Уход и... Инструменты Дизайн ногтей

Какие процессы называются обратимыми и необратимыми. Второе начало термодинамики. Обратимые и необратимые процессы. Специфика развития систем

Основы термодинамики

Обратимые и необратимые тепловые процессы.

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений.

Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; независимо от того идет ли процесс в прямом или в обратном направлении. Реальные процессы сопровождаются рассеянием энергии (из-за трения, теплопроводности и т.д.), которая нами не рассматривается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по 2-м причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения КПД реальных тепловых двигателей.

Работа газа при изменении его объема.

Работа совершается только тогда, когда изменяется объем.

Найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде. Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

A=Fdl=pSdl=pdV, гдеS-площадь поршня,Sdl=dV-изменение объема системы. Таким образом,A=pdV.(1)

Полную работу А, совершаемую газом при изменении его объема от V1 доV2, найдем интегрированием формулы (1):A=pdV(отV1 доV2).(2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

П

Полная работа газа будет равна площади фигуры, ограниченной осью абсцисс, кривой и значениями V1,V2.

роизведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатахp,V.

Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев их неравновесностью можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному).

Первое начало термодинамики.

Существует 2 способа обмена энергией между телами:

    передача энергии через перенос тепла (посредством теплопередачи);

    через совершение работы.

Таким образом, можно говорить о 2-х формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики:

∆U=Q-A или Q=∆U+A.(1)

Т.е, теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Это выражение в дифференциальной форме будет иметь вид Q=dU+A(2) , гдеdU- бесконечно малое изменение внутренней энергии системы,A- элементарная работа,Q– бесконечно малое количество теплоты.

Из формулы (1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях(Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ∆U=0. Тогда, согласно 1-му началу термодинамики,A=Q,

Т.е вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, - невозможен (одна из формулировок 1-го начала термодинамики).

Применение 1-го начала термодинамики к изопроцессам и к адиабатическому процессу.

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V = const )

При таком процессе газ не совершает работы над внешними телами, т.е A=pdV=0.

Тогда, из 1-го начала термодинамики следует, что вся теплота, переданная телу, идет на увеличение его внутренней энергии: Q=dU. Зная, чтоdU m =C v dT.

Тогда для произвольной массы газа получим Q=dU=m\M*C v dT.

Изобарный процесс (p = const ).

При этом процессе работа газа при увеличении объема от V1 доV2 равнаA=pdV(отV1 доV2)=p(V2-V1) и определяется площадью фигуры, ограниченной осью абсцисс, кривойp=f(V) и значениямиV1,V2. Если вспомнить ур-е Менделеева-Клапейрона для выбранных нами 2-х состояний, то

pV 1 =m\M*RT 1 , pV 2 =m\M*RT 2 , откуда V 1 - V 2 = m\M*R\p(T 2 - T 1). Тогда выражение для работы изобарного расширения примет видA=m\M*R(T 2 -T 1)(1.1).

При изобарном процессе при сообщении газу массой mколичества теплоты

Q=m\M*C p dTего внутренняя энергия возрастает на величинуdU=m\M*C v dT. При этом газ совершает работу, определяемую выражением(1.1).

Изотермический процесс (T = const ).

Этот процесс описывается законом Бойля-Мариотта: pV=const.

Найдем работу изотермического расширения газа: A=pdV(отV1 доV2)=m/M*RTln(V2/V1)=m/M*RTln(p1/p2).

Т.к при Т=constвнутренняя энергия идеального газа не изменяется:dU=m/M*C v dT=0, то из 1-го начала термодинамики (Q=dU+A) следует, что для изотермического процессаQ=A, т.е все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:Q=A=m/M*RTln(p1/p2)=m/M*RTln(V2

Следовательно, чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс.

АП - это процесс, при котором отсутствует теплообмен (Q=0) между системой и окружающей средой. К адиабатическим можно отнести все быстропротекающие процессы. Из 1-го начала термодинамики (Q=dU+A) для адиабатического процесса следует, чтоA= -dU, т.е внешняя работа совершается за счет изменения внутренней энергии системы. Т.о,pdV= -m/M*C v dT(1).

Продифференцировав ур-е состояния для идеального газа,pV=m/M*RT, получим

PdV + Vdp=m/M*RdT.(2)

Исключим из ур-я (1) и (2) температуру T: (pdV+Vdp)/(pdV)= -R/C v = -(C p -C v)/C v .

Разделив переменные и учитывая, что C p /C v =, найдемdp/p= -dV/V.

Интегрируя это ур-е в пределах от p1 доp2 и соответственно отV1 доV2, а затем, потенцируя, придем к выражениюp2/p1=(V1/V2)  , илиp1(V1)  =p2(V2)  .Так как состояния 1 и 2 выбраны произвольно, то можно записать

pV  =const(ур-е адиабатического процесса или ур-е Пуассона).Здесь- показатель адиабаты (или коэффициент Пуассона),=(i+2)/i.

Вычислим работу, совершаемую газом в адиабатическом процессе: A= -m/M*C v dT.

Если газ адиабатически расширяется от объема V1 доV2, то его температура уменьшается отT1 доT2 и работа расширения идеального газа

A= - m/M*C v dT=m/M* C v (T1-T2).

Изохорный, изобарный, изотермический и адиабатический процессы имеют одну особенность – они происходят при постоянной теплоемкости.

Эквиваленты теплоты и работы .

Обмен энергией между термодинамической системой и внешними телами может осуществляться 2мя качественно различными способами: путем совершения работы и путем теплообмена. В отсутствии внешних полей работа совершается при изменении объема или формы системы. Работа A", совершаемая внешнми телами над системой численно равна и противоположна по знаку работе, совершаемой самой системой.

Энтропия.

Помимо внутренней энергии, которая является только функциональной составляющей термодинамической системы, в термодинамике используется еще ряд других функций, описывающих состояние термодинамической системы. Особое место среди них занимает энтропия. Пусть Q - теплота, полученная термодинамической системой в изотермическом процессе, а T - температура, при которой произошла эта передача теплоты. Величина Q/ T называется приведенной теплотой. Приведенное количество теплоты, сообщаемое термодинамической системе на бесконечно малом участке процесса будет равно dQ / T. В термодинамике доказывается, что в любом обратимом процессе сумма приведенных количеств теплоты, передаваемая системе на бесконечно малых участках процесса равна нулю. Математически это означает, что dQ/T - есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от того, каким путем перешла система в такое состояние. Функция, полученный дифференциал которой равен dS= dQ/ T - называется энтропией. Энтропия определяется только состоянием термодинамической системы и не зависит от способа перехода системы в это состояние. S - энтропия. Для обратимых процессов delta S = 0. Для необратимых delta S > 0 - неравенство Клаудио. Неравенство Клаудио справедливо только для замкнутой системы. Только в замкнутой системе процессы идут так, что энтропия возрастает. Если система незамкнута и может обмениваться теплотой с окружающей средой, ее энтропия может вести себя любым образом; dQ = T dS ; При равновестном переходе системы из одного состояния в другое dQ = dU + dA ; delta S = (интеграл 1 - 2) dQ / T = (интеграл) (dU + dA) / T. Физический смысл имеет не сама энтропия, а разность энтропий при переходе системы из одного состояния в другое.

