Уход и... Инструменты Дизайн ногтей

Линейная функция кх. Линейная функция и её график

В 7-м классе мы изучали функции у = С, у = kx, у = kx + m, у = х 2 и пришли в итоге к выводу о том, что уравнение с двумя переменными вида у = f(x) (функция) есть математическая модель, удобная для того, чтобы, задав конкретное значение независимой переменной х (аргумента), вычислить соот-

ветствующее значение зависимой переменной у. Например, если дана функция у = х 2 , т.е. f(x) = х 2 , то при х = 1 получаем у = 1 2 = 1; короче это записывают так: f(1) = 1. При х = 2 получаем f(2)= 2 2 = 4, т. е. у = 4; при х = - 3 получаем f(- 3) = (- З) 2 = 9, т. е. у = 9, и т. д.

Уже в 7-м классе мы с вами начали понимать, что в равенстве у = f(х) правая часть, т.е. выражение f(x), не исчерпывается перечисленными выше четырьмя случаями (С, kx, kx + m, х 2).
Так например, нам уже встречались кусочные функции, т. е. функции, заданные разными формулами на разных промежутках. Вот одна из таких функций:

у = f(x), где

Помните, как строить графики таких функций? Сначала надо построить параболу у = х 2 и взять ее часть при х < 0 (левая ветвь параболы, рис. 1), затем надо построить прямую у = 2х и взять ее часть при х > 0 (рис. 2). И, наконец, надо обе выделенные части объединить на одном рисунке, т. е. построить на одной координатной плоскости (см. рис. 3).


Теперь наша задача состоит в следующем: пополнить запас изученных функций. В реальной жизни встречаются процессы, описываемые различными математическими моделями вида у = f(x), не только теми, что мы перечислили выше. В этом параграфе мы рассмотрим функцию у = kx 2 , где коэффициент k — любое отличное от нуля число.


На самом деле функция у = kx 2 в одном случае вам немного знакома. Смотрите: если k = 1, то получаем у = х 2 ; эту функцию вы изучили в 7-м классе и, наверное, помните, что ее графиком является парабола (рис. 1). Обсудим, что происходит при других значениях коэффициента k.
Рассмотрим две функции: у = 2х 2 и у = 0,5x 2 . Составим таблицу значений для первой функции у = 2х 2:

Построим точки (0; 0), (1; 2), (-1; 2), (2; 8), (-2; 8), (1,5; 4,5), (-1,5; 4,5) на координатной плоскости (рис. 4); они намечают некоторую линию, проведем ее

(рис. 5).
Составим таблицу значений для второй функции у = 0,5x 2:

Построим точки (0; 0), (1; 0,5), (-1; 0,5), (2; 2), (-2; 2), C; 4,5), (-3; 4,5) на координатной плоскости (рис. 6); они намечают некоторую линию, проведем ее (рис. 7)

.

Точки, изображенные на рис. 4 и 6, называют иногда контрольными точками для графика соответствующей функции.

Сравните рисунки 1, 5 и 7. Не правда ли, проведенные линии похожи? Каждую из них называют параболой; при этом точку (0; 0) называют вершиной параболы, а ось у — осью симметрии параболы. От величины коэффициента k зависит «скорость устремления» ветвей параболы вверх или, как еще говорят,
«степень крутизны» параболы. Это хорошо видно на рис. 8, где все три построенные выше параболы расположены на одной координатной плоскости.

Точно так же обстоит дело с любой другой функцией вида у = kx 2 , где k > 0. Графиком ее является парабола с вершиной в начале координат, ветви параболы направлены вверх, причем тем круче, чем больше коэффициент k. Ось у является осью симметрии параболы. Кстати, ради краткости речи математики часто вместо длинной фразы «парабола, служащая графиком функции у = kx 2 », говорят «парабола у = кх 2 », а вместо термина «ось симметрии параболы» используют термин «ось параболы».

