Уход и... Инструменты Дизайн ногтей

Метод максимального правдоподобия нахождения точечных оценок. Методы получения оценок

Задача оценки параметров распределения заключается в получении наиболее правдоподобных оценок неизвестных параметров распределения генеральной совокупности на основании выборочных данных. Кроме метода моментов для определения точечной оценки параметров распределения используется также метод наибольшего правдоподобия . Метод наибольшего правдоподобия был предложен английским статистиком Р. Фишером в 1912 г.

Пусть для оценки неизвестного параметра  случайной величины Х из генеральной совокупности с плотностью распределения вероятностей p (x )= p (x , ) извлечена выборка x 1 ,x 2 ,…,x n . Будем рассматривать результаты выборки как реализацию n -мерной случайной величины (X 1 ,X 2 ,…,X n ). Рассмотренный ранее метод моментов для получения точечных оценок неизвестных параметров теоретического распределения не всегда дает наилучшие оценки. Методом поиска оценок, обладающих необходимыми (наилучшими) свойствами, является метод максимального правдоподобия.

В основе метода максимального правдоподобия лежит условие определения экстремума некоторой функции, называемой функцией правдоподобия.

Функцией правдоподобия ДСВ Х

L (x 1 ,x 2 ,…,x n ; )=p (x 1 ; ) p (x 2 ; )… p (x n ; ),

где x 1, …, x n – фиксированные варианты выборки,  неизвестный оцениваемый параметр, p (x i ; ) – вероятность события X = x i .

Функцией правдоподобия НСВ Х называют функцию аргумента :

L (x 1 ,x 2 ,…,x n ; )=f (x 1 ; ) f (x 2 ; )… f (x n ; ),

где f (x i ; ) – заданная функция плотности вероятности в точках x i .

В качестве точечной оценки параметров распределения  принимают такое его значение при котором функция правдоподобия достигает своего максимума. Оценку
называютоценкой максимального правдоподобия . Т.к. функции L и
L
достигают своего максимума при одинаковых значениях , то обычно для нахождения экстремума (максимума) используют
L
как более удобную функцию.

Для определения точки максимума
L
надо воспользоваться известным алгоритмом для вычисления экстремума функции:


В том случае, когда плотность вероятности зависит от двух неизвестных параметров –  1 и  2 , то находят критические точки, решив систему уравнений:

Итак, согласно методу наибольшего правдоподобия, в качестве оценки неизвестного параметра  принимается такое значение *, при котором
распределения выборкиx 1 ,x 2 ,…,x n максимальна.

Задача 8. Найдем методом наибольшего правдоподобия оценку для вероятностиp в схеме Бернулли,

Проведем n независимых повторных испытаний и измерим число успехов, которое обозначим m . По формуле Бернулли вероятность того, что будет m успехов из n –– есть функция правдоподобия ДСВ.

Решение : Составим функцию правдоподобия
.

Согласно методу наибольшего правдоподобия, найдем такое значение p , которое максимизирует L , а вместе с ней и ln L .

Тогда логарифмируя L , имеем:

Производная функции lnL по p имеет вид
и в точке экстремума равна нулю. Поэтому, решив уравнение
, имеем
.

Проверим знак второй производной
в полученной точке:

. Т.к.
при любых значениях аргумента, то найденное значениеp есть точка максимума.

Значит, – наилучшая оценка для
.

Итак, согласно методу наибольшего правдоподобия, оценкой вероятности p события А в схеме Бернулли служит относительная частота этого события .

Если выборка x 1 , x 2 ,…, x n извлечена из нормально распределенной совокупности, то оценки для математического ожидания и дисперсии методом наибольшего правдоподобия имеют вид:

Найденные значения совпадают с оценками этих параметров, полученными методом моментов. Т.к. дисперсия смещена, то ее необходимо умножить на поправку Бесселя. Тогда она примет вид
, совпадая с выборочной дисперсией.

Задача 9 . Пусть дано распределение Пуассона
где приm = x i имеем
. Найдем методом наибольшего правдоподобия оценку неизвестного параметра.

Решение :

Составив функцию правдоподобия L и ее логарифм ln L . Имеем:

Найдем производную от lnL :
и решим уравнение
. Полученная оценка параметра распределения примет вид:
Тогда
т.к. при
вторая частная производная
то это точка максимума. Т.о., в качестве оценки наибольшего правдоподобия параметра для распределения Пуассона можно принять выборочное среднее.

