Уход и... Инструменты Дизайн ногтей

Криптография: Базовые знания о науке шифрования. Криптология

Криптографические методы защиты информации

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

Криптографическое закрытие является специфическим способом защиты информации, оно имеет многовековую историю развития и применения. В США в 1978 году утвержден и рекомендован для широкого применения национальный стандарт (DES) криптографического закрытия информации. Подобный стандарт в 1989 году (ГОСТ 28147-89) утвержден и у нас в стране. Интенсивно ведутся исследования с целью разработки высокостойких и гибких методов криптографического закрытия информации. Более того, сформировалось самостоятельное научное направление - криптология, изучающая и разрабатывающая научно-методологические основы, способы, методы и средства криптографического преобразования информации.

Можно выделить следующие три периода развития криптологии. Первый период - эра донаучной криптологии, являвшейся ремеслом - уделом узкого круга искусных умельцев. Началом второго периода можно считать 1949 год, когда появилась работа К. Шеннона «Теория связи в секретных системах», в которой проведено фундаментальное научное исследование шифров и важнейших вопросов их стойкости. Благодаря этому труду криптология оформилась как прикладная математическая дисциплина. И, наконец, начало третьему периоду было положено появлением в 1976 году работы У. Диффи, М. Хеллмана «Новые направления в криптографии», где показано, что секретная связь возможна без предварительной передачи секретного ключа. Так началось и продолжается до настоящего времени бурное развитие наряду с обычной классической криптографией и криптографии с открытым ключом.

Еще несколько веков назад само применение письменности можно было рассматривать как способ закрытия информации, так как владение письменностью было уделом немногих.

XX в. до н. э. При раскопках в Месопотамии был найден один из самых древних шифротекстов. Он был написан клинописью на глиняной табличке и содержал рецепт глазури для покрытия гончарных изделий, что, по-видимому, было коммерческой тайной. Известны древнеегипетские религиозные тексты и медицинские рецепты.

Середина IX в. до н. э. Именно в это время, как сообщает Плутарх, использовалось шифрующее устройство - скиталь, которое реализовывало так называемый шифр перестановки. При шифровании слова писались на узкую ленту, намотанную на цилиндр, вдоль образующей этого цилиндра (скиталя). После этого лента разматывалась, и на ней оставались переставленные буквы открытого текста. Неизвестным параметром-ключом в данном случае служил диаметр этого цилиндра. Известен и метод дешифрования такого шифротекста, предложенный Аристотелем, который наматывал ленту на конус, и то место, где появлялось читаемое слово или его часть, определяло неизвестный диаметр цилиндра.



56 г. н. э. Во время войны с галлами Ю. Цезарь использует другую разновидность шифра - шифр замены. Под алфавитом открытого текста писался тот же алфавит со сдвигом (у Цезаря на три позиции) по циклу. При шифровании буквы открытого текста у верхнего алфавита заменялись на буквы нижнего алфавита. Хотя этот шифр был известен до Ю. Цезаря, тем не менее, шифр был назван его именем.

Другим более сложным шифром замены является греческий шифр - «квадрат Полибия». Алфавит записывается в виде квадратной таблицы. При шифровании буквы открытого текста заменялись на пару чисел - номера столбца и строки этой буквы в таблице. При произвольном расписывании алфавита по таблице и шифровании такой таблицей короткого сообщения этот шифр является стойким даже по современным понятиям. Идея была реализована в более сложных шифрах, применявшихся во время Первой мировой войны.

Крах Римской империи в V в. н. э. сопровождался закатом искусства и наук, в том числе и криптографии. Церковь в те времена преследовала тайнопись, которую она считала чернокнижием и колдовством. Сокрытие мыслей за шифрами не позволяло церкви контролировать эти мысли.

Р. Бэкон (1214-1294) - францисканский монах и философ - описал семь систем секретного письма. Большинство шифров в те времена применялись для закрытия научных записей.

Вторая половина XVв. Леон Баттиста Альберта, архитектор и математик, работал в Ватикане, автор книги о шифрах, где описал шифр замены на основе двух концентрических кругов, по периферии которых были нанесены на одном круге - алфавит открытого текста, а на другом - алфавит шифротекста. Важно, что шифроалфавит был непоследовательным и мог быть смещен на любое количество шагов. Именно Альберта впервые применил для дешифрования свойство неравномерности встречаемости различных букв в языке. Он впервые также предложил для повышения стойкости применять повторное шифрование с помощью разных шифросистем.

Известен факт, когда король Франции Франциск I в 1546 году издал указ, запрещающий подданным использование шифров. Хотя шифры того времени были исключительно простыми, они считались нераскрываемыми.

Иоганн Тритемий (1462-1516) - монах-бенедиктинец, живший в Германии. Написал один из первых учебников по криптографии. Предложил оригинальный шифр многозначной замены под названием «Ave Maria». Каждая буква открытого текста имела не одну замену, а несколько, по выбору шифровальщика. Причем буквы заменялись буквами или словами так, что получался некоторый псевдооткрытый текст, тем самым скрывался сам факт передачи секретного сообщения. Разновидность шифра многозначной замены применяется до сих пор, например в архиваторе ARJ.

Джироламо Кардано (1506-1576) - итальянский математик, механик, врач - изобрел систему шифрования, так называемую решетку Кардано, на основе которой, например, был создан один из наиболее стойких военно-морских шифров Великобритании во время Второй мировой войны. В куске картона с размеченной решеткой определенным образом прорезались отверстия, нумерованные в произвольном порядке. Чтобы получить шифротекст, нужно положить этот кусок картона на бумагу и начинать вписывать в отверстия буквы в выбранном порядке. После снятия картона промежутки бессмысленного набора букв дописывались до псевдосмысловых фраз, так можно было скрыть факт передачи секретного сообщения. Скрытие легко достигается, если эти промежутки большие и если слова языка имеют небольшую длину, как, например, в английском языке. «Решетка Кардано» - это пример шифра перестановки.

