Уход и... Инструменты Дизайн ногтей

Как находить первообразную функции. Площадь криволинейной трапеции. Решение реальных задач

Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (f(х))’ = 3х 2 . Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо

(х 3)’ = 3х 2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х 3 +1 f(х)= х 3 +2 f(х)= х 3 -3 и др.

Т.к. производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х 2

Определение.

Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞). Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных.

Пример №2.

Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.

Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:

Признак постоянства функции. Если F"(х) = 0 на некотором промежутке I, то функция F - постоянная на этом промежутке.

Доказательство.

Зафиксируем некоторое x 0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x 0 , что

F(x) - F(x 0) = F"(c)(x-x 0).

По условию F’ (с) = 0, так как с ∈1, следовательно,

F(x) - F(x 0) = 0.

Итак, для всех х из промежутка I

т е. функция F сохраняет постоянное значение.

Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных ):

Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде

F(x) + C, (1) где F (х) - одна из первообразных для функции f (x) на промежутке I, а С - произвольная постоянная.

Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:

  1. какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
  2. какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство

Доказательство.

  1. По условию функция F - первообразная для f на промежутке I. Следовательно, F"(х)= f (х) для любого х∈1, поэтому (F(x) + C)" = F"(x) + C"=f(x)+0=f(x), т. е. F(x) + C - первообразная для функции f.
  2. Пусть Ф (х) - одна из первообразных для функции f на том же промежутке I, т. е. Ф"(x) = f (х) для всех x∈I.

Тогда (Ф(x) - F (x))" = Ф"(х)-F’ (х) = f(x)-f(x)=0.

Отсюда следует в. силу признака постоянства функции, что разность Ф(х) - F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.

Таким образом, для всех х из промежутка I справедливо равенство Ф(х) - F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу

Вопросы к конспектам

Функция F(x) является первообразной для функции f(x). Найдите F(1), если f(x)=9x2 - 6x + 1 и F(-1) = 2.

Найдите все первообразные для функции

Для функции (x) = cos2 * sin2x, найдите первообразную F(x), если F(0) = 0.

Для функции найдите первообразную, график которой проходит через точку

Цель:

  • Формирование понятия первообразной.
  • Подготовка к восприятию интеграла.
  • Формирование вычислительных навыков.
  • Воспитание чувства прекрасного (умение видеть красоту в необычном).

Математический анализ - совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.

Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (х)`=3х 2 .
Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо (х 3)`=3х 2
Однако, легко можно заметить, что f(х) находится неоднозначно.
В качестве f(х) можно взять
f(х)= х 3 +1
f(х)= х 3 +2
f(х)= х 3 -3 и др.

Т.к.производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х 2

Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).

Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
т.к. F`(х)=(tg3х)`= 3/cos 2 3х

Пример № 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

Лекция 2.

Тема: Первообразная. Основное свойство первообразной функции.

При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.

Это утверждение можно продемонстрировать геометрически.

Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х 0 . Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.

Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.

Действительно, для произвольного х 1 и х 2 из промежутка J по теореме о среднем значении функции можно записать:
f(х 2)- f(х 1)=f`(с) (х 2 - х 1), т.к. f`(с)=0, то f(х 2)= f(х 1)

Теорема: (Основное свойство первообразной функции)

Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

Доказательство:

Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
Это означает, что Φ(х)- F(х) постоянна на промежутке J.
Следовательно, Φ(х)- F(х) = С.
Откуда Φ(х)= F(х)+С.
Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.

Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

Решение: Sin х - одна из первообразных для функции f (х) = cos х
F(х) = Sin х+С –множество всех первообразных.

F 1 (х) = Sin х-1
F 2 (х) = Sin х
F 3 (х) = Sin х+1

Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
Следовательно, 4 = 1 2 +С
С = 3
F(х) = х 2 +3

Таблица первообразных

Определение. Функция F(x) на заданном промежутке называется первообразной для функции f(x) , для всех x из этого промежутка, если F"(x)=f(x) .

Операция нахождение первообразной для функции называется интегрированием . Она является обратной к операции дифференцирования.

Теорема. Всякая непрерывная на промежутке функция (x) имеет первообразную на этом же промежутке.