Связь энтропии с вероятностью состояния системы .

Более глубокий смысл энтропии скрывается в статической физике. Энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы. Иными словами W - это число микросостояний, которые реализовывают данные макросостояния.

Больцман методами статистической физики показал, что энтропия S системы и термодинамическая вероятность связаны соотношением: S= k ln (W) ; где k - постоянная Больцмана. Термодинамическая вероятность W не имеет с математической вероятностью ничего общего. Из этого соотношения видно, что энтропия может рассматриваться как мера вероятности состояния термодинамической системы, энтропия является мерой неупорядоченной системы. Чем больше число микросостояний, реализующих данное макросостояние, тем больше ее энтропия.

Второй закон термодинамики .

Количество теплоты, полученное от нагревателя, не может быть целиком преобразовано в механическую работу циклически действующей тепловой машиной. Это и есть 2ой закон: в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от источника энергии - нагревателя. (by Кельвин Copyright 1851). Второй закон связан с необратимостью процессов в природе. Возможна другая формулировка: невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от холодного тела к горячему. Второй закон имеет вероятный характер. В отличие от закона сохранения энергии, второй закон применим лишь к системам, состоящим из очень большого числа частиц. Для таких систем необратимость процессов объясняется тем, что обратный переход должен был бы привести систему в состояние ничтожно малой вероятностью, практически не отличимой от невозможности.

Самопроизвольные процессы в изолированной системе всегда проходят в направлении перехода от маловероятного состояния в более вероятное.

Цикл Карно .

Для создания тепловой машины недостаточно просто иметь нагретое тело (нагреватель), требуется еще 2-е тело – холодильник. Т.о, рабочее тело передает теплоту от нагревателя к холодильнику и попутно совершает полезную работу.

Вкачестве рабочего тела Сади Карно выбрал идеальный газ. Он рассмотрел следующий процесс:

Кривые 1-2, 3-4 – изотермы, кривые 2-3,4-1 – адиабаты.

На участке 1-2 газ получает теплотуQ1 от нагревателя и, расширяясь, совершает работу (т.е расходует полученноеQ1 на совершение работы).Q1=∆U+A1, ∆U=0, т.к. T=const. Q1=A1.

На участке 2-3: газ совершает работу А2, которая равна убыли внутренней энергии; температура понижается. А2= - ∆U2 (температура понижается от Т1 до Т2).

На участке 3-4 :Vуменьшается, Т2=const. Внешние силы совершают работу по сжатию газаA3:Q2= -A3,Q2=A′. От системы отводится количество теплотыQ2: |Q2|=A3.

На участке 4-1 :Vуменьшается,Tувеличивается.A’4=∆U,Q=∆U+A, 0= ∆U4 +A4 =∆U4-A’4,A’4=∆U(внешние силы совершили работу, которая пошла на увеличение внутренней энергии.

Для изотерм A=A1+A3=Q4-|Q2|.

Площадь под изотермой 3-4 меньше, чем под изотермой 1-2 |A’3|<|A1|,Q1>Q2газ получает от нагревателя больше теплоты, чем отдает холодильнику.

За полный цикл: ∆U=0, А=А1 – А’3 - ∆U2(=A2) +A’4, ∆U2=3/2*m/M*R(T2-T1).

A=Q1-|Q2| - 3/2*m/M*R(T2-T1) + (-3/2*m/M*R(T1-T2))=Q1-|Q2|.

Коэффициентом полезного действия тепловой машины называется отношение полезной работы, совершаемой за цикл, к количеству теплоты, полученной системой. Выражается в процентах. =(Q1-|Q2|)/Q1 * 100% (1), или =A/Q1 *100% (2). Эти формулы можно использовать для любой тепловой машины.

Теорема Карно: Q1/T1=|Q2|/T2 (для машины Карно).=(T1-T2)/T1 *100%.

КПД, определяемый формулами (1) и (2) – наибольший возможный. В реальных тепловых машинах КПД меньше.

2.5. Фазовые равновесия и фазовые превращения.

Фаза - это равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний того же вещества.

Переход вещества из одной фазы в другую называется фазовым переходом . При таких переходах меняются механические, тепловые, электрические и магнитные свойства вещества.

Тройная точка .

Кривые плавления и парообразования в пересекаются в точке A. Эту точку называют тройной точкой, т.к. если при давлении p тр. и температуре Tтр некоторые количества вещества в твердом, жидком и газообразном состояниях находятся в контакте, то без подведения или отвода тепла количество вещества, находящегося в каждом из 3х состояний, не изменяется

Из диаграммы состояний видно, что переход вещества при нагревании из твердого состояния в газообразное может совершиться, минуя жидкое состояние. Переход кристалл-жидкость-газ при нормальном атмосферном давлении происходит лишь у тех веществ, у которых давление в тройной точке ниже этого давления. Те же вещества, которых давление в тройной точке превышает атмосферное, в результате нагревания при атмосферном давлении не плавятся, а переходят в газообразное состояние.

Поскольку тройной точке соответствует вполне определенная температура, она может служить опорной точкой термодинамической шкалы.

Реальные газы .

При движении молекулы вдали от стенок сосуда, в котором заключен газ, на нее действуют силы притяжения соседних молекул, но равнодействующая всех этих сил в среднем равна нулю, т.к. молекулу со всех сторон окружает в среднем одинаковое число соседей. При приближении некоторой молекулы к стенке сосуда все остальные молекулы газа оказываются по одну сторону от нее и равнодействующая всех сил притяжения оказывается направленной от стенки сосуда внутрь газа. Это приводит к тому, что уменьшается импульс, передаваемый молекулой стенке сосуда. В результате давление газа на стенки сосуда уменьшается по сравнению с тем, каким оно было бы в отсутствие сил притяжения между молекулами: p = p идеального + delta p. Вместо уравнения идеального газа получаем p + delta p = nkT ; delta p = a/V(ст.2);

Где a - постоянная, зависящая от вида газа. Для одного моля газа получаем p+a/V(ст.2) = R T / V ; Поправка: при любых давлениях, объем газа не может стать равным нулю.

Уравнение Ван-дер-Ваальса :

(p + a / V (ст.2)) (V - b) = RT, где b - так называемый "запрещенный объем"

Критическая температура .

Было установлено, что из газообразного состояния в жидкое можно перевести любое вещество. Однако каждое вещество может испытать такое превращение лишь при температурах ниже определенной, так называемой критической температуры Tк. При температуре выше критической вещество не превращается в жидкость или твердое тело ни при каких давлениях. При критической температуре средняя кинетическая энергия теплового движения молекул вещества примерно равна модулю потенциальной энергии их связи в жидкости или твердом теле. Т. к. силы притяжения, действующие между молекулами разных веществ, различны, неодинакова и потенциальная энергия их связи, отсюда различными оказываются критические температуры для различных веществ.