XVI в. Шифры замены получили развитие в работах итальянца Джованни Батиста Порты (математик) и француза Блеза де Вижинера (дипломат).

Система Вижинера в том или ином виде используется до насто­ящего времени, поэтому ниже она будет рассмотрена достаточно детально.

XVII в. Кардинал Ришелье (министр при короле Франции Людо­вике XIII) создал первую в мире ифрслужбу.

Лорд Френсис Бэкон (1562-1626) был первым, кто обозначил буквы 5-значным двоичным кодом: А = 00001, В = 00010, ... и т. д. Правда, Бэкон никак не обрабатывал этот код, поэтому такое закрытие было совсем нестойким. Просто интересно, что через три века этот принцип был положен в основу электрической и электронной связи. Тут уместно вспомнить коды Морзе, Бодо, международный телеграфный код № 2 (МККТТ-2), код ASCII, также представляющие собой простую замену.

В XVII же веке были изобретены так называемые словарные шифры. При шифровании буквы открытого текста обозначались двумя числами - номером строки и номером буквы в строке на определенной странице какой-нибудь выбранной распространенной книги. Эта система является довольно стойкой, но неудобной. К тому же книга может попасть в руки противника.

К. Гаусс (1777-1855) - великий математик тоже не обошел своим вниманием криптологию. Он создал шифр, который ошибочно считал нераскрываемым. При его создании использовался интересный прием - рандомизация (random - случайный) открытого текста. Открытый текст можно преобразовать в другой текст, содержащий символы большего алфавита, путем замены часто встречающихся букв случайными символами из соответствующих определенных им групп. В получающемся тексте все символы большого алфавита встречаются с примерно одинаковой частотой. Зашифрованный таким образом текст противостоит методам раскрытия на основе анализа частот появления отдельных символов. После расшифрования законный получатель легко снимает рандомизацию. Такие шифры называют «шифрами с многократной подстановкой» или «равночастотными шифрами».

Как известно, до недавнего времени криптографические средства использовались преимущественно (если не всецело) для сохранения государственной тайны, поэтому сами средства разрабатывались специальными органами, причем использовались криптосистемы очень высокой стойкости, что, естественно, сопряжено было с большими затратами. Однако, поскольку сфера защиты информации в настоящее время резко расширяется, становится весьма целесообразным системный анализ криптографических средств с учетом возможности и целесообразности их широкого применения для сохранения различных видов секретов и в различных условиях. Кроме того, в последние годы интенсивно разрабатываются новые способы криптографического преобразования данных, которые могут найти более широкое по сравнению с традиционным применение.

Криптографические методы защиты информации могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?

С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.

С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем, еще недавно считавшихся практически не раскрываемыми.

Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука).

Криптология – это наука, изучающая и разрабатывающая научно-методологические основы, способы, методы и средства криптографического преобразования информации.

Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации.

Криптоанализ - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информа­ции, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

"Каждый, кто думает, что изобрел

непробиваемую схему шифрования,-

или невероятно редкий гений

или просто наивен и неопытен…"

Ф.Циммерман

Криптология - это область знаний, изучающая науку о шифрах (криптографию) и методы раскрытия этих шифров (криптоанализ). Очень часто под криптологией понимают лишь криптографию. Это не совсем правильно. Криптография изучает и применяет такие методы преобразования информации, которые не позволили бы злоумышленнику извлечь ее из перехваченных незаконным путем сообщений. Криптоанализ же, наоборот, рассматривает процесс получения информации из шифрованных сообщений. Криптография и криптоанализ - это две ветви одной науки, преследующие прямо противоположные цели. Однако эти две дисциплины связаны друг с другом, и не бывает хороших криптографов, не владеющих методами криптоанализа.

Потребность шифровать и передавать шифрованные сообщения возникла очень давно. Первые упоминания об использовании шифров греками относятся к V-VI веку до н.э. После, на протяжении более чем двухтысячелетней истории, криптография была искусством засекречивания важной в основном государственной информации, и поэтому обслуживала практически исключительно нужды военных и дипломатов. При этом сами приемы шифрования и дешифрования держались в секрете.

Криптология послужила толчком к развитию всей современной вычислительной техники: первые ЭВМ Colossus и ENIAC были созданы специально для криптоанализа шифров военного времени. Теория информации была создана Шенноном в результате работ в области криптологии. Известный криптолог Рональд Райвест сказал, что криптология была "повивальной бабкой" всей computer science.

Компьютерная революция начиная с середины ХХ века потребовала гражданской криптографии для защиты огромного количества персональной, коммерческой, финансовой и технологической информации. Криптография начинает оформляться в новую математическую теорию и становится объектом интенсивного математического изучения.

В течение столетий основной задачей, стоявшей перед криптологией, была задача обеспечения конфиденциальности, то есть обеспечение секретности информации при передаче по незащищенным каналам. Способность шифра противостоять всевозможным атакам на него называют стойкостью шифра. Это понятие является центральным в криптографии. До недавнего времени стойкость шифра оценивалась по числу усилий потраченных при неудачных попытках его раскрытия. С середины ХХ века начались поиски объективных критериев надежности криптосистем, и криптология перешла из древнего искусства в современную точную науку. В последние десятилетия уходящего века обоснование надежности систем исходит из теории сложности вычислений. И хотя качественно понять, что такое стойкость шифра легко, но получение строгих доказуемых оценок стойкости для каждого конкретного шифра - задача нерешенная.

