз (арогенез), или возникновение в ходе эволюции приспособлений, которые существенно повышают уровень организации живых организмов и открывают перед ними совершенно новые эволюционные возможности. Такими приспособлениями были, например, возникновение фотосинтеза, полового размножения, многоклеточности, легочного дыхания у предков амфибий, амниотических оболочек у предков рептилий, теплокровности у предков птиц и млепитающих и др. Ароморфозы - естественный результат эволюционных процессов. Они открывают возможности для освоения видами новых, прежде недоступных сред обитания.

Ароморфозы не возникают мгновенно, при появлении они практически неотличимы от обычных адаптаций. Лишь по мере их эволюционной «шлифовки» естественным отбором, согласования с многочисленными признаками организма и широкого распространения у многих видов они становятся ароморфозами. Например, появление легочного дыхания у древних обитателей пресных водоемов не изменило кардинально образа их жизни, уровня организации и т. д. Однако в результате возникновения этой адаптации появилась возможность для освоения суши - обширной среды обитания. Эта возможность была активно использована в последующей эволюции, появились многие тысячи видов амфибий, рептилий, птиц и млекопитающих, заполнивших разнообразные ниши обитания. Поэтому обретение позвоночными легких - крупный ароморфоз, приведший к повышению уровня организации многих видов.

Возникают и менее крупные ароморфозы. В эволюции млекопитающих их было несколько: появление шерстного покрова, живорождение, вскармливание детенышей молоком, приобретение постоянной температуры тела, прогрессивное развитие мозга и др. Высокий уровень организации млекопитающих, достигнутый благодаря перечисленным ароморфозам, позволил им освоить новые среды обитания.

Кроме такого крупного преобразования, как ароморфоз, в ходе эволюции отдельных групп возникает большое количество мелких приспособлений к определенным условиям среды. Такие приспособления А. Н. Северцов назвал идиоадаптациями.

Идиоадаптации - это приспособления организмов к окружающей среде без принципиальной перестройки биологической организации. Пример идиоадаптации - разнообразие форм у насекомоядных млекопитающих, разные виды которых, имея общий исходный уровень организации, смогли приобрести свойства, позволившие им занять разные места обитания в природе.

Пути эволюции органического мира либо сочетаются друг с другом, либо сменяют друг друга, причем ароморфозы происходят значительно реже идиоадаптации. Но именно ароморфозы определяют новые этапы в развитии органического мира. Возникнув путем ароморфоза, новые, высшие по организации группы организмов занимают другую среду обитания. Далее эволюция идет по пути идиоадаптации, иногда и дегенерации, которые обеспечивают организмам освоение новой для них среды обитания.

2.ПЕРЕМЕНЫ В БАЗИСНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ

С началом перехода к постиндустриальному обществу доля промышленности в мировом ВВП и занятости экономически активного населения уменьшается. промышленность по-прежнему остается самой главной отраслью материального производства. В промышленное производство направляются большие инвестиции, с ним связаны крупные затраты на научно-исследовательские и опытно-конструкторские работы. Промышленные товары сохраняют безусловное первенство в мировой торговле. Промышленность продолжает оказывать большое воздействие не только на экономику, но и на другие стороны общественной жизни. А территориальная структура промышленности в наибольшей мере определяет территориальную структуру всего мирового хозяйства, формируя как бы его каркас. Поэтому ее иногда не без основания продолжают называть мотором экономического развития.

Большие сдвиги происходят в отраслевой структуре мировой промышленности. На уровне мезоструктуры они выражаются прежде всего в изменении пропорции между добывающими и обрабатывающими отраслями. В течение всей второй половины ХХ в. сохранялась устойчивая тенденция к уменьшению доли добывающих отраслей в общем промышленном производстве; ныне она составляет примерно 1/10. Но изменения коснулись и внутренних пропорций в добывающей и обрабатывающей промышленности.

Добывающая промышленность представляет собой целый комплекс отраслей и подотраслей, включающий в себя не только горнодобывающую, но и лесозаготовительную промышленность. К нему относят также морской промысел, водоснабжение, охотничье-промысловое хозяйство. Примерно 3/4 суммарного выпуска продукции этой отрасли приходится на главную ее подотрасль - горнодобывающую промышленность. В свою очередь в структуре горнодобывающей промышленности 3/5 продукции (по стоимости) обеспечивает нефтегазовая промышленность, а остальную часть примерно в равных долях - угольная и рудодобывающая.

Обрабатывающая промышленность - в структурном отношении гораздо более сложный комплекс, включающий более 300 различных отраслей и подотраслей, которые принято подразделять на четыре блока: 1) производство конструкционных материалов и химических продуктов; 2) машиностроение и металлообработка; 3) легкая промышленность; 4) пищевая промышленность. В структуре обрабатывающих производств выделяют также отрасли тяжелой и легкой промышленности: если в 60-х годах соотношение между ними составляло 60:40, то в середине 90-х - уже 70:30. Первое место в структуре мировой обрабатывающей промышленности занимает машиностроение (40% всей продукции), на втором месте стоит химическая промышленность (более 15%). Далее следуют пищевая (14%), легкая промышленность (9), металлургия (7%) и другие отрасли. Соотношение между ними несколько меняется со временем, но в целом остается относительно стабильным. Зато сдвиги, происходящие в структуре каждой из перечисленных отраслей, обычно бывают более заметными. Прежде всего, это относится к машиностроению, как самой диверсифицированной отрасли промышленного производства.

Самой быстрорастущей отраслью мирового машиностроения была и остается электронная и электротехническая промышленность, доля которой во всей продукции обрабатывающей промышленности уже выросла до 1/10. Для общего машиностроения в целом характерен умеренный рост, причем в его структуре тоже происходят изменения: уменьшается производство сельскохозяйственных, текстильных машин и оборудования, а увеличивается - дорожно-транспортных машин, и в особенности роботов, конторского оборудования и т. п. Доля транспортного машиностроения в структуре обрабатывающей промышленности в целом остается относительно стабильной, но за этим также кроются внутренние различия: сокращается доля судостроения, подвижного железнодорожного состава, но в целом сохраняется доля автомобилестроения.

Наряду со сдвигами в отраслевой структуре мировой промышленности, происходят изменения и в ее территориальных пропорциях. Обычно эти изменения рассматривают на разных иерархических уровнях, начиная от сравнения Севера и Юга и кончая отдельными странами.

Задание

Открытое в 70 годах ХХ кА реликтовое излучение, то есть микроволновое фоновое излучение, стали считать экспериментальным подтверждением модели: …?

Существование в живой природе систем с различным уровнем организации является результатом исторического развития. На каждой ступени эволюции органического мира возникали специфические для нее живые системы, включавшие в себя системы предшествующих ступеней в качестве составных частей. Появление человека, «homo sapiens» (человека разумного) также стало ступенью развития органического мира, так как качественным образом изменило биосферу. С появлением человека основной способ эволюции живых организмов путем простого биологического приспособления к окружающему миру был дополнен разумным поведением и целенаправленным изменением окружающей среды.

Миллионы лет тому назад, на заре формирования человека как разумного существа, его воздействие на природу ничем не отличалось от влияния на окружающую среду других живых организмов. Однако, постепенно человек становится решающим фактором преобразования органического и неорганического мира. Именно поэтому изучению эволюционного процесса и роли в нем человека в современном естествознании придается теоретическое и практическое значение.