Диаграмма состояний вещества .

Чем выше температура жидкости, тем больше плотность и давление ее пара. Геометрическим местом точек, отмечающих на диаграмме p, T равновесные состояния между жидким и газообразным состояниями вещества, является кривая AK (рисунок - график, правая часть параболы - CB выходит не из нуля, а чуть выше и правее; из точки A этой кривой, чуть дальше, выходит еще более широкая часть параболы - AK; все пространство делится на 3 части таким образом - твердое тело, жидкость и газ; оси - T и p).

Процесс испарения твердых тел называется сублимацией.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ

Пути изменения состояния термодинамич. системы. Процесс наз. обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежут. состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализир. случай, достижимый лишь при бесконечно медленном изменении термодинамич. параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы наз. необратимым.

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы , теплопроводность, вязкое течение и др. Для хим. р-ции применяют понятия термодинамич. и кинетич. обратимости, к-рые совпадают только в непосредств. близости к состоянию равновесия. Р-ция А + В С + D наз. кинетически обратимой или двусторонней, если в данных условиях продукты С и D могут реагировать друг с другом с образованием исходных в-в А и В. При этом скорости прямой и обратной р-ций, соотв. , где и -константы скорости, [А], [В], [С], [D]- текущие концентрации (активности), с течением времени становятся равными и наступает химическое равновесие, в к-ром -константа равновесия., зависящая от т-ры. Кинетически необратимыми (односторонними) являются обычно такие р-ции, в ходе к-рых хотя бы один из продуктов удаляется из зоны р-ции (выпадает в осадок, улетучивается или выделяется в виде малодиссоциированного соед.), а также р-ции, сопровождающиеся выделением большого кол-ва тепла.

На практике нередко встречаются системы, находящиеся в частичном равновесии, т. е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Напр., образец закаленной стали обладает пространств. неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы мех. деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Необратимые процессы сопровождаются диссипатив-ными эффектами, сущностью к-рых является производство (генерирование) энтропии в системе в результате протекания рассматриваемого процесса. Простейшее выражение закона диссипации имеет вид:


где средняя т-ра, i S-> производство энтропии, - т. наз. нескомпенсированная теплота Клаузиуса (теплота диссипации).

Обратимые процессы, будучи идеализированными, не сопровождаются диссипативными эффектами. Микроско-пич. теория О. и н. п. развивается в статистической термодинамике. Системы, в к-рых протекают необратимые процессы, изучает термодинамика необратимых процессов.

Лит. см. при ст. Химическая термодинамика. Е. П. Агеее.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ" в других словарях:

    Физич. процессы, к рые могут самопроизвольно протекать только в одном определённом направлении. К ним относятся: диффузия, теплопроводность, термодиффузия, вязкое течение и др., при к рых происходит направленный пространств. перенос в ва… … Физическая энциклопедия

    Физические процессы, которые могут самопроизвольно протекать только в одном определённом направлении. К ним относятся: процессы диффузии (См. Диффузия), теплопроводности (См. Теплопроводность), термодиффузии (См. Термодиффузия), вязкого… …

    См. Обратимые и необратимые процессы … Химическая энциклопедия

    Закон неубывания энтропии: «В изолированной системе энтропия не уменьшается». Если в некоторый момент времени замкнутая система находится в неравновесном макроскопическом состоянии, то в последующие моменты времени наиболее вероятным следствием… … Википедия

    Превращение в нечто другое. И. характеризуется направлением, интенсивностью, скоростью и длительностью. Гераклит считал И., истолкованное как движение, универсальным свойством; элеаты полагали, что И. чистая видимость, поскольку бытие неподвижно … Философская энциклопедия

    - (неравновесная термодинамика), изучает общие закономерности поведения систем, не находящихся в состоянии термодинамического равновесия. В таких системах имеют место разнообразные неравновесные процессы (теплопередача, диффузия, электрич. ток, хим … Химическая энциклопедия

    Отдел химии, занимающийся превращениями внутренней энергии тел в тепло при химических процессах. Почти каждая химическая реакция связана с тем или иным тепловым эффектом: химическое превращение сопровождается или выделением, или поглощением тепла … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Хим. р ция реализуется как совокупность множества дискретных актов хим. превращения, в каждом из к рых участвует лишь одна или небольшое число частиц (молекул, атомов, ионов). Если среди актов р ции имеются химически различающиеся, то р ция наз.… … Химическая энциклопедия

    Наука о наиболее общих свойствах макроскопических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими состояниями. Т. строится на основе фундаментальных принципов (начал), которые являются… … Большая советская энциклопедия

    Процесс - (Process) Определение процесса, виды и типы процессов Информация об определении процесса, виды и типы процессов Содержание Содержание Определение Исторический Бизнес процесс Тепловой процесс Адиабатический процесс Изохорный процесс Изобарный… … Энциклопедия инвестора

Книги

  • Занимательная физика. Термодинамика. Манга , Харада Т., Кавамото Р.. Клуб "Необуч" - лаборатория необычных вкусов - переживает нелёгкие времена. Грядёт университетская проверка, в ходе которой члены клуба должны предъявить результаты своей деятельности. Но…

Для выяснения понятия «обратимый» и «необратимый» процесс в термодинамическом смысле рассмотрим изотермическое расширение 1 моль идеального газа. Представим себе, что 1 моль идеального газа находится в цилиндре (рис.2), снабженном невесомым поршнем, который может перемещаться вдоль стенок без трения. Давление, которое газ оказывает на стенки цилиндра и поршень, уравновешено кучкой мельчайшего песка. Цилиндр помещен в термостат. Стенки цилиндра обладают идеальной теплопроводностью, так, что при расширении газа или при его сжатии температура не меняется. В начальный момент газ занимает объем V 1 и находится под давлением Р 1 . Исходное состояние такой системы на графике P = f(V) изображено точкой 1 (рис.3).

Начнем снимать по одной песчинке с поршня. Давление при снятии одной песчинки будет падать, а объем возрастает на бесконечно малую величину. Так как изменение давления бесконечно мало, то можно считать, что давление газа по всему объему одинаково и равно внешнему давлению на поршень.

Снимая песчинки, можно достичь состояния 2, в котором газ будет иметь давление Р 2 и объем V 2 . Графически этот бесконечно медленный процесс изображается плавной кривой 1 – 2. Работа, которую совершает газ в этом процессе, численно равна площади, ограниченной изотермой расширения, двумя ординатами Р 1 и Р 2 и отрезком на оси абсцисс V 2 – V 1 . Обозначим работу через А 1–2 .