Можно убедиться, что припоказательном распределении
функция правдоподобия для выборочных значенийx 1 , x 2 , …, x n имеет вид:

.

Оценка параметра распределения  для показательного распределения равна:
.

Достоинством метода наибольшего правдоподобия является возможность получить «хорошие» оценки, обладающие такими свойствами, как состоятельность, асимптотическая нормальность и эффективность для выборок больших объемов при самых общих условиях.

Основным недостатком метода является сложность решения уравнений правдоподобия, а также то, что не всегда известен анализируемый закон распределения.

В работах, предназначенных для первоначального знакомства с математической статистикой, обычно рассматривают оценки максимального правдоподобия (сокращенно ОМП):

Таким образом, сначала строится плотность распределения вероятностей, соответствующая выборке. Поскольку элементы выборки независимы, то эта плотность представляется в виде произведения плотностей для отдельных элементов выборки. Совместная плотность рассматривается в точке, соответствующей наблюденным значениям. Это выражение как функция от параметра (при заданных элементах выборки) называется функцией правдоподобия. Затем тем или иным способом ищется значение параметра, при котором значение совместной плотности максимально. Это и есть оценка максимального правдоподобия.

Хорошо известно, что оценки максимального правдоподобия входят в класс наилучших асимптотически нормальных оценок. Однако при конечных объемах выборки в ряде задач ОМП недопустимы, т.к. они хуже (дисперсия и средний квадрат ошибки больше), чем другие оценки, в частности, несмещенные. Именно поэтому в ГОСТ 11.010-81 для оценивания параметров отрицательного биномиального распределения используются несмещенные оценки, а не ОМП. Из сказанного следует априорно предпочитать ОМП другим видам оценок можно - если можно - лишь на этапе изучения асимптотического поведения оценок.

В отдельных случаях ОМП находятся явно, в виде конкретных формул, пригодных для вычисления.

В большинстве случаев аналитических решений не существует, для нахождения ОМП необходимо применять численные методы. Так обстоит дело, например, с выборками из гамма-распределения или распределения Вейбулла-Гнеденко. Во многих работах каким-либо итерационным методом решают систему уравнений максимального правдоподобия или впрямую максимизируют функцию правдоподобия.

Однако применение численных методов порождает многочисленные проблемы. Сходимость итерационных методов требует обоснования. В ряде примеров функция правдоподобия имеет много локальных максимумов, а потому естественные итерационные процедуры не сходятся. Для данных ВНИИ железнодорожного транспорта по усталостным испытаниям стали уравнение максимального правдоподобия имеет 11 корней. Какой из одиннадцати использовать в качестве оценки параметра?

Как следствие осознания указанных трудностей, стали появляться работы по доказательству сходимости алгоритмов нахождения оценок максимального правдоподобия для конкретных вероятностных моделей и конкретных алгоритмов.

Однако теоретическое доказательство сходимости итерационного алгоритма - это еще не всё. Возникает вопрос об обоснованном выборе момента прекращения вычислений в связи с достижением требуемой точности. В большинстве случаев он не решен.

Но и это не все. Точность вычислений необходимо увязывать с объемом выборки - чем он больше, тем точнее надо находить оценки параметров, в противном случае нельзя говорить о состоятельности метода оценивания. Более того, при увеличении объема выборки необходимо увеличивать и количество используемых в компьютере разрядов, переходить от одинарной точности расчетов к двойной и далее - опять-таки ради достижения состоятельности оценок.

Таким образом, при отсутствии явных формул для оценок максимального правдоподобия нахождение ОМП натыкается на ряд проблем вычислительного характера. Специалисты по математической статистике позволяют себе игнорировать все эти проблемы, рассуждая об ОМП в теоретическом плане. Однако прикладная статистика не может их игнорировать. Отмеченные проблемы ставят под вопрос целесообразность практического использования ОМП.

Пример 1. В статистических задачах стандартизации и управления качеством используют семейство гамма-распределений. Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (7) определяется тремя параметрами a, b, c , где a >2, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Г(а) является нормировочным, он введен, чтобы

Здесь Г(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (7),

Подробные решения задач оценивания параметров для гамма-распределения содержатся в разработанном нами государственном стандарте ГОСТ 11,011-83 «Прикладная статистика. Правила определения оценок и доверительных границ для параметров гамма-распределения». В настоящее время эта публикация используется в качестве методического материала для инженерно-технических работников промышленных предприятий и прикладных научно-исследовательских институтов.