Одна из основных особенностей познания биологических объектов заключается в изучении их предшествующей истории, без которой невозможно глубоко понять сущность жизни как специфической формы движения материи. Созданная на основе исторического метода эволюционная теория, в задачу которой входит изучение факторов, движущих сил и закономерностей органической эволюции, по праву занимает центральное место в системе наук о живом. Она представляет собой обобщающую биологическую дисциплину. Практически нет таких отраслей биологии, для которых эволюционная теория не давала бы методологических принципов исследования.

Эволюционная теория возникла не сразу, а прошла длительный путь становления от научной идеи до научной теории. История идеи развития в биологии разделяется на пять основных этапов. Каждый из этих этапов связан с доминированием определенных мировоззренческих установок, накоплением доказательств самого факта эволюции, формированием первых эволюционных представлений, а затем и эволюционных концепций, крупными открытиями и обобщениями в изучении причин и закономерностей эволюции и, наконец, созданием развитой, фактически обоснованной современной научной теории эволюции.

СТАНОВЛЕНИЕ ИДЕИ РАЗВИТИЯ В БИОЛОГИИ

Первый этап охватывает период от античной натурфилософии до возникновения первых биологических дисциплин в науке Нового времени. Он характеризуется сбором сведений об органическом мире и господством креационистских (представление о создании всего мира и живого Богом) и наивно трансформистских представлений о происхождении органического многообразия форм. Это был период предыстории эволюционной идеи. Представления наивного трансформизма о самозарождении живых существ, возникновении сложных организмов путем случайного сочетания отдельных органов, при котором нежизнеспособные сочетания вымирают, а удачные сохраняются (Эмпедокл), внезапном превращении видов (Анаксимен) не могут рассматриваться даже как прообраз эволюционного подхода к познанию живой природы.

Более интересна концепция Аристотеля, который занимался систематическим изучением животных и описал более 500 видов, расположив их в определенном порядке: от наиболее простых ко все более сложным. Намеченная Аристотелем последовательность тел природы начинается с неорганических тел и через растения движется к прикрепленным животным -губкам и асцидиям, а затем к свободно-подвижным морским организмам. Так появилось первое представление о лестнице живых существ.

Во всех телах природы Аристотель различал две стороны -материю, обладающую различными возможностями, и форму, под влиянием которой реализуется данная возможность материи. Также он различал три вида души: растительную, или питающую, присущую растениям, животным и человеку; чувствующую, свойственную животным и человеку; и разумную, которой наделен только человек.

На протяжении всего периода античности и Средневековья труды Аристотеля были основой представлений о живой природе и пользовались безусловным авторитетом.

В течение этого периода подобные взгляды прекрасно уживались с мифологическими и религиозными представлениями о том, что органический мир и Вселенная в целом остаются неизменными после божественного сотворения. Именно такова была официальная точка зрения христианской церкви в Европе в Средние века. Характерной чертой этого периода является описание существующих видов растений и животных, попытки их классификации, которые в большинстве своем носили чисто формальный (например, по алфавиту) или прикладной (полезные - вредные) характер. Было создано множество систем классификаций животных и растений, в которых за основу произвольно принимались самые разные признаки.

Интерес к биологии заметно усилился в эпоху Великих географических открытий и развития товарного производства. Интенсивная торговля и открытие новых земель расширяли сведения о животных и растениях. Потребность в упорядочении быстро накапливающихся знаний привела к необходимости их систематизации. Так начался второй период в истории идеи развития. Он связан с систематизацией накопленного материала и построением первых таксономических классификаций. На смену наивным трансформистским представлениям пришла метафизическая концепция неизменности видов. Умами большинства биологов этого периода владели «естественная теология» и философское учение о неизменной сущности вещей.

В это время большой вклад в создание системы природы внес выдающийся шведский естествоиспытатель Карл Линней. Он описал более 8000 видов растений, установил единообразную терминологию и порядок описания видов. Он объединил сходные виды в роды, сходные роды - в отряды, а отряды - в классы. Таким образом, в основу своей классификации он положил принцип иерархичности, то есть соподчиненности таксонов - систематических единиц того или иного ранга в биологии. В системе Линнея самым крупным таксоном был класс, самым мелким - вид. Это был чрезвычайно важный шаг на пути к установлению естественной системы. Линней закрепил использование в науке бинарной, то есть двойной, номенклатуры для обозначения видов. С тех пор каждый вид называется двумя словами: первое слово означает род и является общим для всех входящих в него видов, второе слово - собственное видовое название.

Линней создал самую совершенную для того времени систему органического мира, включив в нее всех известных тогда животных и все известные растения. Правда, произвольность в выборе признаков для классификации привела его к ряду ошибок.

КОНЦЕПЦИЯ РАЗВИТИЯ Ж.-Б.ЛАМАРКА

Первая попытка построения целостной концепции развития органического мира была предпринята французским естествоиспытателем Ж.-Б. Ламарком. В отличие от многих своих предшественников теория эволюции Ламарка опиралась на факты. Мысль о непостоянстве видов возникла у него вследствие глубокого изучения строения растений и животных. В основу его эволюционной теории положено представление о развитии, постепенном и медленном, от простого к сложному, и о роли внешней среды в преобразовании организмов.

Ламарк считал, что первые самозародившиеся организмы дали начало всему многообразию ныне существующих органических форм. К этому времени в науке уже достаточно утвердилось представление о «лестнице существ» как последовательном ряде независимых, неизменных, созданных творцом форм. В градации этих форм Ламарк видел отражение истории жизни, реального процесса развития одних форм из других. Развитие от простейших до самых совершенных организмов - главное содержание истории органического мира. Человек - тоже часть этой истории, он развился из обезьяноподобных предков. Это было поистине революционное представление в то время (книга Ламарка «Философия зоологии» вышла в 1809 г.).

Описывая различные классы животных, Ламарк искал переходные формы между ними, хотя и допускал неизбежные ошибки в силу недостаточного развития в то время сравнительной анатомии. Наличие таких промежуточных видов должно было служить главным доказательством эволюции органического мира. В изменяемости видов его убеждали многочисленные примеры изменения растений и животных под влиянием окультуривания и одомашнивания, при переселении организмов в другие места обитания с иными условиями существования, а также факты межвидовой гибридизации.

Отсюда он сделал вывод, что раз виды изменчивы, то реальных границ между ними в природе нет и видов как таковых тоже нет; природа представляет собой непрерывную цепь изменяющихся индивидуумов, которые лишь ради удобства ученых выделяются в отдельные группы - виды.

Главной причиной эволюции Ламарк считал присущее живой природе стремление к усложнению и совершенствованию своей организации. Оно проявляется во врожденной способности каждого индивида к усложнению организма. Вторым фактором эволюции он называл влияние внешней среды: пока она не изменяется, виды постоянны, как только она становится иной, виды также меняются. При этом признаки, приобретенные таким образом, наследуются.

В зависимости от организации живых существ есть две формы приспособительной изменяемости видов под влиянием внешней среды. Растения и низшие животные прямо подвергаются ее действию, она способна очень легко вылепить из организма нужную форму. На высших животных среда действует косвенным образом: перемена внешних условий влечет за собой изменение потребностей животных и, следовательно, приводит к изменению привычек, направленных на удовлетворение этих потребностей. В свою очередь это приводит к активному или пассивному функционированию тех или иных органов. Более активная деятельность соответствующего органа влечет его интенсивное развитие, а пассивное состояние - отмирание. Именно так, в результате упражнений, у жирафа появилась его длинная шея. Вызванные таким образом изменения передаются по наследству, потомство продолжает развиваться в том же направлении, и один вид превращается в другой.