Представим себе обратный процесс. Мы последовательно переносим на поршень по одной песчинке. В каждом случае давление будет возрастать на бесконечно малую величину. В конце концов мы сможет перевести систему из конечного состояния 2 в начальное состояние 1. Графически этот процесс будет изображаться той же самой плавной кривой 2–1, но протекать в обратном направлении. Таким образом, система при переходе из конечного состояния в начальное будет проходить через те же промежуточные состояния давления и объема как в прямом, так и в обратном процессах, изменения происходят на бесконечно малые величины и система в каждый момент времени находилась в равновесном состоянии, а переменные, определяющие состояние системы (Р и V), в каждый момент времени отличались от равновесных значений на бесконечно малые величины. Работа, которую совершает окружающая среда над системой в обратном процессе А 2–1 , будет равна, но обратно по знаку работе прямого процесса:

А 1 – 2 = – А 2 – 1 А 1 – 2 + А 2 – 1 = 0

Следовательно, при переходе из состояния 1 в состояние 2 и обратно в окружающей среде и в самой системе никаких изменений не останется. Обратимый процесс – процесс, в результате которого система может возвратиться в исходное состояние без изменений в окружающей среде.


Из сказанного следует, что обратимые процессы протекают с бесконечно малыми скоростями. Только при этих условиях система в каждый данный момент времени будет находиться в состоянии, бесконечно мало отличающемся от равновесного. Такие процессы называют равновесными.

Проведем процесс расширения одного моль идеального газа с конечной скоростью. Для этого давление газа в цилиндре уравновесим некоторым количеством гирек равной массы (рис.4).

Перевод системы из состояния 1 в состояние 2 будет осуществлять последовательным снятием гирек. При снятии одного грузика внешнее давление упадет на конечную величину (см. нижнюю ломанную кривую, рис.3), объем газа увеличивается с конечной скоростью и через некоторое время достигает равновесного значения. Проведем эту операцию последовательно, несколько раз, пока газ не достигнет конечного состояния 2. Графически этот процесс изображен на рис. 3 нижней ломаной кривой. Работа расширения, которую при этом совершает газ, численно равна площади, ограниченной нижней ломаной линией, двумя ординатами Р 1 и Р 2 и отрезком на оси абсцисс V 2 – V 1 . Как видно из рис. 3, она будет меньше работы при обратимом расширении газа. Проведем этот процесс в обратном направлении. Для этого на поршень последовательно будем ставить грузики. Каждый раз при этом давление увеличивается на конечную величину, а объем газа уменьшается и через некоторое время достигает равновесного значения. После того, как на поршень будет поставлен последний грузик, газ достигнет исходного состояния. Графически этот процесс на рис.3 изображен верхней ломаной кривой. Работа, которую при этом производит окружающая среда над газом (работа сжатия), численно равна площади, ограниченной верхней ломаной линией, двумя ординатами Р 1 и Р 2 и отрезком на оси абсцисс V 2 – V 1 . Сопоставляя диаграммы сжатия и расширения отметим, что при изменении состояния газа с конечной скоростью работа обратного процесса по абсолютной величине больше работы прямого процесса:

А 1 – 2 < – А 2 – 1 (9)

А 1 – 2 + А 2 – 1 < 0 (10)

Это означает, что возвращение системы из конечного состояния в начальное происходит по другому пути и в окружающей среде остаются какие–то изменения.

Необратимый процесс – процесс, после которого система не может возвратиться в исходное состояние без изменений в окружающей среде.

При протекании необратимого процесса в каждый данный момент времени система не находится в состоянии равновесия. Такие процессы называются неравновесными.

Все самопроизвольные процессы протекают с конечными скоростями и поэтому являются необратимыми (неравновесными) процессами.

Из сопоставления диаграмм расширения следует, что работа, совершаемая системой в обратимом процессе, больше, чем необратимым:

А обр. > А необр (11)

Все реальные процессы в той или иной мере могут приближаться к обратимым. Работа, производимая системой, достигает максимального значения, если система совершает обратимый процесс:

А обр. = А max (12)

Работу, производимую системой при переходе из одного состояния в другое, в общем случае, можно представить как сумму работы расширения и других видов работы (работы против электрических, поверхностных, гравитационных и т.п. сил). Сумму всех видов работы, производимой системой за вычетом работы расширения, называют полезной работой. Если переход системы из состояния 1 в состояние 2 был осуществлен обратимо, то работа этого процесса будет максимальной (А max), а работа за вычетом работы расширения – максимальной полезной работой (А¢ max):

А max = А¢ max + рDV (13)

А¢ max = А max – рDV (14)

Самопроизвольные и несамопроизвольные процессы

В любой системе два произвольно выбранные состояния (1 и 2) различаются тем, что процесс перехода из состояния 1 в состояние 2 протекает самопроизвольно, а обратный процесс перехода из состояния 2 в состояние 1 самопроизвольно не идет.

Отсюда можно заключить, что существует какой–то объективный критерий, позволяющий установить принципиальное различие между рассматриваемыми двумя состояниями системы.

Очевидно, что невозможно искать критерий направления отдельно, для любого мыслимого конкретного процесса в любой системе; логично рассмотреть какой–нибудь один, по возможности, простой процесс, для которого многовековый практический опыт позволяет четко указать, какое направление самопроизвольно, а какое несамопроизвольно. Опираясь на этот пример, можно доказать, что в природе существует некоторая функция состояния, изменение которой в любом мыслимом процессе, а не только в том, который был выбран для формулировки исходного постулата, позволяет однозначно определять, какие процессы самопроизвольны, а какие – нет.

Рассмотрим изолированную систему, состоящую из теплового резервуара, 1 моль идеального газа, заключенного в цилиндре с подвижным поршнем и устройства, позволяющего за счет перемещения поршня совершать работу.

Предположим, что газ обратимо изотермически расширяется от объема V 1 до V 2 (рис.5) и совершает работу А 1 . Энергия на совершение работы передается в форме тепла из резервуара. Совершаемая газом работа эквивалента полученной от резервуара энергии (Q 1):

Q 1 = = A 1 (15)

Функция определятся не только изменением объема, но и температурой. Разделим обе части уравнения на Т:

Из полученного равенства видно, что изменения, происходящие в изолированной системе при протекании обратимого процесса, могут быть охарактеризованы величиной , которая определяется только исходным (V 1) и конечным (V 2) состоянием системы. Увеличение параметра цилиндра с газом эквивалентно уменьшению параметра для теплового резервуара, то есть – = 0.

В предельном случае необратимого (самопроизвольного) расширения идеального газа от V 1 до V 2 , т.е. при расширении в вакууме, процесс происходит без совершения газом работы, т.к. Р = 0, следовательно pDV = 0, и соответственно передачи энергии от резервуара в форме тепла не происходит: Q = 0. Таким образом, изменение внутренней энергии (DU) для газа равно нулю (рис.6).

Однако состояние газа в резервуаре изменилось на величину , а состояние резервуара – нет. Поэтому в целом состояние системы изменилось (увеличилось) на величину ; >0.

Таким образом, протекание самопроизвольного процесса в изолированной системе в общем случае связано с возрастанием характеристики (параметра) состояния системы, которая получила название энтропии.