Поскольку гамма-распределение зависит от трех параметров, то имеется 2 3 - 1 = 7 вариантов постановок задач оценивания. Они описаны в табл. 1. В табл. 2 приведены реальные данные о наработке резцов до предельного состояния, в часах. Упорядоченная выборка (вариационный ряд) объема n = 50 взята из государственного стандарта. Именно эти данные будут служить исходным материалом для демонстрации тех или иных методов оценивания параметров.

Выбор «наилучших» оценок в определенной параметрической модели прикладной статистики - научно-исследовательская работа, растянутая во времени. Выделим два этапа. Этап асимптотики : оценки строятся и сравниваются по их свойствам при безграничном росте объема выборки. На этом этапе рассматривают такие характеристики оценок, как состоятельность, асимптотическая эффективность и др. Этап конечных объемов выборки: оценки сравниваются, скажем, при n = 10. Ясно, что исследование начинается с этапа асимптотики: чтобы сравнивать оценки, надо сначала их построить и быть уверенными, что они не являются абсурдными (такую уверенность дает доказательство состоятельности).

Пример 2. Оценивание методом моментов параметров гамма-распределения в случае трех неизвестных параметров (строка 7 таблицы 1).

В соответствии с проведенными выше рассуждениями для оценивания трех параметров достаточно использовать три выборочных момента - выборочное среднее арифметическое:

выборочную дисперсию

и выборочный третий центральный момент

Приравнивая теоретические моменты, выраженные через параметры распределения, и выборочные моменты, получаем систему уравнений метода моментов:

Решая эту систему, находим оценки метода моментов. Подставляя второе уравнение в третье, получаем оценку метода моментов для параметра сдвига:

Подставляя эту оценку во второе уравнение, находим оценку метода моментов для параметра формы:

Наконец, из первого уравнения находим оценку для параметра сдвига:

Для реальных данных, приведенных выше в табл. 2, выборочное среднее арифметическое = 57,88, выборочная дисперсия s 2 = 663,00, выборочный третий центральный момент m 3 = 14927,91. Согласно только что полученным формулам оценки метода моментов таковы: a * = 5,23; b * = 11,26, c * = - 1,01.

Оценки параметров гамма-распределения, полученные методом моментов, являются функциями от выборочных моментов. В соответствии со сказанным выше они являются асимптотически нормальными случайными величинами. В табл. 3 приведены оценки метода моментов и их асимптотические дисперсии при различных вариантах сочетания известных и неизвестных параметров гамма-распределения.

Все оценки метода моментов, приведенные в табл. 3, включены в государственный стандарт. Они охватывают все постановки задач оценивания параметров гамма-распределения (см. табл. 1), кроме тех, когда неизвестен только один параметр - a или b . Для этих исключительных случаев разработаны специальные методы оценивания.

Поскольку асимптотическое распределение оценок метода моментов известно, то не представляет труда формулировка правил проверки статистических гипотез относительно значений параметров распределений, а также построение доверительных границ для параметров. Например, в вероятностной модели, когда все три параметра неизвестны, в соответствии с третьей строкой таблицы 3 нижняя доверительная граница для параметра а , соответствующая доверительной вероятности г = 0,95, в асимптотике имеет вид

а верхняя доверительная граница для той же доверительной вероятности такова

где а * - оценка метода моментов параметра формы (табл. 3).

Пример 3. Найдем ОМП для выборки из нормального распределения, каждый элемент которой имеет плотность

Таким образом, надо оценить двумерный параметр (m , у 2).

Произведение плотностей вероятностей для элементов выборки, т.е. функция правдоподобия, имеет вид

Требуется решить задачу оптимизации

Как и во многих иных случаях, задача оптимизации проще решается, если прологарифмировать функцию правдоподобия, т.е. перейти к функции

называемой логарифмической функцией правдоподобия. Для выборки из нормального распределения

Необходимым условием максимума является равенство 0 частных производных от логарифмической функции правдоподобия по параметрам, т.е.

Система (10) называется системой уравнений максимального правдоподобия. В общем случае число уравнений равно числу неизвестных параметров, а каждое из уравнений выписывается путем приравнивания 0 частной производной логарифмической функции правдоподобия по тому или иному параметру.