Новое дыхание криптология получила в 1976 году, когда была предложена концепция открытого шифрования: шифрование стало доступно любому желающему, дешифрование - только законному пользователю. Важность этого открытия трудно переоценить: развитие идей открытого шифрования привело к разработке систем электронной цифровой подписи, открытого распределения ключей, методов проверки подлинности.

Успехи, достигнутые при разработке схем цифровой подписи и открытого распределения ключей, позволили решать задачи взаимодействия удаленных абонентов. Так возникло новое направление - криптографические протоколы - распределенные алгоритмы решения криптозадач. Вот несколько проблем, решаемых с помощью протоколов: подписание контракта недоверяющими друг другу абонентами, идентификация абонентов и аутентификация, разделение секрета между несколькими пользователями. Развитие и осмысление различных протоколов привело к появлению новой математической модели - доказательства с нулевым разглашением. Его первым практическим применением стали smart-карты.

С каждым днем потребность в защите информации все возрастает, что связано с бурным развитием вычислительной техники и средств связи. Во многих областях одной из основных становится проблема обеспечения целостности информации, то есть защита от попыток уничтожения или изменения защищаемой информации. Типичный пример прикладной области, где целостность иногда важнее секретности, - автоматизированные системы банковских расчетов.

В последнее время в связи с развитием электронной торговли и оказанием дистанционных платных услуг возникла еще одна криптографическая задача - обеспечение неотслеживаемости, то есть невозможности определения личности клиента, если он этого не желает. Решение этих задач связано с разработкой электронного денежного оборота: электронных денег, электронных бумажников и т.д. Сегодня криптология переживает бум. Но не смотря на это, криптоалгоритмы остаются тайной за семью печатями для большинства рядовых потребителей. На естественный вопрос пользователя - дает ли данное криптографическое средство надежную защиту - очень часто нельзя дать ни отрицательного, ни положительного ответа.

Хотя внутренне криптология весьма сложна, многие ее теоретические достижения сейчас широко используются в нашей насыщенной информационными технологиями жизни: smart-картах, электронной почте, системах банковских платежей, электронной торговле через Internet, системах документооборота, базах данных, системах электронного голосования и многих других. Соотношение между внутренней сложностью криптологии и ее практической применимости поистине уникально.

Для профессионального понимания криптоалгоритмов, умения оценивать их сильные и слабые стороны, а тем более строить их самому, необходима, конечно же, серьезная подготовка университетского уровня - как математическая, так и физическая. Связано это с тем, что современная криптология как наука основывается на понятиях, фактах и самых последних достижениях фундаментальных наук: математики, теории информации, теории сложности вычислений, алгоритмики, электроники, физики и др. Для построения хорошей криптосистемы недостаточно объединить несколько хитроумных схем. Необходимо понимать, как все это будет взаимодействовать, какие последствия это может иметь, что может предпринять противник. Специалист в области криптологии одновременно и криптограф, и криптоаналитик.

В ближайшее время важность и значение криптологии будет только возрастать, так как неизбежен переход нашего постиндустриального общества к информационному. Уже сегодня люди, владеющие методами защиты информации, широко востребованы. В будущем же спрос на специалистов высокой квалификации, которые свободно ориентируются в области обеспечения безопасности и которые могут вести самостоятельные исследования, будет неуклонно увеличиваться.

Криптология - интересная и сложная наука, но ей можно и нужно учиться!

Криптология и основные этапы ее развития.

Можно выделить следующие три периода развития криптологии. Первый период - эра донаучной криптологии, являвшейся ремеслом - уделом узкого круга искусных умельцев. Началом второго периода можно считать 1949 год, когда появилась работа К. Шеннона «Теория связи в секретных системах», в которой проведено фун-даментальное научное исследование шифров и важнейших вопросов их стойкости. Благодаря этому труду криптология оформилась как прикладная математическая дисциплина. И, наконец, начало третьему периоду было положено появлением в 1976 году работы У. Диффи, М. Хеллмана «Новые направления в криптографии», где показано, что секретная связь возможна без предварительной пере-дачи секретного ключа. Так началось и продолжается до настоящего времени бурное Развитие наряду с обычной классической крипто графией и криптографии с открытым ключом.

Еще несколько веков назад само применение письменности можно было рассматривать как способ закрытия информации, так как владение письменностью было уделом немногих.

Проблемой зашиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и крипгпоанализ. Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации. Это сокрытие смысла сообщения по средствам шифрования и раскрытие его по средствам расшифровки.

Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности пере-даваемых сообщений, хранение информации (документов, баз дан-ных) на носителях в зашифрованном виде.

Криптографические методы зашиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и.для закрытия информации.

Методы криптографического преобразования данных

Итак, криптография дает возможность преобразовать информа-цию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

Перечислим вначале некоторые основные понятия и опреде-ления.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита.

В качестве примеров алфавитов, используемых в современных ИС, можно привести следующие:

алфавит Z 33 - 32 буквы русского алфавита и пробел;

алфавит Z 256 - символы, входящие в стандартные коды ASCII и КОИ-8;

бинарный алфавит - Z 2 = {0,1}; восьмеричный или шестна1шатернчный алфавит.

Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шиф-рованным текстом.

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

Ключ - информация, необходимая для беспрепятственного шифрования и дешифрирования текстов.

Рис. 3.1. Процедура шифрования файлов

Криптографическая система представляет собой семейство Тпреобразований открытого текста. Члены этого семейства индексируются или обозначаются символом k; параметр k является ключом.

Пространство ключей К - это набор возможных значений клю-ча. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптосистемы разделяются на симметричные и с открытым ключом.

