Error: не определено #11234. Где находятся атомные часы. Краткая история появления атомных приборов измерения времени. Точное время и современные технологии
Уход и... Инструменты Дизайн ногтей

Где находятся атомные часы. Краткая история появления атомных приборов измерения времени. Точное время и современные технологии

Атомные часы

Если оценивать точность кварцевых часов с точки зрения их кратковременной стабильности, то надо сказать, что эта точность значительно выше, чем у маятниковых часов, которые, однако, при длительных измерениях обнаруживают более высокую стабильность хода. У кварцевых часов неправильность хода вызывается изменениями во внутренней структуре кварца и нестабильностью электронных систем.

Главным источником нарушения стабильности частоты является старение кристалла кварца, синхронизирующего частоту осциллятора. Правда, измерения показали, что старение кристалла, сопровождающееся повышением частоты, протекает без больших колебаний и резких изменений. Несмотря на. это, старение нарушает правильную работу кварцевых часов и диктует необходимость регулярного контроля другим устройством с осциллятором, имеющим устойчивую, неизменную частотную характеристику.

Быстрое развитие микроволновой спектроскопии после второй мировой войны открыло новые возможности в области точного измерения времени посредством частот, соответствующих подходящим спектральным линиям. Эти частоты, которые можно было считать эталонами частоты, привели к идее использовать квантовый генератор в качестве эталона времени.

Это решение было историческим поворотом в истории хронометрии, поскольку оно означало замену ранее действовавшей астрономической единицы времени новой квантовой единицей времени. Эта новая единица времени была введена как период излучения точно определенных переходов между энергетическими уровнями молекул некоторых специально выбранных веществ. После интенсивных исследований этой проблемы в первые послевоенные годы удалось построить прибор, работающий на принципе управляемого поглощения микроволновой энергии в жидком аммиаке при весьма низких давлениях. Однако первые опыты с прибором, оснащенным абсорбционным элементом, не дали ожидаемых результатов, поскольку расширение абсорбционной линии, вызываемое взаимными столкновениями молекул, затрудняло определение частоты самого квантового перехода. Лишь методом узкого пучка свободно летящих молекул аммиака в СССР А.М. Прохоров и Н.Г. Басов, а в США Таунс из Колумбийского университета сумели существенно понизить вероятность взаимных столкновений молекул и практически устранить расширение спектральной линии. В этих обстоятельствах молекулы аммиака могли уже играть роль атомного генератора. Узкий пучок молекул, впущенный через сопло в вакуумное пространство, проходит через неоднородное электростатическое поле, в котором происходит разделение молекул. Молекулы в более высоком квантовом состоянии направлялись на настроенный резонатор, где они выделяют электромагнитную энергию с неизменной частотой 23 870 128 825 Гц. Эта частота затем сравнивается с частотой кварцевого осциллятора, входящего в схему атомных часов. На этом принципе был построен первый квантовый генератор - аммиачный мазер (Microwave Amplification by Stimulated Emission of Radiation).

Н.Г. Басов, А.М. Прохоров и Таунс получили в 1964 г. за эти работы Нобелевскую премию по физике.

Изучением стабильности частоты аммиачных мазеров занимались также ученые Швейцарии, Японии, ФРГ, Великобритании, Франции и, не в последнюю очередь, Чехословакии. В период 1968-1979 гг. в Институте радиотехники и электроники Чехословацкой Академии наук построено и пущено в опытную эксплуатацию несколько аммиачных мазеров, которые выполняли роль частотных эталонов для хранения точного времени в атомных часах чехословацкого производства. У них была достигнута стабильность частоты порядка 10-10, что соответствует суточным изменениям хода в 20 миллионных частей секунды.

В настоящее время атомные стандарты частоты и времени используются в основном для двух главных целей - для измерения времени и для калибровки и контроля основных стандартов частоты. В обоих случаях сравнивают частоту генератора кварцевых часов с частотой атомного стандарта.