Из рассмотренного выше примера следует, что самопроизвольно в изолированной системе протекают те процессы, которые приводят к возрастанию энтропии системы. Таким образом, второй закон термодинамики гласит: «Если в изолированной системе протекают самопроизвольные процессы, то ее энтропия возрастает» (закон возрастания энтропии).

Если энтропия системы в исходном состоянии может быть выражена как: S 1 = RlnV 1 , а в конечном состоянии S 2 =R×lnV 2 , то изменение энтропии в результате протекания обратимого процесса DS = S 2 – S 1 = или

DS/обратимого процесса/ =

Соответственно для необратимого процесса

DS/необратимого процесса/ >

Справедливость последнего выражения легко показать, исходя из первого закона термодинамики. В соответствии с первым законом термодинамики

DU = Q – A (17)

Переведем систему из состояния 1 в состояние 2 обратимым и необратимым путем:

DU обр. = Qобр. – Аобр. (18)

DU необр. = Qнеобр. – Анеобр. (19)

Так как внутренняя энергия является функцией состояния, то DU обр. = DU необр.

Известно также, что Аобр. > А необр. Следовательно, Qобр. > Q необр.

DS не зависит от пути процесса, т.к. является функцией состояния, т.e.

DSобр. = DS необр.,

DS/необр./ > (20)

или в общем случае

Знак равенства относится к обратимым, знак неравенства – к необратимым процессам. Уравнение (21) является математическим выражением второго закона термодинамики.

Изменение энтропии изолированной системы

Для изолированной системы Q = 0, т.к. система не обменивается с окружающей средой ни веществом, ни энергией и соответственно:

т.е. при протекании в изолированной системе необратимых (самопроизвольных) процессов энтропия изолированной системы увеличивается:

Это неравенство является критерием, определяющим направление протекания самопроизвольных процессов. Из уравнения (23) также следует, что какие бы процессы в изолированной системе не протекали, ее энтропия не может уменьшаться. Так как самопроизвольные процессы в изолированных системах идут с увеличением энтропии, то при достижении равновесия энтропия изолированной системы будет максимальной, а ее изменение равно нулю.

Sравн.= Smax (24)

DSравн.= 0 (25)

Уравнения (24,25) являются критериями равновесия изолированных систем.

Статистическая природа второго закона термодинамики

В то время как первое начало термодинамики является всеобщим законом природы, не знающим ограничений и применимым к любым системам, второй закон термодинамики представляет собой статистический закон, справедливый для макроскопических систем, состоящих из очень большого числа частиц (молекул, атомов, ионов), для которых применимы физические понятия, имеющие статистическую природу, такие, например, как температура и давление.

Из курса физики известно, что состояние и свойства любой макроскопической системы, состоящей из совокупности большого числа частиц, могут быть описаны с помощью статистической механики. Сущность статистического описания макросистем состоит в применении к совокупности большого числа частиц основных положений теории вероятности, а к отдельным частицам законов классической механики. Такой подход дает возможность объяснить многие свойства макроскопических систем, а также установить закономерности процессов, протекающих в этих системах.

С точки зрения статистической механики второе начало термодинамики, как это впервые показал. Л.Больцман, сводится к утверждению, что все самопроизвольные процессы в макроскопических системах протекают в направлении от менее вероятного к более вероятному состоянию системы.

Таким образом, процессы, запрещенные вторым началом, например, самопроизвольный переход тепла от менее нагретого тела к более нагретому, оказывается не невозможным, а крайне маловероятным, вследствие чего они не наблюдаются.

Любое данное состояние системы характеризуется определенной термодинамической вероятностью и, чем больше последняя, тем ближе система приближается к состоянию равновесия. В состоянии равновесия система обладает максимальной термодинамической вероятностью. Таким образом, вероятность состояния системы, так же как и энтропия, могут быть использованы в качестве критерия направления самопроизвольных процессов и условий, при которых система достигает равновесного состояния Л.Больцман предложил следующее уравнение, устанавливающее связь между энтропией (S) и термодинамической вероятностью (W):

где k – постоянная Больцмана, численное равная отношению газовой постоянной R к числу Авогадро N A , т.е. k = , W – термодинамическая вероятность системы, т.е. число микросостояний, которыми можно осуществить данное макросостояние системы.

Абсолютные и стандартные энтропии

При абсолютном нуле энтропия идеального кристалла чистого вещества равна нулю (постулат Планка).

Справедливость постулата Планка, называемого третьим законом термодинамики, следует из экспериментальных данных о зависимости теплоемкости кристаллических веществ от температуры, а также из статистического характера второго закона термодинамики. При абсолютном нуле данное макросостояние кристалла чистого вещества, кристаллическая решетка которого не имеет каких–либо дефектов, предельно упорядочено и может быть реализовано единственным способом. Следовательно, термодинамическая вероятность при абсолютном нуле равна 1.

На основании постулата Планка можно вычислить абсолютное значение энтропии. Зная, что dS= , a dQ = CdT, dS= , где С – молярная теплоемкость данного вещества. Интегрируя последнее уравнение в пределах от абсолютного нуля до Т, получим:

Энтропию S T называют абсолютной энтропией, она численно равна изменению энтропии при равновесном переходе 1 моль кристаллического вещества от абсолютного нуля до данной температуры.

Вычисление абсолютной энтропии по уравнению (28) возможно лишь в том случае, если известна зависимость теплоемкости данного вещества от температуры.

Абсолютную энтропию тела в стандартном состоянии при данной «Т» называют стандартной энтропией и обозначают через ; чаще всего ее табулируют при 298,15К и обозначают через .

Важно подчеркнуть, что постулат Планка дает возможность вычислить абсолютное значение энтропий различного рода веществ при данном их состоянии, тогда как для других термодинамических функций, например, внутренней энергии и энтальпии могут быть определены только их изменения при переходе данной системы из одного состояния в другое.

Расчет изменения энтропии для протекании химического процесса

Изменение энтропии химического процесса равно алгебраической сумме стандартных энтропий участников реакции, с учетом их стехиометрических коэффициентов, причем энтропии продуктов реакции берутся со знаком плюс, а энтропии исходных веществ – со знаком минус.

Для реакции, протекающей по следующему уравнению: aA + bB ® mM + nN

DS = (m + n ) – (a ) (29)

Например, изменение энтропии реакции

H 2 (г) + Cl 2 (г) = 2HCl(г)

если (г) = 130,6 Дж.моль –1 К –1 ; (г) = 36,69 Дж.моль –1 К –1 ;

(г) = 186,70 Дж.моль –1 К –1

в соответствии с уравнением (29) равно:

DS = 2×186,70 – 130,6 – 36,69 = 206,11 Дж.моль –1 К –1 ;

Энергия Гиббса

По изменению энтропии можно судить о направлении и пределах протекания процессов только в изолированных системах. В случае закрытых и открытых систем необходимо также учитывать изменение энтропии окружающей среды. Решение последней задачи или крайне сложно, или невозможно. Поэтому в термодинамике для изучения открытых или закрытых систем используют другие термодинамические функции – так называемые термодинамические потенциалы, изменение которых позволяет определять направление процессов и пределы их протекания без учета изменений их в окружающей среде. В частности, к термодинамическим потенциалам относится функция состояния, называемая энергией Гиббса, которую обозначают через G. Понятие об энергии Гиббса было введено на основе объединенного уравнения первого и второго законов термодинамики. Объединенное уравнение может быть выведено следующим образом.