Вы замечаете, что имеется аналогия с функцией у = kx? Если k > 0, то графиком функции у = kx является прямая, проходящая через начало координат (помните, мы говорили коротко:прямая у = kx), причем и здесь от величины коэффициента k зависит «степень крутизны» прямой. Это хорошо видно на
рис. 9, где в одной системе координат изображены графики линейных функций у = kx при трех значениях коэффициента


Вернемся к функции у = kx 2 . Выясним, как обстоит дело в случае отрицательного коэффициента ft. Построим, например, график функции

у = - х 2 (здесь k = - 1). Составим таблицу значении:

Отметим точки (0; 0), (1; -1), (-1; -1), (2; -4), (-2; -4), (3; -9), (- 3; - 9) на координатной плоскости (рис. 10); они намечают некоторую линию, проведем ее (рис. 11). Это — парабола с вершиной в точке (0; 0), ось у — ось симметрии, но в отличие от случая, когда k > 0, на этот раз ветви параболы направлены вниз. Аналогично обстоит дело и для других отрицательных значений коэффициента k.


Итак, графиком функции является парабола с вершиной в начале координат; ось у является осью параболы; ветви параболы направлены вверх приk>0 u вниз при k<0.

Отметим еще, что парабола у = kx 2 касается оси х в точке (0; 0), т. е. одна ветвь параболы плавно переходит в другую, как бы прижимаясь к оси х.
Если построить в одной системе координат графики функций у = х 2 и у = - х2, то нетрудно заметить, что эти параболы симметричны друг другу относительно оси х, что хорошо видно на рис. 12. Точно так же симметричны друг другу относительно оси х параболы у = 2х 2 и у = - 2х 2 (не поленитесь, постройте эти
две параболы в одной системе координат и убедитесь в справедливости сделанного утверждения).

Вообще, график функции у = - f(x) симметричен графику функции у = f(x) относительно оси абсцисс.

Свойства функции у = kx 2 при k > 0

Описывая свойства этой функции, мы будем опираться на ее геометрическую модель — параболу (рис. 13).

1. Так как для любого значения х по формуле у = kx 2 можно вычислить соответствующее значение у, то функция определена в любой точке х (при любом значении аргумента х). Короче это записывают так: область определения функции есть (-оо, +оо), т. е. вся координатная прямая.


2. у = 0 при х = 0; у > О при . Это видно и по графику функции (он весь расположен выше оси х), но можно обосновать и без помощи графика: если

То kx 2 > О как произведение двух положительных чисел k и х 2 .

3. у = kx 2 — непрерывная функция. Напомним, что этот термин мы рассматриваем пока как синоним предложения «график функции есть сплошная линия, которую можно начертить, не отрывая карандаша от бумаги». В старших классах будет дано более точное математическое истолкование понятия непрерывности функции, не опирающееся на геометрическую иллюстрацию.

4.y/ наим = 0 (достигается при х = 0); у наи6 не существует.

Напомним, что {/наим — это наименьшее значение функции, а Унаиб. — наибольшее значение функции на заданном промежутке; если промежуток не указан, то унаим- и у наиб, — соответственно наименьшее и наибольшее значения функции в области определения.

5. Функция у = kx 2 возрастает при х > О и убывает при х < 0.

Напомним, что в курсе алгебры 7-го класса мы договорились называть функцию, график которой на рассматриваемом промежутке идет слева направо как бы «в горку», возрастающей, а функцию, график которой на рассматриваемом промежутке идет слева направо как бы «под горку», — убывающей. Более точно можно сказать так: функцию у = f (x) называют возрастающей на промежутке X, если на этом промежутке большему значению аргумента соответствует
большее значение функции; функцию у = f (x) называют убывающей на промежутке X, если на этом промежутке большему значению аргумента соответствует меньшее значение функции.