При измерении времени частота атомного стандарта и частота генератора кристаллических часов регулярно сравниваются, и по выявленным отклонениям определяют линейную интерполяцию и среднюю поправку времени. Истинное время получается тогда из суммы показаний кварцевых часов и этой средней поправки времени. При этом погрешность, возникшая вследствие интерполяции, определяется по характеру старения кристалла кварцевых часов.

Исключительные результаты, достигнутые с атомными стандартами времени, с погрешностью, равной лишь 1 с за целую тысячу лет, были причиной того, что на Тринадцатой генеральной конференции по мерам и весам, проходившей в Париже в октябре 1967 г., было дано новое определение единицы времени - атомной секунде, которая определялась теперь как 9 192 631 770 колебаний излучения атома цезия-133.

Как мы указали выше, при старении кристалла кварца постепенно нарастает частота колебаний кварцевого осциллятора и непрерывно увеличивается разница между частотами кварцевого и атомного осциллятора. Если кривая старения кристалла правильна, то достаточно корректировать колебания кварца лишь периодически, хотя бы через интервалы в несколько дней. Таким образом, атомный осциллятор может не быть постоянно связан с системой кварцевых часов, что весьма выгодно, поскольку ограничивается проникание мешающих влияний в измерительную систему.

Швейцарские атомные часы с двумя аммиачными молекулярными осцилляторами, демонстрировавшиеся на Всемирной выставке в Брюсселе в 1958 г., достигли точности в одну стотысячную секунды в сутки, что превышает точность точных маятниковых часов примерно в тысячу раз. Эта точность уже позволяет изучать периодические нестабильности скорости вращения земной оси. График на рис. 39, который представляет собой как бы изображение исторического развития хронометрических приборов и совершенствования методов измерения времени, показывает, как чуть ли не чудодейственным образом повысилась за несколько столетий точность измерения времени. Лишь за последние 300 лет эта точность увеличилась более чем в 100000 раз.

Рис. 39. Точность хода хронометрических приборов в период с 1930 до 1950 г.

Химик Роберт Вильгельм Бунзен (1811-1899) первым открыл цезий, атомы которого при надлежаще выбранных условиях способны поглощать электромагнитное излучение с частотой около 9192 МГц. Это свойство использовали Шервуд и Мак Кракен для создания первого цезиевого пучкового резонатора. На практическое использование цезиевого резонатора для измерения частот и времени направил свои усилия вскоре за этим Л. Эссен, работающий в Национальной физической лаборатории в Англии. В сотрудничестве с астрономической группой «Юнайтед Стейтс Нэвел Обсерватори» он уже в 1955-1958 гг. определил частоту квантового перехода цезия в 9 192 631 770 Гц и связал с действующим тогда определением эфемеридной секунды, что намного позднее, как указано выше, привело к установлению нового определения единицы времени. Следующие цезиевые резонаторы были сконструированы в Национальном исследовательском совете Канады в Оттаве, в лаборатории «Суисс де Речерс Хорлоджерес» в Невшателе и др. Первый коммерческий тип атомных часов промышленного производства выпустила на рынок в 1956 г. под названием «Атомихрон» американская фирма «Нешнл Компани Уолден» в Массачусетсе.

Сложность атомных часов заставляет предполагать, что применение атомных осцилляторов возможно лишь в области лабораторного измерения времени, выполняемого с помощью крупных измерительных аппаратов. В действительности так и было до последнего времени. Однако миниатюризация проникла и в эту область. Известная японская фирма «Сэйко-Хаттори», производящая сложные, хронографы с кристаллическими осцилляторами, предложила первые наручные атомные часы, изготовленные опять-таки в сотрудничестве с американской фирмой «Мак-Доннелл Дуглас Астронавтике Компани». Эта фирма производит также миниатюрный топливный элемент, являющийся энергетическим источником для упомянутых часов. Электрическую энергию в этом элементе размером 13 ? 6,4 мм производит радиоизотоп прометия-147; срок службы этого элемента равен пяти годам. Корпус часов, изготовленный из тантала и нержавеющей стали, является достаточной защитой от бета-лучей элемента, излучаемых в окружающую среду.