Теорема (основное свойство первообразной). Если на некотором промежутке функция F(x) является первообразной для функции f(x ), то на этом промежутке первообразной для f(x) будет также функция F(x)+C , где C произвольная постоянная.

Из этой теоремы выплывает, что когда f(x) имеет на заданном промежутке первообразную функцию F(x) , то этих первобытных множество. Придавая C произвольных числовых значений, каждый раз будем получать первообразную функцию.

Для нахождения первообразных пользуются таблицей первообразных . Она получается из таблицы производных.

Понятие неопределенного интеграла

Определение. Совокупность всех первообразных функций для функции f(x) называется неопределенным интегралом и обозначается .

При этом f(x) называется подынтегральной функцией , а f(x) dx - подынтегральным выражением .

Следовательно, если F(x) , является первообразной для f(x) , то .

Свойства неопределенного интеграла

Понятие определенного интеграла

Рассмотрим плоскую фигуру, ограниченную графиком непрерывной и неотрицательной на отрезке [а; b] функции f(x) , отрезком [а; b] , и прямыми x=a и x=b .

Полученная фигура называется криволинейной трапецией . Вычислим ее площадь.

Для этого разобьем отрезок [а; b] на n равных отрезков. Длины каждого из отрезков равняются Δx .

Это динамический рисунок GeoGebra .
Красные элементы можно изменять

Рис. 1. Понятие определенное интеграла

На каждом отрезке, построим прямоугольники с высотами f(x k-1) (Рис. 1).

Площадь каждого такого прямоугольника равняется S k = f(x k-1)Δx k .

Площадь всех таких прямоугольников равняется .

Эту сумму называют интегральной суммой для функции f(x) .

Если n→∞ то площадь построенной таким образом фигуры будет все менее отличаться от площади криволинейной трапеции.

Определение. Граница интегральной суммы, когда n→∞ называется определенным интегралом , и записывается так:.

читается: "интеграл от a к b f от xdx "

Число а называется нижним пределом интегрирования, b – верхним пределом интегрирования, отрезок [а; b] – промежутком интегрирования.

Свойства определенного интеграла

Формула Ньютона-Лейбница

Определенный интеграл тесно связан с первообразной и неопределенным интегралом формулой Ньютона-Лейбница

.

Использование интеграла

Интегральное исчисление широко используется при решении разнообразных практических задач. Рассмотрим некоторые из них.

Вычисление объемов тел

Пусть задана функция, которая задает площадь поперечного сечения тела в зависимости от некоторой переменной S = s(x), x[а; b] . Тогда объем данного тела можно найти интегрируя данную функцию в соответствующих пределах.

Если нам задано тело, которое получено вращением вокруг оси Ох криволинейной трапеции ограниченной некоторой функцией f(x), x [а; b] . (Рис. 3). То площади поперечных сечений можно вычислить по известной формуле S = π f 2 (x) . Поэтому формула объема такого тела вращения

Первообразная

Определение первообразной функции

  • Функцию у= F (x) называют первообразной для функции у=f (x) на заданном промежутке Х, если для всех х Х выполняется равенство: F′(x) = f (x)

Можно прочесть двумя способами:

  1. f производная функции F
  2. F первообразная для функции f

Свойство первообразных

  • Если F(x) - первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С - произвольная постоянная.

Геометрическая интерпретация

  • Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу .

Правила вычисления первообразных

  1. Первообразная суммы равна сумме первообразных . Если F(x) - первообразная для f(x) , а G(x) - первообразная для g(x) , то F(x) + G(x) - первообразная для f(x) + g(x) .
  2. Постоянный множитель можно выносить за знак производной . Если F(x) - первообразная для f(x) , и k - постоянная, то k·F(x) - первообразная для k·f(x) .
  3. Если F(x) - первообразная для f(x) , и k, b - постоянные, причём k ≠ 0 , то 1/k · F(kx + b) - первообразная для f(kx + b) .

Запомни!

Любая функция F(x) = х 2 + С , где С - произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х .

  • Например:

    F"(x) = (х 2 + 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 – 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 –3)" = 2x = f(x);

Связь между графиками функции и ее первообразной:

  1. Если график функции f(x)>0 F(x) возрастает на этом промежутке.
  2. Если график функции f(x)<0 на промежутке, то график ее первообразной F(x) убывает на этом промежутке.
  3. Если f(x)=0 , то график ее первообразной F(x) в этой точке меняется с возрастающего на убывающий (или наоборот).