В симметричных криптосистемах и для шифрования, и для де-шифрования используется один и тот мое ключ.

В системах с открытым ключом используются два ключа - от-крытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который до-ступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.

Различают два основных метода шифрования: симметричный и асимметричный . В первом из них один и тот же ключ (хранящийся в секрете) используется и для зашифрования, и для расшифрования данных. Разработаны весьма эффективные (быстрые и надежные) методы симметричного шифрования.

Рис. 11.1. Использование симметричного метода шифрования

Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю. С одной стороны, это создает новую проблему распространения ключей . С другой стороны, получатель на основании наличия зашифрованного и расшифрованного сообщения не может доказать, что он получил это сообщение от конкретного отправителя, поскольку такое же сообщение он мог сгенерировать самостоятельно.

В асимметричных методах используются два ключа. Один из них, несекретный (он может публиковаться вместе с другими открытыми сведениями о пользователе), применяется для шифрования, другой (секретный, известный только получателю) – для расшифрования. Самым популярным из асимметричных является метод RSA (Райвест, Шамир, Адлеман), основанный на операциях с большими (скажем, 100-значными) простыми числами и их произведениями.

Проиллюстрируем использование асимметричного шифрования (см. рис. 11.2).

Рис. 11.2. Использование асимметричного метода шифрования.

Существенным недостатком асимметричных методов шифрования является их низкое быстродействие, поэтому данные методы приходится сочетать с симметричными (асимметричные методы на 3 – 4 порядка медленнее). Так, для решения задачи эффективного шифрования с передачей секретного ключа, использованного отправителем, сообщение сначала симметрично зашифровывают случайным ключом, затем этот ключ зашифровывают открытым асимметричным ключом получателя, после чего сообщение и ключ отправляются по сети.

Термины «распределение ключей» и «управление ключами» отно-сятся к процессам системы обработки информации, содержанием которых являются составление и распределение ключей между пользователями.



Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т. е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:

количество всех возможных ключей;

среднее время, необходимое для криптоанализа.

Преобразование Т к,. определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью за щиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т. д. Программная Реализация более практична, допускает известную гибкость в использовании.

Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

зашифрованное сообщение должно поддаваться чтению толь-ко при наличии ключа;

число операций, необходимых для определения использован-ного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не меньше общего числа возможных ключей;

число операций, необходимых для расшифровывания инфор-мации путем перебора всевозможных ключей, должно иметь стро-гую нижнюю оценку и выходить за пределы возможностей совре-менных компьютеров (с учетом возможности использования сете-вых вычислений);

знание алгоритма шифрования не должно влиять на надеж-ность зашиты;

незначительное изменение ключа должно приводить к сущест-венному изменению вида зашифрованного сообщения лаже при ис-пользовании одного и того же ключа;

структурные элементы алгоритма шифрования должны быть неизменными;

дополнительные биты, вводимые в сообщение в процессе шифрования, должны быть полностью и надежно скрыты в шифро-ванном тексте;

длина шифрованного текста должна быть равной длине исход-ного текста;

не должно быть простых и легко устанавливаемых зависимо-стей между ключами, последовательно используемыми в процессе шифрования;

любой ключ из множества возможных должен обеспечивать надежную защиту информации;

алгоритм должен допускать как программную, так и аппарат-ную реализацию, при этом изменение длины ключа не должно вес-ти к качественному ухудшению алгоритма шифрования.

Рассмотрим классификацию алгоритмов криптографического закрытия.

1 Шифрование

1.1 ЗАМЕНА (ПОДСТАНОВКА)

1.1.1. Простая (одноалфавитная) 1.1.2. Многоалфавитная одноконтурная обыкновенная 1.1:3. Многоалфавитная одноконтурная монофоническая

1. 1.4. Многоалфавитная многоконтурная

1.2. ПЕРЕСТАНОВКА

1.2.1. Простая 1.2.2. Усложненная по таблице 1.2.3. Усложненная по маршрутам

1.3. АНАЛИТИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ

1.3.1. С использованием алгебры матриц

1.3.2. По особым зависимостям

1.4. ГАММИРОВАНИЕ

1.4.1. С конечной короткой гаммой

1.4.2. С конечной длинной гаммой

1.4.3. С бесконечной гаммой

1.5. КОМБИНИРОВАННЫЕ МЕТОДЫ

1.5.1. Замена и перестановка 1.5.2. Замена и гаммирование 1.5.3. Перестановка и гаммирование

1.5.4. Гаммирование и гаммирование

2. Кодирование

2.1. СМЫСЛОВОЕ

2.1.1. По специальным таблицам (словарям)

2.2. СИМВОЛЬНОЕ

2.2.1. По кодовому алфавиту

3. Другие виды

3.1. РАССЕЧЕНИЕ-РАЗНЕСЕНИЕ

3.1.1. Смысловое 3.1.2. Механическое

3.2. СЖАТИЕ-РАСШИРЕНИЕ

Под шифрованием понимается такой вид криптографического за-крытия, при котором преобразованию подвергается каждый символ за-щищаемого сообщения. Все известные способы шифрования можно разбить на пять групп: подстановка (замена), перестановка, аналитиче-ское преобразование, гаммирование и комбинированное шифрование. Каждый из этих способов может иметь несколько разновидностей.

Под кодированием понимается такой вид криптографического закрытия, когда некоторые элементы защищаемых данных (это не обязательно отдельные символы) заменяются заранее выбранными кодами (цифровыми, буквенными, буквенно-цифровыми сочетани-ями и т. п.). Этот метод имеет две разновидности: смысловое и сим-вольное кодирование. При смысловом кодировании кодируемые элементы имеют вполне определенный смысл (слова, предложения, группы предложений). При символьном кодировании кодируется каждый символ защищаемого сообщения. Символьное кодирование по существу совпадает с шифрованием заменой.