Таким образом, для ламаркизма характерны два основных методологических признака: телеологизм - как присущее организмам стремление к совершенствованию; и организмоцентризм - признание организма элементарной единицей эволюции, прямо приспосабливающейся к изменению внешних условий и передающей эти изменения по наследству.

Также важно отметить, что Ламарк особо выделял значение психического фактора в процессах приспособления высших животных, которые хотят, стремятся к своему изменению.

Теория Ламарка не получила признания современников. В это время наука еще не была готова к принятию идеи эволюционных преобразований. К тому же доказательства причин изменяемости видов, приводимые Ламарком, не были достаточно убедительными.

ТЕОРИЯ КАТАСТРОФ Ж. КЮВЬЕ

В первой четверти XIX века были достигнуты большие успехи в таких областях биологический науки, как сравнительная анатомия и палеонтология. Основные заслуги в развитии этих областей биологии принадлежат французскому ученому Жоржу Леопольду Кювье, который прославился прежде всего своими исследованиями по сравнительной анатомии. Он систематически проводил сравнение строения и функций одного и того же органа или целой системы органов через все разделы животного царства. Исследуя строение органов позвоночных животных, он установил, что все органы животного представляют собой части единой целостной системы. Вследствие этого строение каждого органа закономерно соотносится со строением всех других. Ни одна часть тела не может изменяться без соответствующего изменения других частей. Это означает, что каждая часть тела отражает принципы строения всего организма. Так, если у животного имеются копыта, вся его организация отражает травоядный образ жизни: зубы приспособлены к перетиранию грубой растительной пищи, челюсти имеют определенную форму, желудок многокамерный, кишечник очень длинный и т.д. Соответствие строения органов животных друг другу Кювье назвал принципом корреляций (соотносительности). Руководствуясь принципом корреляций, Кювье успешно применил полученные знания в палеонтологии. Он был способен восстановить целостный облик давно исчезнувшего организма по сохранившимся до наших дней отдельным фрагментам.

В процессе своих исследований Кювье заинтересовался историей Земли, земных животных и растений. Он потратил многие годы на ее изучение, сделав при этом много ценных открытий. В результате проделанной им огромной работы он пришел к трем безусловным выводам:

Земля на протяжении своей истории изменяла свой облик;

Одновременно с изменением Земли изменялось и ее население;

Изменения земной коры происходили и до появления живых существ.

Совершенно бесспорным для Кювье было убеждение в невозможности возникновения новых форм жизни. Он доказал, что современные нам виды живых организмов не изменились, по крайней мере, со времени фараонов. Вытекающая отсюда оценка возраста Земли казалась по тем временам невообразимо огромной. Но самым существенным возражением против теории эволюции Кювье считал видимое отсутствие переходных форм между современными животными и теми, останки которых он находил при раскопках.

Однако многочисленные палеонтологические данные неопровержимо свидетельствовали о смене форм животных на Земле. Реальные факты вступали в противоречие с библейской легендой. Первоначально сторонники неизменности живой природы объясняли такое противоречие очень просто:

вымерли те животные, которых Ной не взял в свой ковчег во время всемирного потопа. Но ненаучность ссылок на библейский потоп стала очевидной, когда была установлена разная степень древности вымерших животных. Тогда Кювье выдвинул теорию катастроф. Согласно этой теории причиной вымирания были периодически происходившие крупные геологические катастрофы, уничтожавшие на больших территориях животных и растительность. Потом территории заселялись видами, проникавшими из соседних областей. Последователи и ученики Кювье, развивая его учение, пошли еще дальше, утверждая, что катастрофы охватывали весь земной шар. После каждой катастрофы следовал новый акт божественного творения. Таких катастроф и, следовательно, актов творения они насчитывали 27.

Теория катастроф получила широкое распространение. Однако целый ряд ученых выражали свое критическое отношение к ней. Бурным спорам между приверженцами неизменности видов и сторонниками стихийного эволюционизма положила конец глубоко продуманная и фундаментально обоснованная теория образования видов, созданная Ч. Дарвином и А. Уоллесом.

ЭВОЛЮЦИОННАЯ ТЕОРИЯ Ч.ДАРВИНА

В ходе изложения предыдущих тем мы довольно часто пользовались понятием «эволюция», которое чаще всего отождествлялось с развитием. В современной науке это понятие получило очень широкое распространение, но во всех случаях использования его под эволюцией подразумевается процесс длительных, постепенных, медленных изменений, которые в конечном итоге приводят к изменениям коренным, качественным, завершающимся возникновением новых организмов, структур, форм и видов. Именно такое понимание термина «эволюция» было дано английским биологом Чарльзом Дарвином в его эволюционной теории.

Идея постепенного и непрерывного изменения всех видов растений и животных высказывалась многими учеными задолго до Дарвина. Но с опубликованием его труда «Происхождение видов путем естественного отбора» в 1859 г. начался третий период становления идеи развития в биологии. Это было революционным переломом в биологии, утвердившим в ней окончательно идею развития и превратившим ее в руководящий метод научного познания. Но это было и время острой идейной борьбы между различными эволюционными течениями.

Для признания эволюционной идеи и утверждения дарвинизма, кроме фактических доказательств эволюции, требовалось показать, как осуществляется эволюция и в чем заключаются причины объективной целесообразности живого. Эти проблемы были решены Дарвином в учении о естественном отборе.

Опираясь на огромный фактический материал и практику селекционной работы по выведению новых сортов растений и пород животных, Дарвин пришел к выводу, что в природе любой вид животных и растений стремится к размножению в геометрической прогрессии. В то же время число взрослых особей каждого вида остается относительно постоянным. Следовательно, в природе происходит борьба за существование, в результате которой накапливаются признаки, полезные для организма и вида в целом, а также образуются новые виды и разновидности. Остальные организмы гибнут в неблагоприятных условиях среды. Таким образом, борьба за существование -это совокупность многообразных и сложных взаимоотношений, существующих между организмами и условиями среды. Она бывает трех типов: межвидовой, при которой успех одного вида означает неуспех другого; внутривидовой, наиболее острой в силу того, что у особей одного вида одинаковые потребности; и борьбой с неблагоприятными условиями внешней среды. В борьбе за существование выживают и оставляют потомство индивидуумы и особи, обладающие таким комплексом признаков и свойств, который позволяет наиболее успешно конкурировать с другими. Таким образом, в природе происходят процессы избирательного уничтожения одних особей и преимущественного размножения других - естественный отбор, или выживание наиболее приспособленных. При изменении условий внешней среды полезными для выживания могут оказаться какие-то иные, чем прежде, признаки. В результате меняется направление отбора, перестраивается структура вида, благодаря размножению широко распространяются новые признаки - появляется новый вид. Полезные признаки сохраняются и передаются последующим поколениям, так как в живой природе действует фактор наследственности, обеспечивающий устойчивость видов.

Однако в природе нельзя обнаружить два одинаковых, совершенно тождественных организма. Все многообразие живой природы является результатом процесса изменчивости, то есть превращений организмов под влиянием внешней среды. Дарвин считал возникновение новых видов длительным процессом накопления полезных индивидуальных изменений, увеличивающихся из поколения в поколение. Это связано с тем, что жизненные ресурсы (пища, места для размножения и т.д.) всегда ограниченны. Поэтому самая ожесточенная борьба за существование происходит между наиболее сходными особями. Напротив, между различающимися в пределах одного вида особями одинаковых потребностей меньше, а конкуренция слабее. Поэтому несхожие особи имеют преимущества в оставлении потомства. С каждым поколением различия становятся все более выраженными, а промежуточные формы, сходные между собой, вымирают. Так из одного вида образуется несколько новых. Явление расхождения признаков, ведущее к видообразованию, Дарвин называл дивергенцией. Нарастающая дивергенция ранее сходных форм способствует постепенному увеличению многообразия живого путем превращения внутривидовых форм в виды, видов - в роды и т.д.