В учебнике «Алгебра—7» процесс перечисления свойств функции мы называли чтением графика. Процесс чтения графика будет у нас постепенно становиться все насыщеннее и интереснее — по мере изучения новых свойств функций. Те пять свойств, которые перечислены выше, мы обсуждали в 7-м классе для изученных там функций. Добавим одно новое свойство.

Функцию у = f(x) называют ограниченной снизу, если все значения функции больше некоторого числа. Геометрически это означает, что график функции расположен выше некоторой прямой, параллельной оси х.

А теперь посмотрите: график функции у = kx 2 расположен выше прямой у = - 1 (или у = - 2, это неважно) — она проведена на рис. 13. Значит, у — kx2 (k > 0) — ограниченная снизу функция.

Наряду с функциями, ограниченными снизу, рассматривают и функции, ограниченные сверху. Функцию у — f(x) называют ограниченной сверху, если все значения функции меньше некоторого числа. Геометрически это означает, что график функции расположен ниже некоторой прямой, параллельной оси х.
Имеется ли такая прямая для параболы у = kx 2 , где k > 0? Нет. Это значит, что функция не является ограниченной сверху.

Итак, мы получили еще одно свойство, добавим его к тем пяти, что указаны выше.

6. Функция у = kx 2 (k > 0) ограничена снизу и не ограничена сверху.

Свойства функции у = kx 2 при k < 0

При описании свойств этой функции мы опираемся на ее геометрическую модель — параболу (рис. 14).

1.Область определения функции — (—оо, +оо).

2. у = 0 при х = 0; у < 0 при .

З.у = kx 2 — непрерывная функция.
4. у наи6 = 0 (достигается при х = 0), унаим не существует.

5. Функция возрастает при х < 0, убывает при х > 0.

6.Функция ограничена сверху и не ограничена снизу.

Дадим пояснения последнему свойству: имеется прямая, параллельная оси х (например, у = 1, она проведена на рис. 14), такая, что вся парабола лежит ниже этой прямой; это значит, что функция ограничена сверху. С другой стороны, нельзя провести такую прямую, параллельную оси х, чтобы вся парабола была расположена выше этой прямой; это значит, что функция не ограничена снизу.

Использованный выше порядок ходов при перечислении свойств функции не является законом, пока он сложился хронологически именно таким.

Более-менее определенный порядок ходов мы выработаем постепенно и унифицируем в курсе алгебры 9-го класса.

Пример 1. Найти наименьшее и наибольшее значения функции у = 2х 2 на отрезке: а) ; б) [- 2, - 1]; в) [- 1, 1,5].

Решение.
а) Построим график функции у = 2х 2 и выделим его часть на отрезке (рис. 15). Замечаем, что 1/наим. = 0 (достигается при х = 0), а у наиб = 8 (достигается при х = 2).

б) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 2, - 1] (рис. 16). Замечаем, что 2/наим = 2 (достигается при х = - 1), а y наиб = 8 (достигается при х = - 2).

в) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 1, 1,5] (рис. 17). Замечаем, что унанм = 0 (достигается при х = 0), а y наиб достигается в точке х = 1,5; подсчитаем это значение:(1,5) = 2-1,5 2 = 2- 2,25 = 4,5. Итак, y наиб =4,5.


Пример 2. Решить уравнение - х 2 = 2х - 3.

Решение. В учебнике «Алгебра—7» мы выработали алгоритм графического решения уравнений, напомним его.

Чтобы графически решить уравнение f(x) = g (x), нужно:

1) рассмотреть две функции у = -x 2 и у = 2x -3;
2) построить график функции i/ = / (х) ;
3) построить график функции у = g (x);
4) найти точки пересечения построенных графиков; абсцис-
сы этих точек — корни уравнения f(x) = g (x).
Применим этот алгоритм к заданному уравнению.
1) Рассмотрим две функции: у = - х2 и у = 2х - 3.
2) Построим параболу — график функции у = - х 2 (рис. 18).