Из первого закона термодинамики следует:

A = Q – DU (30).

Из второго закона термодинамики получаем для обратимого процесса:

для необратимого процесса: Q < TDS (32)

Подставляя значение Q из уравнения (31) и уравнения (32) в уравнение (30) находим:

для обратимого процесса А обр. =TDS – DU (33)

для необратимого процесса Анеобр. = < TDS – DU (34)

Уравнение (33) называют объединенным уравнением первого и второго начал термодинамики для обратимых процессов. Так как внутренняя энергия и энтропия являются функциями состояния, то их изменение не зависит от того, как протекает данный процесс, обратимо или необратимо, следовательно:

ТDS обр. – DUобр. = TDSнеобр. – DUнеобр. и Аобр. > Анеобр. т.е. работа, совершаемая при обратимом процессе, больше работы, производимой системой при необратимом процессе при условии, что начальное и конечное состояния системы одинаковы в обоих случаях. Имея в виду, что работа, производимая системой, при обратимом процессе является максимальной для данного изменения состояния системы, преобразуем уравнение (33):

Amax = T(S 2 – S 1) – (U 2 – U 1)

Группируя величины с одинаковыми индексами, получаем:

Amax = (U 1 – TS 1) – (U 2 – TS 2) (35)

т.к. U и S – функции состояния, то величина (U – TS) должна быть также функцией состояния.

Если система, кроме полезной работы, совершает работу, против силы внешнего давления (p = const), то для обратимого процесса Amax = А¢max + pDV

или А¢max = Amax – pDV, где А¢max – максимальная полезная работа, совершаемая системой в обратимом изобарно–изотермическом процессе. Из уравнения (35) получаем для обратимого процесса:

Amax = TDS – DU –pDV (36)

для необратимого процесса: Amax < TDS – DU –pDV (37)

учитывая, что DV =V 2 – V 1 , получаем:

А¢max = U 1 – U 2 + TS 2 – TS 1 – pV 2 + pV 1

Группируя величины с одинаковыми индексами, находим:

А¢max = (U 1 – TS 1 + pV 1) – (U 2 – TS 2 + pV 2) (38)

Величину (U – TS + pV), которая является функцией состояния, т.к. U,S и V суть функции состояния, называют энергией Гиббса и обозначают через G. Раньше эту функцию состояния называли изобарно–изотермическим потенциалом.

Таким образом,

G = U – TS + pV (39)

Имея в виду последнее уравнение, можно записать:

А¢max = G 1 – G 2 т.к.

DG = G 2 – G 1 , А¢max = –DG (40)

Из уравнения (40) следует, что максимальная полезная работа, совершаемая системой в обратимом изобарно–изотермическом процессе, равна уменьшению энергии Гиббса. Для необратимого процесса, путем аналогичного преобразования справедливо:

А¢необр. < – DG (41),

т.е. уменьшение энергии Гиббса в необратимом процессе больше производимой системой полезной работы.

Зная, что U + pV = Н, уравнение (40) можно переписать следующим образом:

G = H – TS (42)

DG = DH – TDS (43)

Последнее уравнение может быть представлено следующим образом:

DG = DU + pDV – TDS

DU = DG – pDV + TDS,

из чего следует, что изменение внутренней энергии системы можно представить как сумму трех слагаемых: DG – часть внутренней энергии системы, способная при изобарно–изотермических условиях превратиться в работу, pDV – часть внутренней энергии, затрачиваемая системой на совершение работы против сил внешнего давления, и TDS – «связанная энергия», представляющая собой часть внутренней энергии, которая в указанных условиях не может быть превращена в работу. «Связанная энергия» тем больше, чем больше энтропия данной системы. Таким образом, энтропию можно рассматривать как меру «связанной энергии».

Из уравнений (40 и 41) следует, что величина DG служит мерой способности системы производить работу и поэтому решить вопрос, может ли реакция протекать самопроизвольно. Реакция протекает самопроизвольно только в том случае, если происходит уменьшение энергии Гиббса системы. Такие реакции называют экзергоническими, если же энергия Гиббса системы возрастает, то для осуществления реакции необходимо затратить работу. Такие реакции называют эндергоническими.

Реакцию, которая в данных условиях не является самопроизвольной, поскольку протекание ее связано с увеличением «свободной энергии», можно осуществить путем сопряжения ее с другой реакцией, характеризующейся достаточно большой отрицательной величиной изменения энергии Гиббса. Условием такого сопряжения будет наличие интермедиата, т.е. общего для обоих реакций вещества.

1. А + В ⇄ С + Д > 0

2. Д + К ⇄ М + Г < 0

3. А + В + К ⇄ С + М + Г < 0

Для живых организмов можно привести много примеров сопряженных реакций. Особенно большое значение имеют реакции гидролиза таких соединений, как аденозинтрифосфат (АТФ), аденозиндифосфат (АДФ), аргининфосфат, креатинфосфат, характеризующиеся величинами изменения энергии Гиббса от – 29,99 до – 50,21 кДж/моль.

Расчет D G 0 в химических реакциях

1. Стандартная свободная энергия образования (D G 0) вещества – изменение свободной энергии реакции образования этого соединения из элементов при стандартных условиях.

D G 0 реакции = å D G 0 продукты реакции – å D G 0 исх.в–ва (44)

где D G 0 продукты реакции – стандартная свободная энергия образования продуктов реакции; D G 0 исходные вещества – стандартная свободная энергия образования исходных веществ. Свободная энергия образования любого элемента в стандартном состоянии принимается за нуль.

С 12 Н 22 О 11 + Н 2 О ® С 6 Н 12 О 6 + С 6 Н 12 О 6

Из справочной таблицы найдем, что:

D G 0 (L, Д – глюкоза) = – 916,34 кДж/моль

D G 0 (фруктоза) = – 914,50 кДж/моль

D G 0 (H 2 O ж) = – 237,3 кДж/моль

D G 0 (сахароза) = – 1550,36 кДж/моль

D G 0 реакции=(–916,34+(–914,50))–(–1550,36 + (–237,3)) =­– 43,18 кДж/моль

Реакция гидролиза сахарозы при стандартных условиях будет протекать самопроизвольно.