Дарвин различает два типа изменчивости. Первый он называет «индивидуальной» или «неопределенной» изменчивостью. Она передается по наследству. Второй тип он характеризует как «определенную» или «групповую» изменчивость. Ей подвержены те группы организмов, которые оказываются под воздействием определенного фактора внешней среды. Позднее в биологии неопределенные изменения стали называть мутациями, а «определенные» - модификациями.

Тем самым, с точки зрения теории эволюции, все многообразие живой природы является результатом действия трех взаимосвязанных факторов: наследственности, изменчивости и естественного отбора. Эти выводы основаны на трех основных принципах данной теории:

В любой популяции, виде живых организмов наблюдается изменчивость составляющих ее особей;

Некоторые из этих изменений унаследованы от родительских особей, получены от рождения, а другие являются результатом приспособления к окружающей среде, приобретены в течение жизни;

Рождается, как правило, значительно большее число организмов, чем доживает до размножения: многие гибнут на стадии семян, зародышей, птенцов, личинок. Выживают лишь те организмы, которые получили по наследству полезный в данных условиях жизни признак.

Таким образом, Дарвин последовательно решил проблему детерминации органической эволюции в целом, объяснил целесообразность строения живых организмов как результат естественного отбора. Он показал, что эта целесообразность всегда носит относительный характер, так как любое приспособление оказывается полезным только в конкретных условиях существования. Этим он нанес серьезный удар идеям телеологии в естествознании.

Заслугой Дарвина было признание также того факта, что под действие отбора могут попасть как отдельные особи, так и целые группы. Тогда отбор сохраняет признаки и свойства, невыгодные для отдельной особи, но полезные для группы особей или вида в целом. Примером такого приспособления служит жало пчелы -ужалившая пчела оставляет жало в теле врага и погибает, но гибель особи способствует сохранению пчелиной семьи. Это привело к появлению популяционного мышления в биологии, являющегося основой современных представлений.

Слабым местом в теории Дарвина были представления о наследственности, которые подвергались серьезной критике его противниками. Действительно, если эволюция связана со случайным появлением изменений и наследственной передачей приобретенных признаков потомству, то каким образом они могут сохраниться и даже усиливаться в дальнейшем? Ведь в результате скрещивания особей с полезными признаками с другими особями, которые ими не обладают, они передадут эти признаки в ослабленном виде. В конце концов в течение ряда поколений случайно возникшие изменения должны ослабнуть, а затем и вовсе исчезнуть. Сам Дарвин вынужден был признать эти доводы убедительными, при тогдашних представлениях о наследственности их невозможно было опровергнуть. Вот почему в последние годы жизни он стал все больше подчеркивать воздействие на процесс эволюции направленных изменений, происходящих под влиянием определенных факторов внешней среды.

В дальнейшем были выявлены и некоторые другие недостатки теории Дарвина, касающиеся основных причин и факторов органической эволюции. Эта теория нуждалась в дальнейшей разработке и обосновании с учетом последующих достижений всех биологических дисциплин.

Теорией Дарвина завершились длительные поиски естествоиспытателей, которые пытались найти объяснение многим чертам сходства, наблюдаемым у организмов, относящихся к разным видам. Дарвин объяснил это сходство родством и показал, как идет образование новых видов, как происходит эволюция - направленный процесс, связанный с выработкой приспособлений по мере прогрессивного усложнения строения и функций животных и растений.

С возникновением дарвинизма на первый план биологических исследований выдвинулись четыре задачи: 1) сбор доказательств самого факта эволюции; 2) накопление данных об адаптивном характере эволюции и единстве организационных и приспособительных признаков; 3) экспериментальное изучение взаимодействия наследственной изменчивости, борьбы за существование и естественного отбора как движущей силы эволюции; 4) изучение закономерностей видообразования и макроэволюции.

В результате развития эволюционной теории во второй половине XIX века основные успехи были достигнуты в двух областях. Окончательно был доказан принцип эволюции на фактическом материале из разных отраслей эволюционной биологии, сформировавшихся на основе объединения классических наук (палеонтологии, морфологии, физиологии, эмбриологии, систематики) с дарвинизмом. Было показано, что эволюция имеет адаптивный характер, и положено начало изучению отбора как причины формирования адаптации. В итоге две поставленные перед дарвинизмом задачи в целом оказались выполненными.

Но как ни велико было значение этих исследований для укрепления эволюционной теории, они лишь косвенным образом доказывали правильность дарвиновской концепции причин эволюции. Следует отметить, что довольно длительное время слабой была экспериментальная база дарвинизма, которая позволила бы убедительно доказать, что отбор действительно является основной движущей силой адаптациогенеза и видообразования. Это обстоятельство во многом способствовало формированию широкого фронта антидарвинизма, отрицавшего творческую роль отбора. Философскую основу всех антидарвинистских концепций составляли самые разные течения от механистического материализма до объективного идеализма. Антидарвинизм второй половины XIX - начала XX веков был представлен двумя главными течениями - неоламаркизмом и концепциями телеогенеза. Борьба с ними, а также поиск экспериментальных доказательств отдельных факторов естественного отбора составили содержание четвертого этапа в истории становления идеи развития в биологии. Он продолжался до начала 30-х годов XX века.

АНТИДАРВИНИЗМ КОНЦА XIX-НАЧАЛА XX ВЕКА

Критика дарвинизма велась со дня его возникновения. Многим ученым не нравилось, что изменения, по Дарвину, могут идти во всех возможных направлениях и случайным образом. Так, одна из критических точек зрения утверждала, что изменения происходят не беспорядочно и случайно, а по законам форм. Другая придерживалась идеи, в соответствии с которой взаимопомощь являлась более важным фактором эволюции, чем борьба.

Рост антидарвинистских настроений имел вполне объективные причины - из поля зрения дарвинистов выпал ряд фундаментальных, важных для эволюционной теории вопросов, ради которых она создавалась. Это причины сохранения в историческом развитии системного единства организма, механизмы включения в эволюционный процесс онтогенетических перестроек, неравномерность темпов эволюции, причины макро- и прогрессивной эволюции, крупномасштабные события в эпохи биотических кризисов.

Неоламаркизм - первое крупное антидарвинистское учение, возникшее еще в конце XIX века - основывался на признании адекватной изменчивости, возникающей под непосредственным или косвенным влиянием средовых факторов и обеспечивающей прямое приспособление организма к ним;

на идее наследования приобретенных таким образом признаков; на негативном отношении к созидательной роли естественного отбора.

Неоламаркизм не был единым течением, а объединял в себе несколько направлений, каждое из которых пыталось развить ту или иную сторону учения Ламарка.

Механоламаркизм (Г. Спенсер, Т. Эймер) - концепция эволюции, согласно которой целесообразная организация создается путем прямого или «функционального» приспособления (упражнения органов по Ламарку). Вся сложность эволюционного процесса, таким образом, сводилась к простой теории равновесия сил, по существу, заимствованной из ньютоновской механики.