Многоалфавитная подстановка - наиболее простой вид преоб-разований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. Для обеспечения высокой криптостойкости требуется использова-ние больших ключей.

Перестановки - несложный метод криптографического преоб-разования. Используется, как правило, в сочетании с другими мето-дами.

Гаммирование - этот метод заключается в наложении на исход-ный текст некоторой псевдослучайной последовательности, генери-руемой на основе ключа.

Блочные шифры представляют собой последовательность (с воз-можным повторением и чередованием) основных методов преобра-зования, применяемую к блоку (части) шифруемого текста. Блоч-ные шифры на практике встречаются чаше, чем «чистые» преобра-зования того или иного класса в силу их более высокой криптостойкости. Российский и американский стандарты шифрова-ния основаны именно на этом классе шифров.

К отдельным видам криптографического закрытия отнесены ме-тоды рассечения-разнесения и сжатия данных Рассечение-разнесение заключается в том, что массив защищаемых данных делится (рассе-кается) на такие элементы, каждый из которых в отдельности не по-зволяет раскрыть содержание защищаемой информации. Выделен-ные таким образом элементы данных разносятся по разным зонам ЗУ или располагаются на различных носителях. Сжатие данных представляет собой замену часто встречающихся одинаковых строк данных или последовательностей одинаковых символов некоторыми заранее выбранными символами.

На протяжении всей своей истории человек испытывал потребность в шифровке той или иной информации. Неудивительно, что из этой потребности выросла целая наука - криптография. И если раньше криптография по большей части служила исключительно государственным интересам, то с приходом интернета ее методы стали достоянием частных лиц и широко используются хакерами, борцами за свободу информации и любыми лицами, желающими в той или иной степени зашифровать свои данные в сети.

FURFUR начинает серию статей о криптографии и методах ее использования. Первый материал - вводный: история вопроса и базовые термины.

Формально криптография (с греческого - «тайнопись») определяется как наука, обеспечивающая секретность сообщения. Пионером, написавшим первый научный труд о криптографии, считается Эней Тактик, завершивший свой земной путь задолго до Рождества Христова. Свои данные пытались шифровать еще Индия и Месопотамия, но первые надежные системы защиты были разработаны в Китае. Писцы Древнего Египта часто использовали изощренные способы письма, чтобы привлечь внимание к своим текстам. Чаще всего шифровка информации использовалась в военных целях: широко известен шифр «Скитала», примененный Спартой против Афин в V веке до н. э.

Криптография активно развивалась в Средние века, шифровками пользовались многочисленные дипломаты и купцы. Одним из самых известных шифров Средних веков называют кодекс Copiale - изящно оформленную рукопись с водяными знаками, не расшифрованную до сих пор. Эпоха Возрождения стала золотым веком криптографии: ее изучением занимался Фрэнсис Бэкон, описавший семь методов скрытого текста. Он же предложил двоичный способ шифрования, аналогичный использующемуся в компьютерных программах в наше время. Значительное влияние на развитие криптографии оказало появление телеграфа: сам факт передачи данных перестал быть секретным, что заставило отправителей сосредоточиться на шифровке данных.

Во время Первой мировой войны криптография стала признанным боевым инструментом. Разгаданные сообщения противников вели к ошеломляющим результатам. Перехват телеграммы немецкого посла Артура Циммермана американскими спецслужбами привел к вступлению США в боевые действия на стороне союзников.

Вторая мировая война послужила своеобразным катализатором развития компьютерных систем - через криптографию. Использованные шифровальные машины (немецкая «Энигма», английская «Бомба Тьюринга») ясно показали жизненную важность информационного контроля. В послевоенное время правительства многих стран наложили мораторий на использование криптографии. Ключевые работы публиковались исключительно в виде секретных докладов - таких, как, например книга Клода Шеннона «Теория связи в секретных системах», подходящая к криптографии как к новой математической науке.

Правительственная монополия рухнула только в 1967 году с выходом книги Дэвида Кана «Взломщики кодов». Книга подробно рассматривала всю историю криптографии и криптоанализа. После ее публикации в открытой печати стали появляться и другие работы по криптографии. В это же время сформировался современный подход к науке, четко определились основные требования к зашифрованной информации: конфиденциальность, неотслеживаемость и целостность. Криптография была разделена на две взаимодействующие части: криптосинтез и криптоанализ. То есть криптографы обеспечивают информации защиту, а криптоаналитики, напротив, ищут пути взлома системы.

Wehrmacht Enigma («Энигма»)

Шифровальная машина Третьего рейха. Код, созданный при помощи «Энигмы»,
считается одним из сильнейших из использованных во Второй мировой.


Turing Bombe («Бомба Тьюринга»)

Разработанный под руководством Алана Тьюринга дешифратор. Его использование
позволило союзникам расколоть казавшийся монолитным код «Энигмы».

Cовременные методы использования криптографии

Появление доступного интернета перевело криптографию на новый уровень. Криптографические методы стали широко использоваться частными лицами в электронных коммерческих операциях, телекоммуникациях и многих других средах. Первая получила особенную популярность и привела к появлению новой, не контролируемой государством валюты - биткойна.

Многие энтузиасты быстро смекнули, что банковский перевод - штука, конечно, удобная, однако, для покупки таких приятных в быту вещей, как оружие или «вещества», он не подходит. Не подходит он и при запущенных случаях паранойи, ибо требует от получателя и отправителя обязательной аутентификации.