2. Если известны значения D Н 0 и D S 0 , можно рассчитать D G 0 реакции по формуле:

D G 0 = D Н 0 – Т D S 0

С (графит) + 2Н 2 (г) = СН 4 (г)

Из найденных в справочной литературе данных D Н 0 обр и S 0 составляем таблицу:

Из приведенных в таблице значений мы можем найти D Н 0 и D S 0 для реакции. D Н 0 реакции= D Н 0 обр.СН 4 (г)– D Н 0 обр.С(графит)–2 D Н 0 обр.Н 2 (г)=–74,81кДж–(0+0)=74,81КДж

D S 0 реакции=S 0 CН 4 (г)–=186,3Дж/К моль–5,74Дж/К моль–2×130,7 Дж/К моль=–80,84 Дж/К моль

Значение D Н 0 и D S 0 подставляем в формулу D G 0 = D Н 0 – Т D S 0:

D G 0 реакции=–74,81кДж–(298К)(–80,84Дж/К)(1кДж/1000Дж)=–74,81кДж–(–24,09кДж)=–50,72кДж.

Термодинамика химического равновесия

Учение о химическом равновесии является одним из важнейших разделов физической химии. Начало учению о химическом равновесии было положено работами французского ученого Бертолле (1799 г.) и в наиболее общем виде развито норвежскими учеными: Гульдбергом и Вааге (1867 г.), установившими закон действующих масс.

Химическое равновесие устанавливается в системах, в которых протекают обратимые химические реакции.

Обратимой химической реакцией называют такую реакцию, продукты которой, взаимодействуя между собой в тех же условиях, при которых они получены, образуют некоторые количества исходных веществ.

С эмпирической точки зрения химическим равновесием называют состояние обратимой химической реакции, при котором концентрации реагирующих веществ в данных условиях не меняются со временем.

Примерами обратимых химических реакций являются: реакция получения иодоводорода из водорода и иода: H 2 (г) + I 2 (г) ⇄ 2HI(г),

реакция этерификации: C 2 H 5 OH(ж) + CH 3 COOH(ж) ⇄ C 2 H 5 COOCH 3 (ж) + H 2 O(ж),

так как образующиеся продукты реакции – иодоводород и уксусно–этиловый эфир способны в тех же условиях, при которых они получены, образовывать исходные вещества.

Необратимой химической реакцией называют такую реакцию, продукты которой не взаимодействуют друг с другом при тех же условиях, в которых они получены, с образованием исходных веществ.

Примерами необратимых химических реакций могут служить: реакция разложения бертолетовой соли на кислород и хлорид калия:

2KCIO 3 (т) ® 2KCI(т) + 3O 2 (г)

Образующиеся в этих случаях продукты реакция не способны взаимодействовать друг с другом с образованием исходных веществ.

Как известно, химическое равновесие является динамическим и устанавливается, когда скорости прямой и обратной реакции становятся одинаковыми, вследствие чего и не меняются со временем концентрации реагирующих веществ.

Понятия об обратимых и необратимых химических реакциях не следует путать с понятиями об обратимых и необратимых процессах в термодинамическом смысле.

Концентрации исходных веществ и продуктов реакции, установившиеся в системе, достигшей состояние равновесия, называются равновесными.

Отношение произведения равновесных концентраций продуктов реакции, возведенных в степени, показатели которых равны их стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, показатели которых равны их стехиометрическим коэффициентам, для данной обратимой реакции, есть величина постоянная при данной температуре. Эта величина получила название константы химического равновесия. Например, для реакции: аА + вВ сС + дД– константа химического равновесия (К х.р.) равна:

К х.р. = [C] c [D] d /[A] a [B] b (45)

Выражение (46) является математическим выражением закона действующих масс, установленного в 1867 г. норвежскими учеными Гульдбергом и Вааге.

Первый закон термодинамики – закон сохранения энергии для тепловых процессов – устанавливает связь между количеством теплоты Q, полученной системой, изменением ΔU ее внутренней энергии и работой A, совершенной над внешними телами:

Количество теплоты, сообщенное системе, идёт на изменение её внутренней энергии и на совершение работы протии внешних сил.

Процессы, нарушающие первый закон термодинамики, никогда не наблюдались. Однако, этот закон не дает никаких сведений о том, в каком направлении развиваются процессы, удовлетворяющие принципу сохранения энергии.

Различают обратимые и необратимые термодинамические процессы.

Обратимым термодинамическим процессом называется процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

При осуществлении обратимого процесса система переходит из одного равновесного состояния в другое. Процессы, в ходе которых система все время остается в состоянии равновесия, называются квазистатическими. Все квазистатические процессы обратимы. Все обратимые процессы являются квазистатическими.

Если рабочее тело тепловой машины приводится в контакт с тепловым резервуаром, температура которого в процессе теплообмена остается неизменной, то единственным обратимым процессом будет изотермический квазистатический процесс, протекающий при бесконечно малой разнице температур рабочего тела и резервуара. При наличии двух тепловых резервуаров с разными температурами обратимым путем можно провести процессы на двух изотермических участках. Поскольку адиабатический процесс также можно проводить в обоих направлениях (адиабатическое сжатие и адиабатическое расширение), то круговой процесс, состоящий из двух изотерм и двух адиабат (цикл Карно ) является единственным обратимым круговым процессом, при котором рабочее тело приводится в тепловой контакт только с двумя тепловыми резервуарами.

Первый закон термодинамики не устанавливает направление тепловых процессов. Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми.

Необратимым термодинамическим процессом называется процесс, не допускающий возможности возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения. Такой процесс в прямом направлении протекает самопроизвольно, а для осуществления его в обратном направлении так, чтобы система вернулась в первоначальное состояние, требуется компенсирующий процесс во внешних телах, в результате которого состояние этих тел оказывается отличным от первоначальных.

Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой. Следовательно, процесс теплообмена при конечной разности температур является необратимым.

Все остальные круговые процессы, проводимые с двумя тепловыми резервуарами, необратимы. Необратимыми являются процессы превращения механической работы во внутреннюю энергию тела из-за наличия трения, процессы диффузии в газах и жидкостях, процессы перемешивания газа при наличии начальной разности давлений и т. д.

Все реальные процессы необратимы , но они могут сколь угодно близко приближаться к обратимым процессам. Обратимые процессы являются идеализацией реальных процессов.

Односторонняя направленность макроскопических процессов психологически воспринимается как однонаправленность времени.

Второй закон термодинамики

Опыт показывает, что разные виды энергии неравноценны в отношении способности превращаться в другие виды энергии. Механическую энергию можно целиком превратить во внутреннюю энергию любого тела. Для обратных превращений внутренней энергии в другие виды энергии существуют определенные ограничения: запас внутренней энергии ни при каких условиях не может превратиться целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано протекание процессов в природе.

Второй закон термодинамики связан непосредственно с необратимостью реальных тепловых процессов. Энергия теплового движения молекул качественно отличается от всех других видов энергии – механической, электрической, химической и т. д. Энергия любого вида, кроме энергии теплового движения молекул, может полностью превратиться в любой другой вид энергии, в том числе и в энергию теплового движения. Последняя может испытать превращение в любой другой вид энергии лишь частично. Поэтому любой физический процесс, в котором происходит превращение какого-либо вида энергии в энергию теплового движения молекул, является необратимым процессом, то есть он не может быть осуществлен полностью в обратном направлении. Общим свойством всех необратимых процессов является то, что они протекают в термодинамически неравновесной системе и в результате этих процессов замкнутая система приближается к состоянию термодинамического равновесия.