Психоламаркизм (А. Паули, А. Вагнер) - основу этого направления составила идея Ламарка о значении в эволюции животных таких факторов, как привычки, усилия воли, сознание, присущее не только животным, но и составляющим их клеткам. Таким образом, эволюция представлялась как постепенное усиление роли сознания в развитии от примитивных существ до разумных форм жизни, что развивало учение о панпсихизме (всеобщей одушевленности).

Ортоламаркизм (К. Нэгели, Э. Коп, Г. Осборн) - совокупность гипотез, развивающих идею Ламарка о стремлении организмов к совершенствованию как внутренне присущей всему живому движущей силе эволюции. Именно оно определяло прямолинейность эволюции.

Неоламаркистские концепции утратили свое влияние к 30-м годам нашего столетия, хотя отдельные их идеи находили поддержку еще в начале 70-х годов. Крупнейшим проявлением неоламаркизма в отечественном естествознании была концепция Т.Д. Лысенко о наследственности как свойстве всего организма.

Телеологическая концепция эволюции (телеогенез) идейно была тесно связана с ортоламаркизмом, так как исходила из все той же идеи Ламарка о внутреннем стремлении всех живых организмов к прогрессу. Наиболее видным представителем телеологического направления стал русский естествоиспытатель, основатель эмбриологии Карл Бэр.

Своеобразную модификацию этой концепции представляли собой взгляды сторонников салыпационизма, заложенного в 1860 - 1870-х годах А. Зюссом и А. Келликером. По их мнению, уже на заре появления жизни возник весь план будущего развития, а влияние внешней среды определяло лишь частные моменты эволюции. Все крупнейшие эволюционные события -от возникновения новых видов до смены биот в геологической истории Земли - происходят в результате скачкообразных изменений, прежде всего преобразований эмбриогенеза (сальтациях, или макромутациях). По сути дела, это был катастрофизм, усиленный дополнительными аргументами. Эти взгляды существуют до сегодняшнего дня.

Ценность этого направления в том, что оно обращает внимание на специфичность макроэволюции, на значение внутренней конституции организмов как факторов, ограничивающих возможные пути дальнейшего эволюционного развития, а также на неравномерность темпов эволюции и возможность замены в ее ходе одних факторов другими.

В начале XX века возникает генетика - учение о наследственности и наследуемости измененных признаков. Основателем ее считается австрийский естествоиспытатель Г. Мендель, который ставил свои опыты еще в 1860-х годах. Но датой рождения генетики считается 1900 г. - в это время Г. де Фриз, К. Корренс, Э. Чермак вторично установили правила наследования признаков в поколениях гибридных форм, открытые Менделем в 1865 г.

Первые генетики противопоставили данные своих исследований дарвинизму, в результате чего в эволюционной теории возник глубокий кризис. Выступление генетиков против учения Дарвина вылилось в широкий фронт, объединяющий несколько течений - мутационизм, гибридогенез, преадаптационизм и др. -под общим названием генетического антидарвинизма. Открытие устойчивости генов трактовалось как их неизменность, что способствовало распространению антиэволюционизма (У. Бетсон).

Мутационная изменчивость отождествлялась с эволюционными преобразованиями, что исключало необходимость в процессе отбора как главной причины эволюции.

Венцом этих построении была теория номогенеза Л.С. Берга, созданная в 1922 г. Основу ее составила идея, что эволюция есть запрограммированный процесс реализации внутренних, имманентных живому закономерностей. Берг считал, что организму присуща внутренняя сила неизвестной природы, действующая целенаправленно, независимо от внешней среды, в сторону усложнения организации. В доказательство этого Берг приводил много данных по конвергентной и параллельной эволюции разных групп растений и животных.

Из всех этих споров становилось все более очевидным, что генетика и дарвинизм должны найти общий язык.

План семинарского занятия (2 часа)

1. Проникновение идеи развития в биологию.

2. Концепция эволюции Ж.-Б.Ламарка и ее роль в биологии.

3. Эволюционное учение Ч.Дарвина.

4. Основные направления антидарвинизма конца XIX - начала XX в.

Темы докладов и рефератов

1. Ж.Кювье и его место в истории биологии.

2. Ч. Дарвин о происхождении человека.

ЛИТЕРАТУРА

1. Афанасьев В.Г. Мир живого: системность, эволюция и управление. М., 1986.

2. Дарвинизм: история и современность. Л., 1988.

3. Захаров В.Б.. Мамонтов С.Г., Сивоглазов В.И. Биология: общие закономерности. М., 1996.

4. История биологии с древнейших времен до начала XX века. М., 1972.

5. История биологии с начала XX века до наших дней. М., 1975.

6. Крисаченко B.C. Философский анализ эволюционизма. Киев, 1990.

7. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. М., 1996.

8. Тимофеев-Ресовский Н.В., Воронцов Н.Н., Яблоко» А.В. Краткий очерк теории эволюции. М., 1969.

9. Философские проблемы естествознания. М., 1985.

10. Югай Г.А. Общая теория жизни. М., 1985.

7.2.1. Доказательства эволюции органического мира

Доказательства эволюции - свидетельства общности происхождения всех организмов от единых предков, изменяемости видов и возникно­вения одних видов от других

Доказательства эволюции подразделяют на группы.

1. Цитологические. Все организмы (кроме вирусов) состоят из кле­ток, которые имеют общее строение и функции.

2. Биохимические. Все организмы состоят из одинаковых химиче­ских веществ: белков, нуклеиновых кислот и т.д.

3. Сравнительно-анатомические:

единство строения организмов в пределах типа, класса, рода и т.д. На­пример, для всех представителей класса млекопитающих характерны высокоразвитая кора больших полушарий переднего мозга, внутриу­тробное развитие, выкармливание детенышей молоком, волосяной покров, четырехкамерное сердце и полное разделение артериальной и венозной крови, теплокровность, легкие альвеолярного строения:

гомологичные органы - органы, имеющие единое происхождение независимо от выполняемых функций. Например, конечности позво­ночных, видоизменения корня, стебля и листьев у растений;

рудименты - остатки имевшихся у предков органов (признаков). Например, человек имеет такие рудименты, как копчик, червеобраз­ный отросток (аппендикс), третье веко, зубы мудрости, мышцы, дви­гающие ушную раковину, и др.;

атавизмы - внезапное появление у отдельных особей органов (признаков) их предков. Например, рождение людей с хвостом, гу­стым волосяным покровом тела, дополнительными сосками, сильно развитыми клыками и др.

4. Эмбриологические доказательства. К ним относят: сходство гаме- тогенеза, наличие в развитии одноклеточной стадии - зиготы; сход­ство зародышей на ранних этапах развития; связь между онтогенезом и филогенезом.

Зародыши организмов многих систематических групп сходны меж­ду собой, причем, чем ближе организмы, тем до более поздней стадии развития зародыша сохраняется это сходство (рис. 7.8). На основе этих наблюдений Э. Геккель и Ф. Мюллер сформулировали биогенетиче­ский закон - каждая особь на ранних стадиях онтогенеза повторяет не­которые основные черты строения своих предков. Таким образом, онто­генез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития).




6. Реликтовые доказательства. В настоящее время существуют по­томки переходных форм (рис. 7.11), например, кистеперая рыба лати- мерия - потомок переходной формы между рыбами и земноводными, гаттерия - потомок переходной формы между земноводными и пре­смыкающимися; утконос - потомок переходной формы между пре­смыкающимися и млекопитающими


7. Биогеографические доказательства. Сходство и различие организ­мов, обитающих в разных биогеографических зонах. Например, сум­чатые млекопитающие сохранились только в Австралии.