При дифференцировании по m первые два слагаемых в правой части формулы (9) обращаются в 0, а последнее слагаемое дает уравнение

Следовательно, оценкой m * максимального правдоподобия параметра m является выборочное среднее арифметическое,

Для нахождения оценки дисперсии необходимо решить уравнение

Легко видеть, что

Следовательно, оценкой (у 2)* максимального правдоподобия для дисперсии у 2 с учетом найденной ранее оценки для параметра m является выборочная дисперсия,

Итак, система уравнений максимального правдоподобия решена аналитически, ОМП для математического ожидания и дисперсии нормального распределения - это выборочное среднее арифметическое и выборочная дисперсия. Отметим, что последняя оценка является смещенной.

Отметим, что в условиях примера 3 оценки метода максимального правдоподобия совпадают с оценками метода моментов. Причем вид оценок метода моментов очевиден и не требует проведения каких-либо рассуждений.

Пример 4. Попытаемся проникнуть в тайный смысл следующей фразы основателя современной статистики Рональда Фишера: “нет ничего проще, чем придумать оценку параметра”. Классик иронизировал: он имел в виду, что легко придумать плохую оценку. Хорошую оценку не надо придумывать (!) - ее надо получать стандартным образом, используя принцип максимального правдоподобия.

Задача. Согласно H 0 математические ожидания трех независимых пуассоновских случайных величин связаны линейной зависимостью: .

Даны реализации этих величин. Требуется оценить два параметра линейной зависимости и проверить H 0 .

Для наглядности можно представить линейную регрессию, которая в точках принимает средние значения. Пусть получены значения. Что можно сказать о величине и справедливости H 0 ?

Наивный подход

Казалось бы, оценить параметры можно из элементарного здравого смысла. Оценку наклона прямой регрессии получим, поделив приращение при переходе от x 1 =-1 к x 3 =+1 на, а оценку значения найдем как среднее арифметическое:

Легко проверить, что математические ожидания оценок равны (оценки несмещенные).

После того как оценки получены, H 0 проверяют как обычно с помощью хи-квадрат критерия Пирсона:

Оценки ожидаемых частот можно получить, исходя из оценок:

При этом, если наши оценки ”правильные”, то расстояние Пирсона будет распределено как случайная величина хи-квадрат с одной степенью свободы: 3-2=1. Напомним, что мы оцениваем два параметра, подгоняя данные под нашу модель. При этом сумма не фиксирована, поэтому дополнительную единицу вычитать не нужно.

Однако, подставив, получим странный результат:

С одной стороны ясно, что для данных частот нет оснований отвергать H 0 , но мы не в состоянии это проверить с помощью хи-квадрат критерия, так как оценка ожидаемой частоты в первой точке оказывается отрицательной. Итак, найденные из “здравого смысла” оценки не позволяют решить задачу в общем случае.

Метод максимального правдоподобия

Случайные величины независимы и имеют пуассоновское распределение. Вероятность получить значения равна:

Согласно принципу максимального правдоподобия значения неизвестных параметров надо искать, требуя, чтобы вероятность получить значения была максимальной:

Если постоянны, то мы имеем дело с обычной вероятностью. Фишер предложил новый термин “правдоподобие” для случая, когда постоянны, а переменными считаются. Если правдоподобие оказывается произведением вероятностей независимых событий, то естественно превратить произведение в сумму и дальше иметь дело с логарифмом правдоподобия:

Здесь все слагаемые, которые не зависят от, обозначены и в окончательном выражении отброшены. Чтобы найти максимум логарифма правдоподобия, приравняем производные по к нулю:

Решая эти уравнения, получим:

Таковы “правильные” выражения для оценок. Оценка среднего значения совпадает с тем, что предлагал здравый смысл, однако оценки для наклона различаются: . Что можно сказать по поводу формулы для?

  • 1) Кажется странным, что ответ зависит от частоты в средней точке, так как величина определяет угол наклона прямой.
  • 2) Тем не менее, если справедлива H 0 (линия регрессии - прямая), то при больших значениях наблюдаемых частот, они становятся близки к своим математическим ожиданием. Поэтому: , и оценка максимального правдоподобия становится близка к результату, полученному из здравого смысла.

3) Преимущества оценки начинают ощущаться, когда мы замечаем, что все ожидаемые частоты теперь оказываются всегда положительными:

Это было не так для “наивных” оценок, поэтому применить хи-квадрат критерий можно было не всегда (попытка заменить отрицательную или равную нулю ожидаемую частоту на единицу не спасает положения).