Направление самопроизвольно протекающих процессов устанавливает второй закон (начало) термодинамики. Он может быть сформулирован в виде запрета на определенные виды термодинамических процессов.

Этот закон представляет собой результат обобщения огромного числа опытных данных.

Формулировки второго начала термодинамики:

1) по Карно: наибольший КПД тепловой машины не зависит от рода рабочего тела и вполне определяется предельными температурами, между которыми машина работает.

2) по Клаузиусу: невозможен процесс единственным результатом1 которого является передача энергии в форме теплоты от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики не запрещает переход теплоты от менее нагретого тела к более нагретому, такой переход осуществляется в холодильной машине, но при этом внешние силы совершают работу над системой, т.е. этот переход не является единственным результатом процесса.

3) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

На первый взгляд может показаться, что такой формулировке противоречит процесс изотермического расширения идеального газа. Действительно, все полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объема газа.

4) по Оствальду: осуществление вечного двигателя второго рода невозможно.

Вечным двигателем второго рода называется периодически действующее устройство, которое совершает работу только за счет охлаждения одного источника теплоты.

Примером такого двигателя мог бы служить судовой двигатель, получающий тепло из моря и использующий его для движения судна. Такой двигатель был бы практически вечным, т.к. запас энергии в окружающей среде практически безграничен.

Все формулировки второго закона термодинамики эквивалентны.

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло у нагревателя, отдав холодильнику и совершив при этом работу . После этого воспользуемся процессом Клаузиуса и вернем тепло от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.

С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса. Таким образом, постулаты Клаузиуса и Томсона эквивалентны.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Энтропия

Энтропия (от греч. entropía - поворот, превращение), понятие, впервые введенное в термодинамику Р. Клаузиусом (1865) для определения меры необратимого рассеяния энергии, позволило строго математически сформулировать второй закон термодинамики. Энтропию можно определить с помощью двух эквивалентных подходов – статистического и термодинамического.

Термодинамический подход

Энтропия, функция состояния S термодинамической системы2, изменение которой dS для бесконечно малого обратимого изменения состояния системы равно отношению количества теплоты полученного системой в этом процессе (или отнятого от системы), к абсолютной температуре Т:

Где dS – приращение энтропии; δQ 3 – минимальная теплота, подведенная к системе; T – абсолютная температура процесса.

Величина dS является полным дифференциалом, т.е. ее интегрирование по любому произвольно выбранному пути дает разность между значениями энтропии в начальном (А) и конечном (В) состояниях:

. (2)

Теплота не является функцией состояния, поэтому интеграл от δQ зависит от выбранного пути перехода между состояниями А и В .

Энтропия измеряется в Дж/(моль·К).

Выражения (1) и (2) справедливы только для обратимых процессов.

Для необратимых процессов выполняется неравенство:

, (3)

из которого следует возрастания энтропии в этих процессах.

Свойства энтропии:

1. Энтропия - величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: S = ∑S i .

2. В равновесных процессах без передачи тепла энтропия не меняется. Поэтому равновесные адиабатические процессыQ = 0) называется изоэнтропийным.

3. Энтропия определяется только с точностью до произвольной постоянной.

Действительно, согласно формуле (2) измеренной является лишь разность энтропий в двух состояниях.

Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста): энтропия любого тела стремится к нулю при стремлении к абсолютному нулю его температуры: lim S = 0 при Т → .

Т.о., за начальную точку отсчета энтропии принимают

S 0 = 0 при Т → 0 К.

Энтропия – функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов.

Энтропия в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике – мера вероятности осуществления какого-либо макроскопического состояния; в теории информации – мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса). Энтропия в информатике – степень неполноты, неопределённости знаний.

Понятие энтропии как показал впервые Э. Шрёдингер (1944), существенно и для понимания явлений жизни. Живой организм с точки зрения протекающих в нём физико-химических процессов можно рассматривать как сложную открытую систему, находящуюся в неравновесном, но стационарном состоянии. Для организмов характерна сбалансированность процессов, ведущих к росту энтропии и процессов обмена, уменьшающих её. Однако жизнь не сводится к простой совокупности физико-химических процессов, ей свойственны сложные процессы саморегулирования. Поэтому с помощью понятия энтропии нельзя охарактеризовать жизнедеятельность организмов в целом.

Закон возрастания энтропии

Рис.2.
Необратимый круговой термодинамический процесс

Применим неравенство (3) для описания необратимого кругового термодинамического процесса, изображенного на рис 2.

Пусть процесс будет необратимым, а процесс - обратимым. Тогда неравенство (3) для этого случая примет вид:

Так как процесс является обратимым, для него можно воспользоваться соотношением (2), которое дает:

(5)

Подстановка этой формулы в неравенство (4) позволяет получить выражение:

(6)

Сравнение выражений (2) и (6) позволяет записать следующее неравенство:

(7)

в котором знак равенства имеет место в случае, если процесс является обратимым, а знак больше, если процесс – необратимый.

Неравенство (7) может быть также записано и в дифференциальной форме:

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой , то выражение (8) примет вид: ΔS = S 2 – S 1 ≥ 0

или в интегральной форме:

/dS ≥ 0 (9)

Из формулы (9) следует: S 2 ≥ S 1 .

Полученные неравенства выражают собой закон возрастания энтропии , который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом энтропии. Энтропия может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум энтропии называется абсолютно устойчивым (стабильным). Из условия максимальности энтропии адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова.

Рост энтропии является общим свойством всех самопроизвольно протекающих необратимых процессов в изолированных термодинамических системах. В состоянии равновесия энтропия принимает максимальное значение. В состоянии с максимальной энтропией макроскопические необратимые процессы невозможны.

При обратимых процессах в изолированных системах энтропия не изменяется.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

Статистический подход

В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. При этом Л. Больцман исходил из общего положения: природа стремится от состояний менее вероятных к состояниям более вероятным.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния. Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами.

Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние.

По определению термодинамическая вероятность W >> 1.

Например, если в сосуде находится 1 моль газа, то возможно огромное число N способов размещения молекулы по двум половинкам сосуда: N = 2 N A где N A – число Авогадро .

Каждый из них является микросостоянием. Только одно из микросостояний соответствует случаю, когда все молекулы соберутся в одной половинке (например, правой) сосуда. Вероятность такого события практически равна нулю. Наибольшее число микросостояний соответствует равновесному состоянию, при котором молекулы равномерно распределены по всему объему. Поэтому равновесное состояние является наиболее вероятным. Равновесное состояние с другой стороны является состоянием наибольшего беспорядка в термодинамической системе и состоянием с максимальной энтропией.

Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом:

S = k lnW,

где k = 1,38·10 –23 Дж/К – постоянная Больцмана .

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями 4. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность. Наличие флуктуаций показывает, что закон возрастания энтропии выполняется только статистически: в среднем для большого промежутка времени.