7.2.2. Происхождение жизни

Развитие взглядов на происхождение жизни. С глубокой древности и по сей день человечество ищет ответ па вопрос о происхождении жизни на Зем­ле. Ранее считали, что возможно самозарождение жизни из неживой материи. По мнению ученых Средневековья, рыбы могли зарождаться из ила, черви - из почвы, мыши - из грязных тряпок, мухи - из гнилого

мяса. В XVII в. итальянский ученый Ф. Реди провел оригинальный эксперимент: он по­местил кусочки мяса в стеклянные сосуды, часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах (рис. 7.12). В се­редине XIX в. французский микробиолог Л. Пастер поместил простерилизованный бульон в колбу с длинным узким горлыш­ком Б-образной формы. Бактерии и другие находящиеся в воздухе организмы оседа­ли под действием силы тяжести в нижней изогнутой части горлышка и не достигали бульона, тогда как воздух поступал в саму колбу (рис. 7.13).


Эти и другие сходные опыты убедитель­но доказывали, что в современную эпо­ху живые организмы происходят только от других живых организмов. Невозмож­ность самозарождения жизни из неживо­го назвали принципом Реди. В результате закономерен вопрос о происхождении первых живых организмов.

Многообразие подходов к вопросу о происхождении жизни. По во­просу происхождения жизни так же, как и по вопросу о сущности жизни, среди ученых нет единого мнения. Существует несколько под­ходов к решению вопроса о происхождения жизни, которые тесно пе­реплетаются между собой. Классифицировать их можно следующим образом.

1) по принципу, что идея, разум первичны, а материя вторична (идеалистические гипотезы) или материя первична, а идея, разум вто­ричны (материалистические гипотезы);

2) по принципу, что жизнь существовала всегда и будет существо­вать вечно (гипотезы стационарного состояния) или жизнь возникает на определенном этапе развития мира;

3) по принципу, что живое только от живого (гипотезы биогене­за) или возможно самозарождение живого из неживого (гипотезы абиогенеза)",

4) по принципу, что жизнь возникла на Земле или была занесена из космоса (гипотезы панспермии).

Рассмотрим наиболее значимые из гипотез.

Креационизм. Согласно этой гипотезе жизнь была создана Творцом. Творец - это Бог, Идея, Высший разум или др.

Пшотеза стационарного состояния. Жизнь, как и сама Вселенная, су­ществовала всегда и будет существовать вечно, ибо не имеющее начала не имеет и конца. Вместе с тем существование отдельных тел и обра­зований (звезд, планет, организмов) ограничено во времени: они воз­никают, рождаются и погибают. В настоящее время эта гипотеза имеет в основном историческое значение, так как общепризнанной является «теория Большого взрыва», согласно которой Вселенная существует ограниченное время; она образовалась из одной точки около 15 млрд лет назад.

Пшотеза панспермии. Жизнь была занесена на Землю из космоса и прижилась здесь после того, как на Земле сложились благоприятные для этого условия. Это предположение высказал немепкий ученый Г. Рихюр в 1865 г., окончательно сформулировал шведский ученый С. Аррениус в 1895 г. С метеоритами и космической пылью на Зем­лю могли попасть споры бактерий, которые в значительной степени устойчивы к радиации, вакууму, низким температурам Решение во­проса о том, как возникла жизнь в космосе в силу объективных труд­ностей отодвигается на неопределенное время. Она могла быть созда­на Творцом, существовать всегда или возникнуть из неживой материи. В последнее время среди ученых появляется все больше сторонников гипотезы панспермии.

Пшотеза абиогенеза (самозарождения живого из неживого и последу­ющей биохимической эволюции). В 1924 г. русский биохимик А. И. Опа­рин, а позднее в 1929 г английский ученый Дж. Холдейн высказали предположение, что живое возникло на Земле из неживой материи в результате химической эволюции - сложных химических преобра­зований молекул. Этому событию благоприятствовали сложившиеся в то время на Земле условия.

Согласно этой гипотезе в процессе становления жизни на Земле можно выделить четыре этапа -

1) синтез низкомолекулярных органических соединений из газов первичной атмосферы;

2) полимеризация мономеров с образованием цепей белков и ну­клеиновых кислот;

3) образование фазово-обособленных систем органических ве­ществ, отделенных от внешней среды мембранами;

4) возникновение простейших клеток, обладающих свойствами жи­вого, в том числе репродуктивным аппаратом, осуществляющим пере­
дачу дочерним клеткам всех химических и метаболических свойств родительских клеток.

Первые три этапа относят к периоду химической эволюции, с чет­вертого - начинается биологическая эволюция.


Представления о возможноеги химической эволюции вещества подтверждены рядом модельных экспериментов. В 1953 г. американ­ский химик С. Миллер и физик Г. Юри в лабораторных условиях ими­тировали состав первичной атмосферы Земли, состоявшей из метана, аммиака и паров воды, и, воздействуя на нее искровым разрядом, по­лучили простые органические вещества - аминокислоты глицин, ала­нин и др. (рис. 7.14). Тем самым была доказана принципиальная воз­можность абиогенного синтеза органических соединений (но не живых организмов) из неорганических веществ

Таким образом, органические вещества могли создаваться в первич­ном океане из простых неорганических соединений. В результате на­копления в океане органических веществ образовался так называемый «первичный бульон». Затем, объединяясь, белки и другие органические молекулы образовали капли коацерватов, которые служили прообразом
клеток Капли коацерватов подвергались естественному отбору и эво­люционировали. Первые организмы были гетеротрофными. По мере расходования запасов «первичного бульона» возникли автотрофы.

Следует отметить, что с точки зрения теории вероятности, вероят­ность синтеза сверхсложных биомолекул при условии случайных сое­динений их составных частей крайне низка.

В.И. Вернадский о происхождении и сущности жизни и биосфе­ры. В.И. Вернадский изложил свои взгляды о происхождении жизни в следующих тезисах.

1. Начала жизни в том космосе, который мы наблюдаем, не было, поскольку не было начала этого космоса. Жизнь вечна, поскольку ве­чен космос, и всегда передавалась путем биогенеза.

2. Жизнь, извечно присущая Вселенной, явилась новой на Земле, ее зародыши приносились извне постоянно, но укрепились на Земле лишь при благоприятных для этого возможностях.

3. Жизнь на Земле была всегда. Время существования планеты - это лишь время существования на ней жизни. Жизнь геологически (планетарно) вечна. Возраст планеты неопределим.

4. Жизнь никогда не была чем-то случайным, ютящимся в каких-то отдельных оазисах. Она была распространена всюду и всег­да живое вещество существовало в образе биосферы.

5. Древнейшие формы жизни - дробянки - способны выпол­нять все функции в биосфере. Значит, возможна биосфера, состоящая из одних прокариот. Вероятно, что такова она и была в прошлом.

6. Живое вещество не могло произойти от косного. Между этими двумя состояниями материи нет никаких промежуточных ступеней. Напротив, в результате воздействия жизни происходила эволюция земной коры.

Таким образом, необходимо признать, что к настоящему времени ни одна из существующих гипотез о происхождении жизни прямыми доказательствами не располагает, и у современной науки нет одно­значного ответа на вопрос о происхождении жизни.

7.2.3. Краткая история развития органического мира

Возраст Земли около 4,6 млрд лет. Жизнь на Земле возникла в океане более 3,5 млрд лет назад.