4) Численные расчеты показывают, что наивными оценками можно пользоваться только, если ожидаемые частоты достаточно велики. Если использовать их при малых значениях, то вычисленное расстояние Пирсона часто будет оказываться чрезмерно большим.

Вывод : Правильный выбор оценки важен, так как в противном случае проверить гипотезу с помощью критерия хи-квадрат не удастся. Оценка, казалось бы, очевидная может оказаться непригодной!

До сих пор мы считали, что оценка неизвестного параметра известна и занимались изучением ее свойств с целью использования их при построении доверительного интервала. В этом параграфе рассмотрим вопрос о способах построения оценок.

Методы правдоподобия

Пусть требуется оценить неизвестный параметр, вообще говоря, векторный, . При этом предполагается, что вид функции распределения известен с точностью до параметра,

В таком случае все моменты случайной величины становятся функциями от:

Метод моментов требует выполнения следующих действий:

Вычисляем k «теоретических» моментов

По выборке строим k одноименных выборочных моментов. В излагаемом контексте это будут моменты

Приравнивая «теоретические» и одноименные им выборочные моменты, приходим к системе уравнений относительно компонент оцениваемого параметра

Решая полученную систему (точно или приближенно), находим исходные оценки. Они, конечно, являются функциями от выборочных значений.

Мы изложили порядок действий, исходя из начальных - теоретических и выборочных - моментов. Он сохраняется при ином выборе моментов, начальных, центральных или абсолютных, который определяется удобством решения системы (25.1) или ей подобной.

Перейдем к рассмотрению примеров.

Пример 25.1. Пусть случайная величина распределена равномерно на отрезке [ ; ] , где - неизвестные параметры. По выборке () объема n из распределения случайной величины. Требуется оценить и.

В данном случае распределение определяется плотностью

1) Вычислим первые два начальных «теоретических» момента:

2) Вычислим по выборке два первых начальных выборочных момента

3) Составим систему уравнений

4) Из первого уравнения выразим через

и подставим во второе уравнение, в результате чего придём к квадратному уравнению

решая которое, находим два корня

Соответствующие значения таковы

Поскольку по смыслу задачи должно выполнятся условие < , выбираем в качестве решения системы и оценок неизвестных параметров

Замечая, что есть не что иное, как выборочная дисперсия, получаем окончательно

Если бы мы выбрали в качестве «теоретических» моментов математическое ожидание и дисперсию, то пришли бы к системе (с учетом неравенства <)

которая линейна и решается проще предыдущей. Ответ, конечно, совпадает с уже полученным.

Наконец, отметим, что наши системы всегда имеет решение и при том единственное. Полученные оценки, конечно, состоятельны, однако свойствам несмещенности не обладают.

Метод максимального правдоподобия

Изучается, как и прежде, случайная величина, распределение которой задается либо вероятностями её значений, если дискретна, либо плотностью распределения, если непрерывна, где - неизвестный векторный параметр. Пусть () - выборка значений. Естественно в качестве оценки взять то значение параметра, при котором вероятность получения уже имеющейся выборки максимальна.

Выражение

называют функцией правдоподобия , она представляет собой совместное распределение или совместную плотность случайного вектора с n независимыми координатами, каждая из которых имеет то же распределение (плотность), что и.

В качестве оценки неизвестного параметра берется такое его значение, которое доставляет максимум функции, рассматриваемой как функции от при фиксированных значениях. Оценку называют оценкой максимального правдоподобия . Заметим, что зависит от объема выборки n и выборочных значений

и, следовательно, сама является случайной величиной.

Отыскание точки максимума функции представляет собой отдельную задачу, которая облегчается, если функция дифференцируема по параметру.

В этом случае удобно вместо функции рассматривать её логарифм, поскольку точки экстремума функции и её логарифма совпадают.

Методы дифференциального исчисления позволяют найти точки, подозрительные на экстремум, а затем выяснить, в какой из них достигается максимум.

С этой целью рассматриваем вначале систему уравнений

решения которой - точки, подозрительные на экстремум. Затем по известной методике, вычисляя значения вторых производных

по знаку определителя, составленного из этих значений, находим точку максимума.

Оценки, полученные по методу максимального правдоподобия, состоятельны, хотя могут оказаться смещенными.