3) Построим график функции у = 2х - 3. Это — прямая, для ее построения достаточно найти любые две точки графика. Если х = 0, то у = - 3; если х = 1,

то у = -1. Итак, нашли две точки (0; -3) и (1; -1). Прямая, проходящая через эти две точки (график функции у = 2х - 3), изображена на том же

чертеже (см. рис. 18).

4) По чертежу находим, что прямая и парабола пересекаются в двух точках А(1; -1) и Б(-3; -9). Значит, данное уравнение имеет два корня: 1 и - 3 — это абсциссы точек А и В.

Ответ: 1,-3.


Замечание. Разумеется, нельзя слепо доверять графическим иллюстрациям. Может быть, нам только кажется, что точка А имеет координаты (1; — 1), а на
самом деле они другие, например (0,98; - 1,01)?

Поэтому всегда полезно проверить себя. Так, в рассмотренном примере надо убедиться, что точка А(1; —1) принадлежит параболе у = — х 2 (это легко — достаточно подставить в формулу у = — х 2 координаты точки А; получим - 1 = - 1 2 — верное числовое равенство) и прямой у = 2х - 3 (и это легко — достаточно подставить в формулу у = 2х - 3 координаты точки А; получим - 1 =2-3 — верное числовое равенство). То же самое надо сделать и для
точки 8. Эта проверка показывает, что в рассмотренном уравнении графические наблюдения привели к верному результату.

Пример 3. Решить систему уравнений

Решение. Преобразуем первое уравнение системы к виду у = - х 2 . Графиком этой функции является парабола, изображенная на рис. 18.
Преобразуем второе уравнение системы к виду у = 2х - 3. Графиком этой функции является прямая, изображенная на рис. 18.

Парабола и прямая пересекаются в точках А(1; -1) и В (- 3; - 9). Координаты этих точек и служат решениями заданной системы уравнений.

Ответ: (1; -1), (-3; -9).

Пример 4. Дана функция у — f (x), где

Требуется:

а) вычислить f(-4), f(-2), f(0), f(1,5), f(2), f(3);

б) построить график функции;

в) с помощью графика перечислить свойства функции.

Решение,

а) Значение х = - 4 удовлетворяет условию —, следовательно, f(-4) надо вычислять по первой строке задания функции.Имеем f(x) = - 0,5x2, значит,
f(-4) = -0,5. (-4) 2 = -8.
Аналогично находим:

f(-2) = -0,5. (-2) 2 =-2;
f(0) = -0,5. 0 2 = 0.

Значение удовлетворяет условию , поэтому надо вычислять по второй строке задания функции. Имеем f(х) = х + 1, значит,

Значение х = 1,5 удовлетворяет условию 1 < х < 2, т. е. f(1,5) надо вычислять по третьей строке задания функции. Имеем f (х) = 2х 2 , значит,
f(1,5) = 2-1,5 2 = 4,5.
Аналогично получим
f(2)= 2. 2 2 =8.
Значение х = 3 не удовлетворяет ни одному из трех условий задания функции, а потому f(3) в данном случае вычислить нельзя, точка х = 3 не принадлежит области определения функции. Задание, состоящее в том, чтобы вычислить f(3), — некорректно.

б) Построение графика осуществим «по кусочкам». Сначала построим параболу у = -0,5x 2 и выделим ее часть на отрезке [-4, 0] (рис. 19). Затем построим прямую у = х + 1 и. выделим ее часть на полуинтервале (0, 1] (рис. 20). Далее построим параболу у = 2х 2 и выделим ее часть на полуинтервале

(1, 2] (рис. 21).

Наконец, все три «кусочка» изобразим в одной системе координат; получим график функции у = f(x) (рис. 22).

в) Перечислим свойства функции или, как мы условились говорить, прочитаем график.

1. Область определения функции — отрезок [—4, 2].