Аналоговую систему расчета предложил один из «шифропанков», о которых речь пойдет ниже, молодой программист Вэй Дай. Уже в 2009 году Сатоши Накамото (которого многие свято считают целой хакерской группировкой) разработал платежную систему нового типа - BitCoin. Так родилась криптовалюта. Ее транзакции не требуют посредника в виде банка или другой финансовой организации, отследить их невозможно. Сеть полностью децентрализована, биткойны не могут быть заморожены или изъяты, они полностью защищены от государственного контроля. В то же время биткойн может использоваться для оплаты любых товаров - при условии согласия продавца.

Новые электронные деньги производят сами пользователи, предоставляющие вычислительные мощности своих машин для работы всей системы BitCoin. Такой род деятельности называется майнинг (mining - добыча полезных ископаемых). Заниматься майнингом в одиночку не очень выгодно, гораздо проще воспользоваться специальными серверами - пулами. Они объединяют ресурсы нескольких участников в одну сеть, а затем распределяют полученную прибыль.

Крупнейшей площадкой купли-продажи биткойнов является японская Mt. Gox, через которую проводятся 67% транзакций в мире. Заядлые анонимы предпочитают ей российскую BTC-E: регистрация здесь не требует идентификации пользователя. Курс криптовалюты довольно-таки нестабилен и определяется только балансом спроса и предложения в мире. Предостережением новичкам может служить известная история о том, как 10 тысяч единиц, потраченых одним из пользователей на пиццу, превратились через некоторое время в 2,5 миллиона долларов.

«Главная проблема обычной валюты в том, что она требует доверия. Центральный банк требует доверия к себе и своей валюте, однако сама история фиатных денег полна примеров подрыва доверия. С появлением электронной валюты, основанной на надежной криптографии, нам больше не нужно доверять «честному дяде», деньги наши могут быть надежно сохранены, а использование их становится простым и удобным»

Сатоши Накамото, хакер

Терминология

Основными операторами являются исходное сообщение (открытый текст, plaintext) и его изменение (шифротекст, ciphertext). Дешифровкой (decryption) называется сам процесс трансформации шифротекста в текст открытый. Для начинающего криптографа важно запомнить и несколько других терминов:

АЛИСА, ЕВА И БОБ (ALICE)

Свести описание криптопротокола к математической формуле помогают определенные имена участников игры: Алиса и Боб. Противник в действующей криптосистеме обозначен как Ева (eavesdropper - подслушивающий). В редких случаях имя меняется, однако противник всегда остается женского рода.

АВТОНОМНАЯ СИСТЕМА ЭЛЕКТРОННЫХ ПЛАТЕЖЕЙ (OFF-LINE E-CASH SYSTEM)

Благодаря ей покупатель и продавец могут работать напрямую, без участия банка-эмитента. Минус этой системы заключается в дополнительной транзакции, которую совершает продавец, переводящий полученные деньги на свой банковский счет.

АНОНИМНОСТЬ (ANONYMITY)

Это понятие означает, что участники акции могут работать конфиденциально. Анонимность бывает абсолютной и отзываемой (в системах, подразумевающих участие третьего лица, арбитра). Арбитр может при определенных условиях идентифицировать любого игрока.

ПРОТИВНИК (ADVERSARY)

Нарушитель. Он стремится нарушить периметр конфиденциальности протокола. Вообще, использующие криптопротокол участники воспринимают друг друга как потенциальных противников - по умолчанию.

ЧЕСТНЫЙ УЧАСТНИК (HONEST PARTY)

Честный игрок, обладающий необходимой информацией и строго следующий протоколу системы.

ЦЕНТР ДОВЕРИЯ (AUTHORITY (TRUSTED AUTHORITY))

Своеобразный арбитр, который пользуется доверием всех участников системы. Необходим в качестве меры предосторожности, гарантирующей участникам соблюдение оговоренного протокола.

БОЛЬШОЙ БРАТ (BIG BROTHER)

Да, именно он. Действия Большого Брата не контролируются и не отслеживаются другими участниками криптопротокола. Доказать нечестную игру Большого Брата невозможно, даже если все в этом уверены.

Анонимность

Начинающие ревнители конфиденциальности сохраняют инкогнито при помощи специальных сайтов - веб-прокси. Они не требуют отдельного программного обеспечения и не забивают голову пользователя сложной настройкой. Искомый адрес юзер вводит не в браузере, а в адресной строке сайта-анонимайзера. Тот обрабатывает информацию и передает от своего имени. Заодно такой сервер получает чудесную возможность скопировать проходящие через него данные. В большинстве случаев так и происходит: информация лишней не бывает.

Продвинутые анонимы предпочитают использовать средства посерьезнее. Например, Tor (The Onion Router). Этот сервис использует целую цепочку прокси-серверов, контролировать которую практически невозможно из-за ее разветвленности. Система многослойной (на сленге - луковой) маршрутизации обеспечивает пользователям Tor высокий уровень безопасности данных. Кроме того, The Onion Router мешает анализировать проходящий через него трафик.

Шифропанк

Впервые термин прозвучал из уст известной хакерши Джуд Милхон в адрес чрезмерно увлеченных идеей анонимности программистов. Основная идея шифропанка (cypherpunk) - возможность обеспечения анонимности и безопасности в сети самими пользователями. Достигнуть этого можно посредством открытых криптографических систем, которые в большинстве своем разрабатываются активистами шифропанка. Движение имеет неявную политическую окраску, большей части участников близок криптоанархизм и многие либертарные социальные идеи. Известнейший представитель шифропанка - Джулиан Ассанж, на радость всем мировым державам основавший WikiLeaks. У шифропанков есть официальный манифест .