Рассмотрим примеры.

Пример 25.2. Пусть производится некоторый случайный эксперимент, исходом которого может быть некоторое события А, вероятность Р(А) которого неизвестна и подлежит оцениванию.

Введем случайную величину равенством

если событие А произошло,

если событие А не произошло (произошло событие).

Распределение случайной величины задается равенством

Выборкой в данном случае будет конечная последовательность (), где каждое из может быть равно 0 либо 1.

Функция правдоподобия будет иметь вид

Найдем точку её максимума по р, для чего вычислим производную логарифма

Обозначим - это число равно количеству единиц «успехов» в выбранной последовательности.

Сущность задачи точечного оценивания параметров

ТОЧЕЧНАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.

Имеется: выборка наблюдений (x 1 , x 2 , …, x n ) за случайной величиной Х . Объем выборки n фиксирован.

Известен вид закона распределения величины Х , например, в форме плотности распределения f(Θ , x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку Θ* параметра Θ закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x 1 , x 2, …, x n) . Эта вероятность равна

f(х 1 , Θ) f(х 2 , Θ) … f(х п, Θ) dx 1 dx 2 … dx n .

Совместная плотность вероятности

L(х 1 , х 2 …, х n ; Θ) = f(х 1 , Θ) f(х 2 , Θ) … f(х n , Θ), (2.7)

рассматриваемая как функция параметра Θ , называется функцией правдоподобия .

В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

dL/d Θ* = 0.

Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL . Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина

Θ* =(q 1 , q 2 , …, q n),

то оценки максимального правдоподобия находят из системы уравнений


d ln L(q 1 , q 2 , …, q n) /d q 1 = 0;

d ln L(q 1 , q 2 , …, q n) /d q 2 = 0;

. . . . . . . . .



d ln L(q 1 , q 2 , …, q n) /d q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Решение. Функция правдоподобия для выборки ЭД объемом n

Логарифм функции правдоподобия

Система уравнений для нахождения оценок параметров

Из первого уравнения следует:

или окончательно

Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.

Из второго уравнения можно найти

.

Эмпирическая дисперсия является смещенной. После устранения смещения

Фактические значения оценок параметров: m =27,51, s 2 = 0,91.

Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные

Вторые производные от функции ln(L(m,S )) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.

Известный таксономист Джо Фельзенштейн (Felsenstein, 1978) был первым, кто предложил оценивать филогенетические теории не на основе парсимо-

нии, а средствами математической статистистики. В результате был разработан метод максимального правдоподобия (maximum likelihood).

Этот метод основывается на предварительных знаниях о возможных путях эволюции, то есть требует создания модели изменений признаков перед проведением анализа. Именно для построения этих моделей и привлекаются законы статистики.

Под правдоподобим понимается вероятность наблюдения данных в случае принятия определенной модели событий. Различные модели могут делать наблюдаемые данные более или менее вероятными. Например, если вы подбрасываете монету и получаете «орлов» только в одном случае из ста, тогда вы можете предположить, что эта монета бракованная. В случае принятия вами данной модели, правдоподобие полученного результата будет достаточно высоким. Если же вы основываетесь на модели, согласно которой монета является небракованной, то вы могли бы ожидать увидеть «орлов» в пятидесяти случаях, а не в одном. Получить только одного «орла» при ста подбрасываниях небракованной монеты статистически маловероятно. Другими словами, правдоподобие получения результата один «орел» на сто «решек» является в модели небракованной монеты очень низким.

Правдоподобие – это математическая величина. Обычно оно вычисляется по формуле:

где Pr(D|H) – это вероятность получения данных D в случае принятия гипотезы H. Вертикальная черта в формуле читается как «для данной». Поскольку L часто оказывается небольшой величиной, то обычно в исследованиях используется натуральный логарифм правдоподобия.

Очень важно различать вероятность получения наблюдаемых данных и вероятность того, что принятая модель событий правильна. Правдоподобие данных ничего не говорит о вероятности модели самой по себе. Философ-биолог Э.Собер (Sober) использовал следующий пример для того, чтобы сделать ясным это различие. Представьте, что вы слышите сильный шум в комнате над вами. Вы могли бы предположить, что это вызвано игрой гномов в боулинг на чердаке. Для данной модели ваше наблюдение (сильный шум над вами) имеет высокое правдоподобие (если бы гномы действительно играли в боулинг над вами, вы почти наверняка услышали бы это). Однако, вероятность того, что ваша гипотеза истинна, то есть, что именно гномы вызвали этот шум, – нечто совсем иное. Почти наверняка это были не гномы. Итак, в этом случае ваша гипотеза обеспечивает имеющимся данным высокое правдоподобие, но сама по себе в высшей степени маловероятна.