2. у = 0 при х = 0; у > 0 при 0<х<2;у<0 при - 4 < х < 0.

3. Функция претерпевает разрыв при х = 0.

4. Функция возрастает на отрезке [-4, 2].

5. Функция ограничена и снизу и сверху.

6. y наим = -8 (достигается при х = -4); y наи6 . = 8 (достигается при х = 2).

Пример 5. Дана функция у = f(x) , где f(x) = Зх 2 . Найти:

f(1), f(- 2), f(а), f(2а), f(а + 1), f(-х), f(Зх),f(x - 1),
f(x + а), f(x) + 5, f(х) + b, f(x + а) + b, f(x 2), f(2х 3).

Решение. Так как f (х) = Зх 2 , то последовательно получаем:

f(1) =3.1 2 = 3;
f(a) = За 2 ;
f(а+1) = 3(а + 1) 2 ;
f(3х) = 3
.(3х) 2 = 27х 2 ;
f(x + а) = 3(х + а) 2 ;

f(x 2) +b = 3x 2 +b
f(x 2) = 3. (x 2) 2

F(- 2) = З. (-2) 2 = 12
f(2a) =З. (2a) 2 =12a 2

F(x) =З. (-x) 2 =3x 2

F(-x)+ 5 =3x 2 +5
f{x + а) + b = 3 (x + a) 2 + b;
f(2x 3) = 3. (2x 3) 2

>>Математика: Линейная функция и ее график

Линейная функция и ее график


Алгоритм построения графика уравнения ах + by + с = 0, который мы сформулировали в § 28, при всей его четкости и определенности математикам не очень нравится. Обычно они выдвигают претензии к первым двум шагам алгоритма. Зачем, говорят они, дважды решать уравнение относительно переменной у: сначала ах1 + Ьу + с = О, затем ахг + Ьу + с = О? Не лучше ли сразу выразить у из уравнения ах + by + с = 0, тогда легче будет проводить вычисления (и, главное, быстрее)? Давайте проверим. Рассмотрим сначала уравнение 3x - 2у + 6 = 0 (см. пример 2 из § 28).

Придавая х конкретные значения, легко вычислить соответствующие значения у. Например, при х = 0 получаем у = 3; при х = -2 имеем у = 0; при х = 2 имеем у = 6; при х = 4 получаем: у = 9.

Видите, как легко и быстро найдены точки (0; 3), (- 2; 0), (2; 6) и (4; 9), которые были выделены в примере 2 из § 28.

Точно так же уравнение Ьх - 2у = 0 (см. пример 4 из § 28) можно было преобразовать к виду 2у =16 -3x . далее у = 2,5x; нетрудно найти точки (0; 0) и (2; 5), удовлетворяющие этому уравнению.

Наконец, уравнение 3x + 2у - 16 = 0 из того же примера можно преобразовать к виду 2y = 16 -3x и далее нетрудно найти точки (0; 0) и (2; 5), которые ему удовлетворяют.

Рассмотрим теперь указанные преобразования в общем виде.


Таким образом, линейное уравнение (1) с двумя переменными х и у всегда можно преобразовать к виду
y = kx + m,(2) где k,m - числа (коэффициенты), причем .

Этот частный вид линейного уравнения будем называть линейной функцией.

С помощью равенства (2) легко, указав конкретное значение х, вычислить соответствующее значение у. Пусть, например,

у = 2х + 3. Тогда:
если х = 0, то у = 3;
если х = 1, то у = 5;
если х = -1, то у = 1;
если х = 3, то у = 9 и т. д.

Обычно эти результаты оформляют в виде таблицы :

Значения у из второй строки таблицы называют значениями линейной функции у = 2х + 3, соответственно, в точках х = 0, х = 1, х = -1,х=-3.

В уравнении (1) переменные хну равноправны, а в уравнении (2) - нет: конкретные значения мы придаем одной из них - переменной х, тогда как значение переменной у зависит от выбранного значения переменной х. Поэтому обычно говорят, что х - независимая переменная (или аргумент), у - зависимая переменная.