Краткая история развития органического мира приведена в табл. 7.2. Филогенез основных групп организмов отражен на рис. 7.15. Органи­ческий мир былых эпох воссоздан на рис. 7.16-7.21.

Геохронологическая шкала и история развития живых организмов
Эра, возраст, млн лет Период, продолжитель­ность. млн лет Мир животных Мир растений Важнейшие аро- морфозы
Кайнозой­ская, 66 Антропоген, 1,5 Неоднократные сме­ны потеплений и по­холоданий Крупные оледенения в среди их широтах Северного полушария Современный животный мир Эволюция и господство че­ловека Современный

растительный

Интенсивное развитие коры головного мозга; прямохождение
Неоген, ] 23,0 1 Палеоген, ? 41 ±2) Равномерный теплый климат Интенсивное горообразование Движение матери­ков, обособляются Черное, Каспийское, Средиземное моря Доминируют млекопитающие, птицы, насекомые; появляются лераые приматы (лемуры, дол­гопяты), позднее парапитеки и дриопитеки; исчезают многие группы пресмыкающихся, го­ловоногих моллюсков Широко рас­пространяются цветковые рас­тения, особенно травянистые; со­кращается флора голосеменных
Мезозой­ская, 240 Меловой (мел), 70 Похолодание кли­мата, увеличение площади Мирового океана Преобладают костистые рыбы, лерволтицы, мелкие млекопитающие; появляются и распространяются плацен­тарные млекопитающие и со­временные птицы, вымирают гигантские пресмыкающиеся Появляются и начинают до­минировать по­крытосеменные; сокращаются папоротники и голосеменные Возникновение цветка и пло­да Появление матки
Юрский (юра), СО Вначале влажный климат сменяется засушливым на эк­ваторе Господствуют гигантские пре­смыкающиеся, кости стые рыбы, насекомые, головоно­гие моллюски, появляется осподствуют со­временные голо­семенные; выми­рают древние

Эра, возраст, млн лет Климат и геологиче­ские процессы Мир животных Мир растений Важнейшие аро- морфозы
Мезозой­ская, 240 археоптерикс; вымирают древние хрящевые рыбы голосеменные
Триасовый Ослабление климати­ческой зональности Начало движения материков Преобладают земноводные, головоногие моллюски,тра­воядные и хищные пресмы­кающиеся; появляются кости­стые рыбы, яйцекладущие и сумчатые млекопитающие Преобладают древние го­лосеменные; появляются со­временные голо­семенные, выми­рают семенные папоротники Появление че­тырехкамерного сердца; полное разделение арте­риального и ве­нозного крово­тока, появление теплокровности, появление мо­лочных желез
Палеозой­ Пермский (пермь), 50± 10 Резкая зональность климата, завершение горообразовательных процессов ГЪсподствуют морские бес­позвоночные, акулы; быстро развиваются пресмыкающие­ся и насекомые; возникают зверозубые и травоядные пресмыкающиеся; вымирают стегоцефалы и трилобиты Богатая фло­ра семенных и травянистых па­поротников; по­являются древние голосеменные; вымирают дре­вовидные хвощи, плауны и папо­ротники Образование пыльцевой труб­ки и семени
Карбонский (карбон), б5± 10 Распространение лесных болот. Равно­мерно влажный те- Доминируют земноводные, моллюски, акулы, двоякоды­шащие рыбы, появляются и Обилие древо­видных Появление вну­треннего опло­дотворения 1 по-

Эра, возраст, млн лет Период, продолжитель­ность, млн лет Климат и геологиче­ские процессы Мир животных Мир растений Важнейшие аро- морфозы
плый климат сменя­ется в конце периода засушливым быстро развиваются крылатые формы насекомых, пауки, скорпионы, возникают пер­вые пресмыкающиеся; замет­но уменьшаются трилобиты и стегоцефалы папоротни­кообразных, образующих «ка­менноугольные леса», возникают семенные папо­ротники, исчеза­ют лсилофиты явление плотных оболочек яйца; ороговение кожи
Девонский (де­вон). Смена сухих и до­ждливых сезонов, оледенение на терри­тории современных Южной Африки и Америки Преобладают панцирные, моллюски, трилобиты, корал­лы; появляются кистелерые, двоякодышащие и лучеперые рыбы, стегоцефалы Богатая флора л сил офитов, по­являются мхи, папоротниковид­ные, грибы Расчленение тела растений на органы; преоб­разование плав­ников в назем­ные конечности; появление орга­нов воздушного дыхания
Силурийский Вначале сухой, затем влажный климат, го­рообразование Богатая фауна трилобитов, моллюсков, ракообразных, кораллов, появляются пан­цирные рыбы, первые на­земные беспозвоночные: многоножки, скорпионы, бескрылые насекомые Обилие водорос­лей; растения вы­ходят на сушу - появляются ПС ил офиты Дифференциров- ка тела растений на ткани, разде­ление тела живот­ных на отделы, образование че­люстей и поясов конечностей у позвоночных

Эра, возраст, млн лет Период, продолжитель­ность, млн лет Климат и геологиче­ские процессы Мир животных Мир растений Важнейшие аро- морфозы
Палеозой­ Ордовикский (ордовик), \ 55± 10 | Кембрийский) (кембрий), I 80±20) Оледенение сменя­ется умеренно влаж­ным, потом сухим климатом. Большая часть суши занята морем, горообразо­вание Преобладают губки, кишеч­нополостные, черви, иглоко­жие, трилобиты; появляются бесчелюстные позвоночные (щитковые), моллюски Процветание всех отделов водо­рослей
Протеро­ Поверхность плане­ты - голая пустыня. Частые оледенения, активное образова­ние горных пород Широко распространены простейшие; появляются все типы беспозвоночных, игло­кожих: первичные хордовые - подтип Бесчерепные Широко рас­пространены бактерии, сине- зеленые и зеле­ные водоросли; появляются крас­ные водоросли Появление дву­сторонней сим­метрии
Архейская, 3 500 (3 800) Активная вулкани­ческая деятельность Анаэробные условия жизни в мелководье Возникновение жизни, прокариоты (бактерии, сине-зеленые водоросли), эукариоты (зеленые водоросли, простейшие), примитивные много­клеточные Появление фотосинтеза, аэробного дыха­ния, эукариоти­ческих клеток, полового про­цесса, многокле­точное™






Историю развития жизни на Земле изучают по ископаемым остан­кам организмов или следам их жизнедеятельности. Они встречаются в горных породах разного возраста.

Геохронологическая шкала истории развития органического мира Земли включает эры и периоды (см. табл. 7.2). Выделяют следующие эры: архейская (архей) - эра древнейшей жизни, протерозойская (про­терозой) - эра первичной жизни, палеозойская (палеозой) - эра древ­ней жизни, мезозойская (мезозой) - эра средней жизни, кайнозойская (кайнозой) - эра новой жизни. Названия периодов образованы либо от названий местностей, где впервые были найдены соответствующие отложения (город Пермь, графство Девон), либо от происходивших в то время процессов (в угольный период - карбон - происходила за­кладка отложений каменного угля, в меловой - мела и т.д.).

Архейская эра (эра древнейшей жизни: 3500 (3800 2600 млн лет на­зад). Первые живые организмы на Земле появились по разным данным 3,8-3,2 млрд лет назад. Это были прокариотические гетеротрофные анаэробы (доядерные, питающиеся готовыми органическими веще­ствами, не нуждающиеся в кислороде). Они жили в первичном океане и питались растворенными в его воде органическими веществами, соз­данными абиогенно из неорганических веществ под действием энер­гии ультрафиолетовых лучей Солнца и грозовых разрядов.