Используя данную систему рассуждений, метод максимального правдоподобия позволяет статистически оценивать филогенетические деревья, полученные средствами традиционной кладистики. По сути, этот метод заключа-

ется в поиске кладограммы, обеспечивающей наиболее высокую вероятность имеющегося набора данных.

Рассмотрим пример, иллюстрирующий применение метода максимального правдоподобия. Предположим, что у нас имеется четыре таксона, для которых установлены последовательности нуклеотидов определенного сайта ДНК (рис.16).

Если модель предполагает возможность реверсий, то мы можем укоренить это дерево в любом узле. Одно из возможных корневых деревьев изображено на рис. 17.2.

Мы не знаем, какие нуклеотиды присутствовали в рассматриваемом локусе у общих предков таксонов 1-4 (эти предки соответствуют на кладограмме узлам X и Y). Для каждого из этих узлов существует по четыре варианта нуклеотидов, которые могли там находиться у предковых форм, что в результате дает 16 филогенетических сценариев, приводящих к дереву 2. Один из таких сценариев изображен на рис. 17.3.

Вероятность данного сценария может быть определена по формуле:

где P A – вероятность присутствия нуклеотида A в корне дерева, которая равна средней частоте нуклеотида А (в общем случае = 0,25); P AG – вероятность замены А на G; P AC – вероятность замены А на С; P AT – вероятность замены А на T; последние два множителя – это вероятность созраниния нуклеотида T в узлах X и Y соответственно.

Еще один возможный сценарий, который позволяет получить те же данные, показан на рис. 17.4. Поскольку существует 16 подобных сценариев, может быть определена вероятность каждого из них, а сумма этих вероятностей будет вероятностью дерева, изображенного на рис. 17.2:

Где P tree 2 – это вероятность наблюдения данных в локусе, обозначенном звездочкой, для дерева 2.

Вероятность наблюдения всех данных во всех локусах данной последовательности является произведением вероятностей для каждого локуса i от 1 до N:

Поскольку эти значения очень малы, используется и другой показатель – натуральный логарифм правдоподобия lnL i для каждого локуса i. В этом случае логарифм правдоподобия дерева является суммой логарифмов правдоподобий для каждого локуса:

Значение lnL tree – это логарифм правдоподобия наблюдения данных при выборе определенной эволюционной модели и дерева с характерной для него

последовательностью ветвления и длиной ветвей. Компьютерные программы, применяемые в методе максимального правдоподобия (например, уже упоминавшийся кладистический пакет PAUP), ведут поиск дерева с максимальным показателем lnL. Удвоенная разность логарифмов правдоподобий двух моделей 2Δ (где Δ = lnL tree A- lnL treeB) подчиняется известному статистическому распределению х 2 . Благодаря этому можно оценить, действительно ли одна модель достоверно лучше, чем другая. Это делает метод максимального правдоподобия мощным средством тестирования гипотез.

В случае четырех таксонов требуется вычисления lnL для 15 деревьев. При большом числе таксонов оценить все деревья оказывается невозможным, поэтому для поиска используются эвристические методы (см. выше).

В рассмотренном примере мы использовали значения вероятностей замены (субституции) нуклеотидов в процессе эволюции. Вычисление этих вероятностей является самостоятельно статистической задачей. Для того чтобы реконструировать эволюционное дерево, мы должны сделать определенные допущения по поводу процесса субституции и выразить эти допущения в виде модели.