Обратите внимание: линейная функция - это специальный вид линейного уравнения с двумя переменными. Графиком уравнения у - kx + т, как всякого линейного уравнения с двумя переменными, является прямая - ее называют также графком линейной функции y = kx + тп. Таким образом, справедлива следующая теорема.


Пример 1. Построить график линейной функции у = 2х + 3.

Решение. Составим таблицу:

Во второй ситуации независимая переменная х, обозначающая, как и в первой ситуации, число дней, может принимать только значения 1, 2, 3, ..., 16. Действительно, если х = 16, то по формуле у = 500 - З0x находим: у = 500 - 30 16 = 20. Значит, уже на 17-й день вывезти со склада 30 т угля не удастся, поскольку на складе к этому дню останется всего 20 т и процесс вывоза угля придется прекратить. Следовательно, уточненная математическая модель второй ситуации выглядит так:

у = 500 - ЗОд:, где х = 1, 2, 3, .... 16.

В третьей ситуации независимая переменная х теоретически может принять любое неотрицательное значение (напр., значение х = 0, значение х = 2, значение х = 3,5 и т. д.), но практически турист не может шагать с постоянной скоростью без сна и отдыха сколько угодно времени. Значит, нам нужно было сделать разумные ограничения на х, скажем, 0 < х < 6 (т. е. турист идет не более 6 ч).

Напомним, что геометрической моделью нестрогого двойного неравенства 0 < х < 6 служит отрезок (рис. 37). Значит, уточненная модель третьей ситуации выглядит так: у = 15 + 4х, где х принадлежит отрезку .

Условимся вместо фразы «х принадлежит множеству X» писать (читают: «элемент х принадлежит множеству X», е - знак принадлежности). Как видите, наше знакомство с математическим языком постоянно продолжается.

Если линейную функцию у = kx + m надо рассматривать не при всех значениях х, а лишь для значений х из некоторого числового промежутка X, то пишут:

Пример 2. Построить график линейной функции:

Решение, а) Составим таблицу для линейной функции y = 2x + 1

Построим на координатной плоскости хОу точки (-3; 7) и (2; -3) и проведем через них прямую линию. Это - график уравнения у = -2x: + 1. Далее, выделим отрезок, соединяющий построенные точки (рис. 38). Этот отрезок и есть график линейной функции у = -2х+1, гдехе [-3, 2].

Обычно говорят так: мы построили график линейной функции у = - 2х + 1 на отрезке [- 3, 2].

б) Чем отличается этот пример от предыдущего? Линейная функция та же (у = -2х + 1), значит, и ее графиком служит та же прямая. Но - будьте внимательны! - на этот раз х е (-3, 2), т. е. значения х = -3 и х = 2 не рассматриваются, они не принадлежат интервалу (- 3, 2). Как мы отмечали концы интервала на координатной прямой? Светлыми кружочками (рис. 39), об этом мы говорили в § 26. Точно так же и точки (- 3; 7) и B; - 3) придется отметить на чертеже светлыми кружочками. Это будет напоминать нам о том, что берутся лишь те точки прямой у = - 2х + 1, которые лежат между точками, отмеченными кружочками (рис. 40). Впрочем, иногда в таких случаях используют не светлые кружочки, а стрелки (рис. 41). Это непринципиально, главное, понимать, о чем идет речь.


Пример 3. Найти наибольшее и наименьшее значения линейной функции на отрезке .
Решение. Составим таблицу для линейной функции

Построим на координатной плоскости хОу точки (0; 4) и (6; 7) и проведем через них прямую - график линейной х функции (рис. 42).

Нам нужно рассмотреть эту линейную функцию не целиком, а на отрезке , т. е. для х е .