«Новая большая игра - это отнюдь не война за нефтепроводы... Новое всемирное сокровище - это контроль
над гигантскими потоками данных, соединяющими целые континенты и цивилизации, связывающими в единое целое коммуникацию миллиардов людей и организаций»

Джулиан Ассанж

Джулиан Ассанж

На своем портале WikiLeaks публично продемонстрировал всем желающим изнанку многих государственных структур. Коррупция, военные преступления, сверхсекретные тайны - вообще все, до чего дотянулся деятельный либертарианец, стало достоянием общественности. Помимо этого, Ассанж - создатель адской криптосистемы под названием «Отрицаемое шифрование» (Deniable encryption). Это способ компоновки зашифрованной информации, который обеспечивает возможность правдоподобного отрицания ее наличия.

Брэм Коэн

Американский программист, родом из солнечной Калифорнии. На радость всему миру придумал протокол BitTorrent, которым небезуспешно пользуются и по сей день.

Изучая криптовалюты, однажды вы неизбежно наткнётесь на термин «криптография». В интересующей нас сфере криптография имеет множество функций. В их числе - защита данных, использование в составлении паролей, оптимизация банковской системы и т.д. В этой статье мы познакомим вас с основами криптографии и обсудим её значение для криптовалют.

История криптографии

Криптография - это метод безопасного сокрытия информации. Чтобы раскрыть информацию, читателю необходимо знать, каким образом информация была изменена или зашифрована. Если сообщение было качественно зашифровано, прочитать его смогут только отправитель и получатель.

Криптография отнюдь не нова, она существует уже тысячи лет. Исторически криптография использовалась для отправки важных сообщений, чтобы скрыть их от лишних глаз. Первые криптографические сообщения были найдены у древних египтян, однако подтверждённое использование шифров в стратегических целях относится к эпохе Древнего Рима.

По словам историков, Юлий Цезарь использовал криптографию и даже создал так называемый шифр Цезаря, чтобы отправлять секретные сообщения высокопоставленным генералам. Этот метод защиты конфиденциальной информации от нежелательных глаз использовался вплоть до новейшей истории.

Во время Второй мировой войны немцы использовали машину шифрования «Энигма», чтобы передавать важную информацию. Алан Тьюринг, математический человек и гений, в чью честь впоследствии был назван тест Тьюринга, нашёл способ её взломать. Сейчас взлом «Энигмы» считают одним из основных переломных моментов во Второй мировой.

Основы криптографии

Вышеупомянутый шифр Цезаря - один из простейших способов шифрования сообщений, полезный для понимания криптографии. Его также называют шифром сдвига, поскольку он заменяет исходные буквы сообщения другими буквами, находящимися в определённой позиции по отношению к первичной букве в алфавите.

Например, если мы зашифруем сообщение через шифр +3 на английском языке, то A станет D, а K станет N. Если же использовать правило -2, то D станет B, а Z станет X.

read everything on invest in blockchain

Это самый простой пример использования криптографии, однако на похожей логике строится и любой другой метод. Существует сообщение, которое секретно для всех, кроме заинтересованных сторон, и процесс, направленный на то, чтобы сделать это сообщение нечитаемым для всех, кроме отправителя и получателя. Этот процесс называется шифрованием и состоит из двух элементов:

Шифр - это набор правил, которые вы используете для кодирования информации. Например, сдвиг на X букв в алфавите в примере с шифром Цезаря. Шифр не обязательно должен быть засекречен, потому что сообщение можно будет прочитать только при наличии ключа.

Ключ - значение, описывающее, каким именно образом использовать набор правил шифрования. Для шифра Цезаря это будет число букв для сдвига в алфавитном порядке, например +3 или -2. Ключ - это инструмент для дешифровки сообщения.

Таким образом, многие люди могут иметь доступ к одному и тому же шифру, но без ключа они всё равно не смогут его взломать.

Процесс передачи секретного сообщения идёт следующим образом:

  • сторона A хочет отправить сообщение стороне B, но при этом ей важно, чтобы никто другой его не прочитал;
  • сторона A использует ключ для преобразования текста в зашифрованное сообщение;
  • сторона B получает зашифрованный текст;
  • сторона B использует тот же ключ для расшифровки зашифрованного текста и теперь может читать сообщение.

Эволюция криптографии

Сообщения шифруются для защиты их содержимого. Это подразумевает, что всегда будут стороны, заинтересованные в получении данной информации. Поскольку люди так или иначе достигают успехов в расшифровке различных кодов, криптография вынуждена адаптироваться. Современная криптография далеко ушла от обычного смещения букв в алфавите, предлагая сложнейшие головоломки, которые решать с каждым годом всё труднее. Вместо банального смещения буквы теперь могут заменяться на числа, другие буквы и различные символы, проходя через сотни и тысячи промежуточных шагов.

Цифровая эпоха привела к экспоненциальному увеличению сложности шифрования. Это связано с тем, что компьютеры принесли с собой резкое увеличение вычислительной мощности. Человеческий мозг по-прежнему остаётся самой сложной информационной системой, но, когда дело доходит до выполнения вычислений, компьютеры намного быстрее и могут обрабатывать гораздо больше информации.

Криптография цифровой эры связана с электротехникой, информатикой и математикой. В настоящее время сообщения обычно шифруются и дешифруются с использованием сложных алгоритмов, созданных с использованием комбинаций этих технологий. Однако, независимо от того, насколько сильным будет шифрование, всегда будут люди, работающие над его взломом.

Взлом кода

Вы можете заметить, что даже без ключа шифр Цезаря не так сложно взломать. Каждая буква может принимать только 25 разных значений, а для большинства значений сообщение не имеет смысла. С помощью проб и ошибок вы сможете расшифровать сообщение без особых усилий.