В самой простой модели вероятности замен какого-либо нуклеотида на любой другой нуклеотид признаются равными. Эта простая модель имеет только один параметр - скорость субституции и известна как однопарамет-рическая модель Джукса - Кантора или JC (Jukes, Cantor, 1969). При использовании этой модели нам необходимо знать скорость, с которой происходит субституция нуклеотидов. Если мы знаем, что в момент времени t= 0 в некотором сайте присутствует нуклеотид G, то мы можем вычислить вероятность того, что в этом сайте через некоторый промежуток времени t нуклеотид G сохранится, и вероятность, того, что в этом сайте произойдет замена на другой нуклеотид, например A. Эти вероятности обозначаются как P(gg) и P (ga) соответственно. Если скорость субституции равна некоторому значению α в единицу времени, тогда

Поскольку в соответствии с однопараметрической моделью любые субституции равновероятны, более общее утверждение будет выглядеть следующим образом:

Разработаны и более сложные эволюционные модели. Эмпирические наблюдения свидетельствуют, что некоторые субституции могут происходить

чаще, чем другие. Субституции, в результате которых один пурин замещается другим пурином, называются транзициями, а замены пурина пиримидином или пиримидина пурином называются трансверсиями. Можно было бы ожидать, что трансверсии происходят чаще, чем транзиции, так как только одна из трех возможных субституций для какого-либо нуклеотида является транзицией. Тем не менее, обычно происходит обратное: транзиции, как правило, происходят чаще, чем трансверсии. Это в частности характерно для митохондриальной ДНК.

Другой причиной того, что некоторые субституции нуклеотидов происходят чаще, чем другие, является неравное соотношение оснований. Например, митохондриальная ДНК насекомых более богата аденином и тимином по сравнению с позвоночными. Если некоторые основания более распространены, можно ожидать, что некоторые субституции происходят чаще, чем другие. Например, если последовательность содержит очень немного гуанина, маловероятно, что будут происходить субституции этого нуклеотида.

Модели различаются тем, что в одних определенный параметр или параметры (например, соотношение оснований, скорости субституции) остаются фиксированными и варьируют в других. Существуют десятки эволюционных моделей. Ниже мы приведем наиболее известные из них.

Уже упомянутая Модель Джукса - Кантора (JC) характеризуется тем, что частоты оснований одинаковы: π A = π C = π G = π T , трансверсии и транзиции имеют одинаковые скорости α=β, и все субституции одинаково вероятны.

Двупараметрическая модель Кимуры (K2P) предполагает равные частоты оснований π A =π C =π G =π T , а трансверсии и транзиции имеют разные скорости α≠β.

Модель Фельзенштейна (F81) предполагает, что частоты оснований разные π A ≠π C ≠π G ≠π T , а скорости субституции одинаковы α=β.

Общая обратимая модель (REV) предполагает различные частоты оснований π A ≠π C ≠π G ≠π T , а все шесть пар субституций имеют различные скорости.

Упомянутые выше модели подразумевают, что скорости субституции одинаковы во всех сайтах. Однако в модели можно учесть и различия скоростей субституции в разных сайтах. Значения частот оснований и скоростей субституции можно как назначить априорно, так и получить эти значения из данных с помощью специальных программ, например PAUP.

Байесовский анализ

Метод максимального правдоподобия оценивает вероятность филогенетических моделей после того, как они созданы на основе имеющихся данных. Однако знание общих закономерностей эволюции данной группы позволяет создать серию наиболее вероятных моделей филогенеза без привлечения основных данных (например, нуклеотидных последовательностей). После того, как эти данные получены, появляется возможность оценить соответствие между ними и заранее построенными моделями, и пересмотреть вероятность этих исходных моделей. Метод, который позволяет это осуществить именуется байесовским анализом , и является новейшим из методов изучения филогении (см. подробный обзор: Huelsenbeck et al. , 2001).

Согласно стандартной терминологии, первоначальные вероятности принято называть априорными вероятностями (так как они принимаются прежде, чем получены данные) а пересмотренные вероятности – апостериорными (так как они вычисляются после получения данных).

Математической основой байесовского анализа является теорема Байеса, в которой априорная вероятность дерева Pr[Tree ] и правдоподобие Pr[Data|Tree ] используются, чтобы вычислить апостериорную вероятность дерева Pr[Tree|Data ]:

Апостериорная вероятность дерева может рассматриваться как вероятность того, что это дерево отражает истинный ход эволюции. Дерево с самой высокой апостериорной вероятностью выбирается в качестве наиболее вероятной модели филогенеза. Распределение апостериорных вероятностей деревьев вычисляется с использованием методов компьютерного моделирования.

Метод максимального правдоподобия и байесовский анализ нуждаются в эволюционных моделях, описывающих изменения признаков. Создание математических моделей морфологической эволюции в настоящее время не представляется возможным. По этой причине статистические методы филогенетического анализа применяются только для молекулярных данных.