Соответствующий отрезок графика выделен на чертеже. Замечаем, что самая большая ордината у точек, принадлежащих выделенной части, равна 7 - это и есть наибольшее значение линейной функции на отрезке . Обычно используют такую запись: у наиб =7.

Отмечаем, что самая маленькая ордината у точек, принадлежащих выделенной на рисунке 42 части прямой, равна 4 - это и есть наименьшее значение линейной функции на отрезке .
Обычно используют такую запись: y наим. = 4.

Пример 4. Найти у наиб и y наим. для линейной функции y = -1,5x + 3,5

а) на отрезке ; б) на интервале (1,5);
в) на полуинтервале .

Решение. Составим таблицу для линейной функции у = -l,5x + 3,5:

Построим на координатной плоскости хОу точки (1; 2) и (5; - 4) и проведем через них прямую (рис. 43-47). Выделим на построенной прямой часть, соответствующую значениям х из отрезка (рис. 43), из интервала A, 5) (рис. 44), из полуинтервала (рис. 47).

а) С помощью рисунка 43 нетрудно сделать вывод, что у наиб = 2 (этого значения линейная функция достигает при х = 1), а у наим. = - 4 (этого значения линейная функция достигает при х = 5).

б) Используя рисунок 44, делаем вывод: ни наибольшего, ни наименьшего значений на заданном интервале у данной линейной функции нет. Почему? Дело в том, что, в отличие от предыдущего случая, оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, из рассмотрения исключены.

в) С помощью рисунка 45 заключаем, что y наиб. = 2 (как и в первом случае), а наименьшего значения у линейной функции нет (как и во втором случае).

г) Используя рисунок 46, делаем вывод: у наиб = 3,5 (этого значения линейная функция достигает при х = 0), а у наим. не существует.

д) С помощью рисунка 47 делаем вывод: y наим = -1 (этого значения линейная функция достигает при х = 3), а у наиб., не существует.

Пример 5. Построить график линейной функции

у = 2х - 6. С помощью графика ответить на следующие вопросы:

а) при каком значении х будет у = 0?
б) при каких значениях х будет у > 0?
в) при каких значениях х будет у < 0?

Ре ш е ни е. Составим таблицу для линейной функции у = 2х- 6:

Через точки (0; - 6) и (3; 0) проведем прямую - график функции у = 2х - 6 (рис. 48).

а) у = 0 при х = 3. График пересекает ось х в точке х = 3, это и есть точка с ординатой у = 0.
б) у > 0 при х > 3. В самом деле если х > 3, то прямая расположена выше оси ж, значит, ординаты соответствующих точек прямой положительны.

в) у < 0 при х < 3. В самом деле если х < 3, то прямая расположена ниже оси х, значит, ординаты соответствующих точек прямой отрицательны. A

Обратите внимание, что в этом примере мы с помощью графика решили:

а) уравнение 2х - 6 = 0 (получили х = 3);
б) неравенство 2х - 6 > 0 (получили х > 3);
в) неравенство 2x - 6 < 0 (получили х < 3).

Замечание. В русском языке часто один и тот же объект называют по-разному, например: «дом», «здание», «сооружение», «коттедж», «особняк», «барак», «хибара», «избушка». В математическом языке ситуация примерно та же. Скажем, равенство с двумя переменными у = кх + m, где к, m - конкретные числа, можно назвать линейной функцией, можно назвать линейным уравнением с двумя переменными х и у (или с двумя неизвестными х и у), можно назвать формулой, можно назвать соотношением, связывающим х и у, можно, наконец, назвать зависимостью между х и у. Это неважно, главное, понимать, что во всех случаях речь идет о математической модели у = кх + m

.

Рассмотрим график линейной функции, изображенный на рисунке 49, а. Если двигаться по этому графику слева направо, то ординаты точек графика все время увеличиваются, мы как бы «поднимаемся в горку». В таких случаях математики употребляют термин возрастание и говорят так: если k>0, то линейная функция у = kx + m возрастает.