Для обозначения первообразной используют знак неопределённого интеграла, то есть интеграла без указания пределов интегрирования.

Неопределенный интеграл

Определение :

  • Неопределённым интегралом от функции f(x) называется выражение F(x) + С, то есть совокупность всех первообразных данной функции f(x). Обозначается неопределённый интеграл так: \int f(x) dx = F(x) + C
  • f(x) - называют подынтегральной функцией;
  • f(x) dx - называют подынтегральным выражением;
  • x - называют переменной интегрирования;
  • F(x) - одна из первообразных функции f(x);
  • С - произвольная постоянная.

Свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции: (\int f(x) dx)\prime= f(x) .
  2. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла: \int k \cdot f(x) dx = k \cdot \int f(x) dx .
  3. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx .
  4. Если k, b - постоянные, причём k ≠ 0, то \int f(kx + b) dx = \frac{1}{k} \cdot F(kx + b) + C .

Таблица первообразных и неопределенных интегралов

Функция

f(x)

Первообразная

F(x) + C

Неопределенные интегралы

\int f(x) dx = F(x) + C

0 C \int 0 dx = C
f(x) = k F(x) = kx + C \int kdx = kx + C
f(x) = x^m, m\not =-1 F(x) = \frac{x^{m+1}}{m+1} + C \int x{^m}dx = \frac{x^{m+1}}{m+1} + C
f(x) = \frac{1}{x} F(x) = l n \lvert x \rvert + C \int \frac{dx}{x} = l n \lvert x \rvert + C
f(x) = e^x F(x) = e^x + C \int e{^x }dx = e^x + C
f(x) = a^x F(x) = \frac{a^x}{l na} + C \int a{^x }dx = \frac{a^x}{l na} + C
f(x) = \sin x F(x) = -\cos x + C \int \sin x dx = -\cos x + C
f(x) = \cos x F(x) =\sin x + C \int \cos x dx = \sin x + C
f(x) = \frac{1}{\sin {^2} x} F(x) = -\ctg x + C \int \frac {dx}{\sin {^2} x} = -\ctg x + C
f(x) = \frac{1}{\cos {^2} x} F(x) = \tg x + C \int \frac{dx}{\sin {^2} x} = \tg x + C
f(x) = \sqrt{x} F(x) =\frac{2x \sqrt{x}}{3} + C
f(x) =\frac{1}{ \sqrt{x}} F(x) =2\sqrt{x} + C
f(x) =\frac{1}{ \sqrt{1-x^2}} F(x)=\arcsin x + C \int \frac{dx}{ \sqrt{1-x^2}}=\arcsin x + C
f(x) =\frac{1}{ \sqrt{1+x^2}} F(x)=\arctg x + C \int \frac{dx}{ \sqrt{1+x^2}}=\arctg x + C
f(x)=\frac{1}{ \sqrt{a^2-x^2}} F(x)=\arcsin \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2-x^2}} =\arcsin \frac {x}{a}+ C
f(x)=\frac{1}{ \sqrt{a^2+x^2}} F(x)=\arctg \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2+x^2}} = \frac {1}{a} \arctg \frac {x}{a}+ C
f(x) =\frac{1}{ 1+x^2} F(x)=\arctg + C \int \frac{dx}{ 1+x^2}=\arctg + C
f(x)=\frac{1}{ \sqrt{x^2-a^2}} (a \not= 0) F(x)=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C \int \frac{dx}{ \sqrt{x^2-a^2}}=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C
f(x)=\tg x F(x)= - l n \lvert \cos x \rvert + C \int \tg x dx =- l n \lvert \cos x \rvert + C
f(x)=\ctg x F(x)= l n \lvert \sin x \rvert + C \int \ctg x dx = l n \lvert \sin x \rvert + C
f(x)=\frac{1}{\sin x} F(x)= l n \lvert \tg \frac{x}{2} \rvert + C \int \frac {dx}{\sin x} = l n \lvert \tg \frac{x}{2} \rvert + C
f(x)=\frac{1}{\cos x} F(x)= l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C \int \frac {dx}{\cos x} = l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C


Формула Ньютона–Лейбница

Пусть f (х) данная функция, F её произвольная первообразная.