Астрономические измерения, изучение движения планет в космосе и различные радиоастрономические исследования не обходятся теперь без знания точного времени. Точность, которая в таких случаях требуется от кварцевых или атомных часов, колеблется в пределах миллионных долей секунды. С растущей точностью подаваемой информации о времени нарастали проблемы синхронизации хода часов. Когда-то вполне удовлетворяющий всех метод передаваемых по радио сигналов времени на коротких и длинных волнах оказался недостаточно точным для синхронизации двух недалеко друг от друга расположенных хронометрических приборов с точностью большей, чем 0,001 с, а теперь и эта степень точности уже неудовлетворительна.

Одно из возможных решений - перевозки вспомогательных часов на место сравнительных измерении - дала миниатюризация электронных элементов. В начале 60-х годов были построены специальные кварцевые и атомные часы, которые можно было транспортировать на самолетах. Их можно было перевозить между астрономическими лабораториями, и при этом они давали информацию о времени с точностью одной миллионной доли секунды. Так, например, когда в 1967 г. осуществили межконтинентальную перевозку миниатюрных цезиевых часов, изготовленных калифорнийской фирмой «Хьюлетт-Паккард», этот прибор прошел через 53 лаборатории мира (он был и в ЧССР), и с его помощью был синхронизирован ход местных часов с точностью 0,1 мкс (0,0000001 с).

Для микросекундного сравнения времени можно использовать и спутники связи. В 1962 г. этот метод использовали Великобритания и Соединенные Штаты Америки путем передачи сигнала времени через спутник «Телестар». Намного более благоприятные результаты при меньших затратах дала, однако, передача сигналов с помощью телевизионной техники.

Этот метод передачи точного времени и частоты с помощью синхронизирующих телевизионных импульсов был разработан и развит в чехословацких научных учреждениях. Вспомогательным носителем информации о времени тут являются синхронизирующие видеоимпульсы, которые ни в какой степени не нарушают передачу телевизионной программы. При этом нет никакой надобности вводить в телевизионный сигнал изображения какие-либо дополнительные импульсы.

Условием для использования этого метода является возможность приема одной и той же телевизионной программы в местах нахождения сравниваемых часов. Сравниваемые часы предварительно регулируются до точности в несколько миллисекунд, а измерение должно потом производиться на всех измерительных постах одновременно. Кроме того, необходимо знать разницу во времени, потребную для передачи синхронизирующих импульсов от совместного источника, которым является телевизионный синхронизатор, к приемникам в месте нахождения сравниваемых часов.

Из книги Как люди открывали свою землю автора Томилин Анатолий Николаевич

Атомные ледоколы второго поколения После флагмана ледокольного флота - атомного ледокола «Ленин» в Ленинграде были построены еще три атомных ледокола, атомных богатыря. Их называют ледоколами второго поколения. Что это значит?Пожалуй, прежде всего, при создании новых

Из книги Сломанный меч Империи автора Калашников Максим

ГЛАВА 14 ПРЕРВАННЫЙ ПОЛЕТ «ОРЛАНОВ». РУССКИЕ КРЕЙСЕРЫ - ТЯЖЕЛЫЕ, АТОМНЫЕ, РАКЕТНЫЕ… 1 Мы создаем эту книгу не как плач по потерянному величию. Хотя можем исписать десятки страниц, изображая нынешнее (писано в 1996-м) состояние того, что некогда было флотом великой

Из книги Вторая мировая война автора Бивор Энтони

Глава 50 Атомные бомбы и разгром Японии Май–сентябрь 1945 г. К моменту капитуляции Германии в мае 1945 г. японские армии в Китае получили приказ из Токио начать отход к восточному побережью. Националистические войска Чан Кайши были сильно потрепаны в ходе японского

автора

Солнечные часы Несомненно, самым распространенным хронометрическим прибором были солнечные часы, основанные на кажущемся суточном, а иногда и годовом движении Солнца. Появились такие часы не раньше осознания человеком взаимосвязи между длиной и положением тени от тех

Из книги Другая история науки. От Аристотеля до Ньютона автора Калюжный Дмитрий Витальевич