Взлом шифрования с использованием всех возможных вариаций называют брутфорсом (bruteforce, англ. - грубая сила). Такой взлом предполагает подбор всех возможных элементов до тех пор, пока решение не будет найдено. С увеличением вычислительных мощностей брутфорс становится всё более реалистичной угрозой, единственный способ защиты от которой - увеличение сложности шифрования. Чем больше возможных ключей, тем сложнее получить доступ к вашим данным «грубой силой».

Современные шифры позволяют использовать триллионы возможных ключей, делая брутфорс менее опасным. Тем не менее утверждается, что суперкомпьютеры и в особенности квантовые компьютеры вскоре смогут взломать большинство шифров посредством брутфорса из-за своих непревзойдённых вычислительных мощностей.

Как уже говорилось, расшифровка сообщений со временем становится всё труднее. Но нет ничего невозможного. Любой шифр неотъемлемо связан с набором правил, а правила в свою очередь могут быть проанализированы. Анализом правил занимается более тонкий метод дешифровки сообщений - частотный анализ.

С колоссальным усложнением шифров в наши дни эффективный частотный анализ можно осуществить только с использованием компьютеров, но это всё ещё возможно. Этот метод анализирует повторяющиеся события и пытается найти ключ, используя эту информацию.

Давайте снова рассмотрим пример шифра Цезаря, чтобы разобраться. Мы знаем, что буква E используется гораздо чаще, чем другие буквы в латинском алфавите. Когда мы применяем это знание к зашифрованному сообщению, мы начинаем искать букву, которая повторяется чаще всего. Мы находим, что буква H используется чаще других, и проверяем наше предположение, применяя к сообщению сдвиг -3. Чем длиннее сообщение, тем легче применить к нему частотный анализ.

uh

Криптография и криптовалюты

Большинство криптовалют служат совершенно другим целям, нежели отправка секретных сообщений, но, несмотря на это, криптография играет здесь ключевую роль. Оказалось, что традиционные принципы криптографии и используемые для неё инструменты имеют больше функций, чем мы привыкли считать.

Наиболее важные новые функции криптографии - это хеширование и цифровые подписи.

Хеширование

Хеширование - это криптографический метод преобразования больших объёмов данных в короткие значения, которые трудно подделать. Это ключевой компонент технологии блокчейн, касающийся защиты и целостности данных, протекающих через систему.

Этот метод в основном используется для четырёх процессов:

  • верификация и подтверждение остатков в кошельках пользователей;
  • кодирование адресов кошельков;
  • кодирование транзакций между кошельками;
  • майнинг блоков (для криптовалют, предполагающих такую возможность) путём создания математических головоломок, которые необходимо решить, чтобы добыть блок.

Цифровые подписи

Цифровая подпись в некотором смысле представляет собой аналог вашей реальной подписи и служит для подтверждения вашей личности в сети. Когда речь заходит о криптовалютах, цифровые подписи представляют математические функции, которые сопоставляются с определённым кошельком.

Таким образом, цифровые подписи - это своего рода способ цифровой идентификации кошелька. Прилагая цифровую подпись к транзакции, владелец кошелька доказывает всем участникам сети, что сделка исходила именно от него, а не от кого-либо другого.

Цифровые подписи используют криптографию для идентификации кошелька и тайно связаны с общедоступным и приватным ключами кошелька. Ваш общедоступный ключ - это аналог вашего банковского счёта, в то время как приватный ключ - ваш пин-код. Не имеет значения, кто знает номер вашего банковского счета, потому что единственное, что с ним смогут сделать, - это внести деньги на ваш счёт. Однако, если они знают ваш пин-код, у вас могут возникнуть реальные проблемы.

В блокчейне приватные ключи используются для шифрования транзакции, а открытый ключ - для дешифровки. Это становится возможным, потому что отправляющая сторона отвечает за транзакцию. Передающая сторона шифрует транзакцию своим приватным ключом, но её можно дешифровать с помощью открытого ключа получателя, потому что единственное назначение этого процесса заключается в верификации отправителя. Если открытый ключ не срабатывает при дешифровке транзакции, она не выполняется.

В такой системе открытый ключ распространяется свободно и тайно соотносится с приватным ключом. Проблемы нет, если открытый ключ известен, но приватный ключ всегда должен находиться в тайне. Несмотря на соотношение двух ключей, вычисление приватного ключа требует невероятных вычислительных мощностей, что делает взлом финансово и технически невозможным.

Необходимость защиты ключа - основной недостаток этой системы. Если кому-то станет известен ваш приватный ключ, он сможет получить доступ к вашему кошельку и совершать с ним любые транзакции, что уже происходило с Bloomberg, когда один из ключей сотрудников был показан по телевизору.

Заключение

Криптография в блокчейне имеет множество разных уровней. В этой статье рассматриваются только основы и общие принципы использования криптографии, однако этот вопрос куда глубже, чем может показаться на первый взгляд.

Важно понимать взаимосвязь между криптографией и технологией блокчейн. Криптография позволяет создать систему, в которой сторонам не нужно доверять друг другу, так как они могут положиться на используемые криптографические методы.

С момента своего появления в 2009 году криптографическая защита блокчейна биткоина выдержала все попытки подделки данных, а их было бесчисленное множество. Новые криптовалюты реализуют ещё более безопасные методы криптографии, некоторые из которых даже защищены от брутфорса квантовых процессоров, то есть предупреждают угрозы будущего.

Без криптографии не могло быть биткоина и криптовалют в целом. Удивительно, но этот научный метод, изобретённый тысячи лет назад, сегодня держит наши цифровые активы в целости и сохранности.