\int_{a}^{b} f(x) dx =F(x)|_{a}^{b} = F(b) - F(a)

где F(x) - первообразная для f(x)

То есть, интеграл функции f (x) на интервале равен разности первообразных в точках b и a .

Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке функции f , осью Ox и прямыми x = a и x = b .

Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:

S= \int_{a}^{b} f(x) dx

Неопределенный интеграл

Основной задачей дифференциального исчисления было вычисление производной или дифференциала заданной функции. Интегральное исчисление, к изучению которого мы переходим, решает обратную задачу, а именно, отыскания самой функции по ее производной или дифференциалу. То есть, имея dF(х)= f(х)d (7.1) или F ′(х)= f(х) ,

где f(х) - известная функция, надо найти функцию F(х) .

Определение: Функция F(х) называется первообразной функции f(х) на отрезке , если во всех точках этого отрезка выполняется равенство: F′(х) = f(х) или dF(х)= f(х)d .

Например , одной из первообразных функций для функции f(х)=3х 2 будет F(х)= х 3 , т.к. (х 3)′=3х 2 . Но первоообразной для функции f(х)=3х 2 будет также и функции и , т.к. .

Итак, данная функция f(х)=3х 2 имеет бесконечное множество первоообразных, каждая из которых отличается лишь на постоянное слагаемое. Покажем, что этот результат имеет место и в общем случае.

Теорема Две различные первообразные одной и той же функции, определенной в некотором промежутке, отличаются одна от другой на этом промежутке на постоянное слагаемое.

Доказательство

Пусть функция f(х) определена на промежутке (a¸b) и F 1 (х) и F 2 (х) - первообразные, т.е. F 1 ′(х)= f(х) и F 2 ′(х)= f(х) .

Тогда F 1 ′(х)=F 2 ′(х)Þ F 1 ′(х) - F 2 ′(х) = (F 1 ′(х) - F 2 (х))′= 0 . Þ F 1 (х) - F 2 (х)=С

Отсюда, F 2 (х) = F 1 (х)+С

где С - константа (здесь использовано следствие из теоремы Лагранжа).

Теорема, таким образом, доказана.

Геометрическая иллюстрация . Если у = F 1 (х) и у = F 2 (х) – первообразные одной и той же функции f(х) , то касательная к их графикам в точках с общей абсциссой х параллельны между собой (рис. 7.1).

В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным F 2 (х) - F 1 (х)=С , то есть эти кривые в некотором понимании "параллельны" одна другой.

Следствие .

Прибавляя к какой-то первообразной F(х) для данной функции f(х) , определенной на промежутке Х , все возможные постоянные С , мы получим все возможные первообразные для функции f(х) .

Итак, выражение F(х)+С , где , а F(х) – некоторая первообразная функции f(х) включает все возможные первообразные для f(х) .

Пример 1. Проверить, являются ли функции первообразными для функции

Решение:

Ответ : первообразными для функции будут функции и

Определение: Если функция F(х) является некоторой первообразной для функции f(х), то множество всех первообразных F(х)+ С называют неопределенным интегралом от f(х) и обозначают:

∫f(х)dх.

По определению:

f(х) - подынтегральная функция,

f(х)dх - подынтегральное выражение

Из этого следует, чтоо неопределенный интеграл является функцией общего вида, дифференциал которой равен подынтегральному выражению, а производная от которой по переменной х равна подынтегральной функции во всех точках .

С геометрической точки зрения неопределенный интеграл представляет собой семейство кривых, каждая из которых получается путем сдвига одной из кривых параллельно самой себе вверх или вниз, то есть вдоль оси Оу (рис. 7.2).

Операция вычисления неопределенного интеграла от некоторой функции называется интегрированием этой функции.

Отметим, что если производная от элементарной функции всегда является элементарной функцией, то первоообразная от элементарной функции может не представляться при помощи конечного числа элементарных функций.

Рассмотрим теперь свойства неопределенного интеграла .

Из определения 2 вытекает:

1. Производная от неопределенного интеграла равна подынтегральной функции, то есть, если F′(х) = f(х) , то

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

. (7.4)

Из определения дифференциала и свойства (7.3)

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть (7.5)