Рассмотрим график линейной функции, изображенный на рисунке 49, б. Если двигаться по этому графику слева направо, то ординаты точек графика все время уменьшаются, мы как бы «спускаемся с горки». В таких случаях математики употребляют термин убывание и говорят так: если k < О, то линейная функция у = kx + m убывает.

Линейная функция в жизни

А теперь давайте подведем итог этой темы. Мы с вами уже познакомились с таким понятие, как линейная функция, знаем ее свойства и научились строить графики. Так же, вы рассматривали частные случаи линейной функции и узнали от чего зависит взаимное расположение графиков линейных функций. Но, оказывается, в нашей повседневной жизни мы также постоянно пересекаемся с этой математической моделью.

Давайте мы с вами подумаем, какие реальные жизненные ситуации связаны с таким понятием, как линейные функции? А также, между какими величинами или жизненными ситуациями, возможно, устанавливать линейную зависимость?

Многие из вас, наверное, не совсем представляют, зачем им нужно изучать линейные функции, ведь это вряд ли пригодится в дальнейшей жизни. Но здесь вы глубоко ошибаетесь, потому что с функциями мы сталкиваемся постоянно и повсюду. Так как, даже обычная ежемесячная квартплата также является функцией, которая зависит от многих переменных. А к этим переменным относится метраж площади, количество жильцов, тарифов, использование электроэнергии и т.д.

Конечно же, самыми распространенными примерами функций линейной зависимости, с которыми мы с вами сталкивались – это уроки математики.

Мы с вами решали задачи, где находили расстояния, которые проезжали машины, поезда или проходили пешеходы при определенной скорости движения. Это и есть линейные функции времени движения. Но ведь эти примеры применимы не только в математике, они присутствуют в нашей повседневной жизни.

Калорийности молочных продуктов зависит жирности, а такая зависимость, как правило, является линейной функцией. Так, например, при увеличении сметане процента жирности, увеличивается и калорийность продукта.



Теперь давайте сделаем подсчеты и найдем значения k и b, решив систему уравнений:


Теперь давайте выведем формулу зависимости:

В итоге мы получили линейную зависимость.

Чтобы знать скорость распространения звука в зависимости от температуры, возможно, узнать, применив формулу: v = 331 +0,6t, где v - скорость (в м/с), t - температура. Если мы начертим график этой зависимости, то увидим, что он будет линейным, то есть представлять прямую линию.

И таких практических использований знаний в применении линейной функциональной зависимости можно перечислять долго. Начиная от платы за телефон, длины и роста волос и даже пословиц в литературе. И этот список можно продолжать до бесконечности.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Рассмотрим функцию y=k/y. Графиком этой функции является линия, называемая в математике гиперболой. Общий вид гиперболы, представлен на рисунке ниже. (На графике представлена функция y равно k разделить на x, у которой k равно единице.)

Видно, что график состоит из двух частей. Эти части называют ветвями гиперболы. Стоит отметить также, что каждая ветвь гиперболы подходит в одном из направлений все ближе и ближе к осям координат. Оси координат в таком случае называют асимптотами.

Вообще любые прямые линии, к которым бесконечно приближается график функции, но не достигает их, называются асимптотами. У гиперболы, как и у параболы, есть оси симметрии. Для гиперболы, представленной на рисунке выше, это прямая y=x.

Теперь разберемся с двумя общими случаями гипербол. Графиком функции y = k/x, при k ≠0, будет являться гипербола, ветви которой расположены либо в первом и третьем координатных углах, при k>0, либо во втором и четвертом координатных углах, при k<0.

Основные свойства функции y = k/x, при k>0

График функции y = k/x, при k>0

5. y>0 при x>0; y6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Основные свойства функции y = k/x, при k<0

График функции y = k/x, при k<0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат - асимптоты гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x0.

6. Функция возрастает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).