Атмосфера Земли состояла преимущественно из С0 2 , СО, Н 2 , N7, водяных паров, небольших количеств N113, Н 2 5, СН 4 и почти не со­держала свободного кислорода 0 2 . Отсутствие свободного кислорода обеспечило возможность накопления в океане абиогенно созданных органических веществ, в противном случае они сразу же расщепля­лись бы кислородом.

Первые гетеротрофы осуществляли окисление органических ве­ществ анаэробно - без участия кислорода путем брожения. При бро­жении органические вещества расщепляются не полностью, и энергии образуется немного. По этой причине эволюция на ранних этапах раз­вития жизни шла очень медленно.

С течением времени гетеротрофы сильно размножились и им стало не хватать абиогенно созданного органического вещества. Тогда воз­никли прокариотические автотрофные анаэробы. Они могли синтези­ровать органические вещества из неорганических самостоятельно сна­чала посредством хемосинтеза, а затем - фотосинтеза.

Первым был фотосинтез анаэробный, который не сопровождался выделением кислорода:

6С0 2 + 12Н 2 5 -> С(,Н 12 0 6 + 125 + 6 Н,0

Затем появился фотосинтез аэробный:

6С0 2 + 6Н 2 0 -> СбН, 2 0 6 + 60,

Аэробный фотосинтез был характерен для существ, похожих на со­временных цианобактерий.

Выделяющийся при фотосинтезе свободный кислород стал окис­лять растворенные в воде океана двухвалентное железо, соединения серы н марганца. Эти вещества превращались в нерастворимые фор­мы и оседали на дне океана, |де образовали залежи железных, серных и марганцевых руд, которые в настоящее время использует человек.

Окисление растворенных в океане веществ происходило в тече­ние сотен миллионов лет, и только когда их запасы в океане были исчерпаны, кислород стал накапливаться в воде и диффундировать в атмосферу.

Необходимо отметить, что обязательным условием накопления в океане и атмосфере кислорода было погребение некоторой части синтезированного организмами органического вещества на дне океа­на. В противном случае, если бы вся органика расщеплялась с участи­ем кислорода, его излишков не оставалось бы и кислород не смог бы накапливаться. Неразложившиеся тела организмов оседали на дне океана, где образовали залежи ископаемого топлива - нефти и газа.

Накопление в океане свободного кислорода сделало возможным появление автотрофных и гетеротрофных аэробов Это произошло когда концентрация 0 2 в атмосфере достигла 1% от современного уровня (а он равен 21 6С0 2 + 6Н 2 0 + 38АТФ.

Поскольку при аэробных процессах стало выделяться намного больше энергии, эволюция организмов значительно ускорилась.

В результате симбиоза различных прокариотических клеток появи­лись первые эукариоты (ядерные).

В результате эволюции эукариот возник половой процесс - обмен организмов генетическим материалом - ДНК. Благодаря половому процессу эволюция пошла еще быстрее, поскольку к мутационной из­менчивости добавилась комбинативная.

Сначала эукариоты были одноклеточными, а затем появились пер­вые многоклеточные организмы. Переход к многоклеточное™ у расте­ний, животных и грибов произошел независимо друг от друга.

Многоклеточные организмы получили ряд преимуществ по срав­нению с одноклеточными:

1) большую продолжительность онтогенеза, так как в ходе инди­видуального развития организма происходит замещение одних клеток другими;

2) многочисленное потомство, поскольку для размножения орга­низма может выделить больше клеток;

3) значительные размеры и разнообразное строение тела, что обе­спечивает ббльшую устойчивость к внешним факторам среды за счет стабильности внутренней среды ор1анизма.

Ученые не имеют единого мнения по вопросу, когда возникли по­ловой процесс и многоклеточность - в архейскую или протерозой­скую эру.

Протерозойская эра (эра первичной жизни: 2600-570 млн лет на­зад). Появление многоклеточных еще более ускорило эволюцию и за относительно короткий период (в геологическом масштабе вре­мени) появились различные виды живых организмов, приспособлен­ные к разным условиям существования. Новые формы жизни занима­ли и формировали все новые экологические ниши в разных областях и глубинах океана. В породах возрастом 580 млн лет уже имеются от­печатки существ с твердыми скелетами и поэтому изучать эволюцию с этого периода гораздо легче. Твердые скелеты служат опорой для тел организмов и способствуют увеличению их размеров.

К концу протерозойской эры (570 млн лет назад) сложилась система продуценты-консументы и сформировался кислородно-углеродный биогеохимический круговорот веществ.

Палеозойская эра (эра древней жизни: 570-240 млн лет назад).

В первый период палеозойской эры - кембрийский (570-505 млн лет назад) - произошел так называемый «эволюционный взрыв»: за короткое время образовались почти все известные в настоящее вре­мя типы животных. Все предшествующее этому периоду эволюцион­ное время получило название докембрий, или криптозой («эра скрытой жизни») - это 7 /jj истории Земли. Время после кембрия назвали фане- розоеи («эрой явной жизни»).

Так как кислорода образовывалось все больше, атмосфера посте­пенно приобретала окислительные свойства. Когда концентрация 0 2 в атмосфере достигла lOfS? от современного уровня (на границе силура и девона), на высоте 20-25 км в атмосфере начал образовываться озо­новый слой. Он формировался из молекул 0 2 под действием энергии ультрафиолетовых лучей Солнца:

о 2 + о -> о,

Молекулы озона (0 3) обладают способностью отражать ультрафио­летовые лучи. В результате озоновый экран стал зашитой живых ор­ганизмов от губительных для них в больших дозах ультрафиолетовых лучей. До этого зашитой служила вола. Теперь жизнь получила воз­можность выйти из океана на сушу.

Выход живых существ на сушу начался в кембрийском периоде: первыми на нее вышли бактерии, а затем - грибы и низшие растения. В результате на суше образовалась почва и в силурийский период (435- 400 млн лет назад) на суше появились первые сосудистые растения - псилофиты. Выход на сушу способствовал появлению у растений тка­ней (покровных, проводяших, механических и др.) и органов (корня, стебля, листьев). В результате появились высшие растения. Первы­ми сухопутными животными стали членистоногие, произошедшие от морских ракоскорпионов.

В это время в морской среде эволюционировали хордовые: от бес­позвоночных хордовых произошли позвоночные рыбы, а в девоне от кистеперых рыб - амфибии. Они господствовали на суше 75 млн лет и были представлены очень крупными формами. В пермский пери­од, когда климат стал холодней и засушливей, превосходство над ам­фибиями получили рептилии.

Мезозойская эра (эра средней жизни: 240-66 млн лег назад). В ме­зозойской эре- «эра динозавров« рептилии достигли своего расцвета (образовались их многочисленные формы) и упадка. В триасе появи­лись крокодилы и черепахи, а от зверозубых рептилий произошел класс Млекопитающие. В течение всей мезозойской эры млекопитающие были мелкими и не были широко распространены. В конце мелово­го периода наступило похолодание и произошло массовое вымирание рептилий, окончательные причины которого до конца не выяснены. В меловом периоде появились покрытосеменные (цветковые).

Кайнозойская эра (эра новой жизни: 66 млн лет назад - настоящее время). В кайнозойской эре широко распространились млекопитаю­щие, птицы, членистоногие, цветковые растения. Появился человек.

В настоящее время деятельность человека стала важным фактором развития биосферы.