Водяные часы Солнечные часы были простым и надежным указателем времени, но страдали некоторыми серьезными недостатками: их работа зависела от погоды и была ограничена временем между восходом и заходом Солнца. Нет сомнений, что из-за этого ученые стали изыскивать иные

Из книги Другая история науки. От Аристотеля до Ньютона автора Калюжный Дмитрий Витальевич

Огневые часы Помимо солнечных и водяных, с начала XIII века появились и первые огневые, или свечные часы. Это тонкие свечи длиной около метра с нанесенной по всей длине шкалой. Они сравнительно точно показывали время, а в ночные часы еще и освещали жилища церковных и

Из книги Другая история науки. От Аристотеля до Ньютона автора Калюжный Дмитрий Витальевич

Песочные часы Дата возникновения первых песочных часов тоже неизвестна. Но и они, как и масляные лампадные, появились не раньше, чем прозрачное стекло. Считается, что в Западной Европе о песочных часах узнали лишь в конце Средневековья; одним из самых старых упоминаний о

Из книги Охота за атомной бомбой: Досье КГБ №13 676 автора Чиков Владимир Матвеевич

3. Как рождаются атомные шпионы

Из книги Сакура и дуб (сборник) автора Овчинников Всеволод Владимирович

Часы без стрелок «Наследники общества, которое слишком много вложило в империю; люди, окруженные обветшалыми остатками тающего наследства, они не могли заставить себя в момент кризиса отказаться от воспоминаний о прошлом и изменить свой устарелый образ жизни. Пока лицо

Из книги Вторая мировая: ошибки, промахи, потери автора Дейтон Лен

20. ЧАСЫ ТЕМНОТЫ Споем песню про молодых летчиков, Если бы не война, они бы сидели за школьной партой. Песенка 55-й эскадрильи Королевских ВВС, написанная приблизительно в 1918 году Английские истребители одержали победу в Битве за Британию, но истребительная авиация понесла

Из книги Повседневная жизнь благородного сословия в золотой век Екатерины автора Елисеева Ольга Игоревна

Утренние часы Императрица сама разводила камин, зажигала свечи и лампадку и садилась за письменный стол в зеркальном кабинете - первые часы дня были посвящены ее личным литературным упражнениям. Как-то она сказала Грибовскому, что, «не пописавши, нельзя и одного дня

Из книги Великая победа на Дальнем Востоке. Август 1945 года: от Забайкалья до Кореи [ёфицировано] автора Александров Анатолий Андреевич

Глава VII Атомные удары американцев 1День 25 апреля выдался для обоих собеседников особенно приметным. Военный министр Стимсон был готов к этому докладу с начала месяца, но скоропостижная смерть президента Рузвельта смешала графики контактов высших должностных лиц

Из книги Русская Америка автора Бурлак Вадим Никласович

В часы отдохновения Славился Баранов своим хлебосольством и любовью устраивать застолья. Об этом вспоминали русские, туземцы и иностранные моряки. Даже в голодные для колонии времена находил он возможность попотчевать званых и случайных гостей.Если заканчивались

Из книги Египет Рамсесов автора Монтэ Пьер

IV. Часы Египтяне разделяли год на двенадцать месяцев и точно так же делили на двенадцать часов день и на двенадцать – ночь. Вряд ли они делили час на более мелкие отрезки времени. Слово «ат», которое переводится как «мгновение», не имеет никакой определенной

Из книги Крупнейшие шпионы мира автора Уайтон Чарльз

ГЛАВА 12 «АТОМНЫЕ» ШПИОНЫ На рассвете 16 июля 1945 года, когда Черчилль, Трумэн и Сталин собрались в Берлине на Потсдамскую конференцию, в пустыне Аламогордо, штат Нью-Мексико, была взорвана первая атомная бомба. На холмах, в двадцати милях от места взрыва, расположилась

Из книги Русские землепроходцы – слава и гордость Руси автора Глазырин Максим Юрьевич

Атомные реакторы и электронные кристаллы Чиловский Константин (1881 г. р.), русский инженер, изобретатель. Изобрёл устройство для обнаружения подводных лодок, широко применявшееся во время Первой мировой войны (1914–1918). За изобретение награждён французским орденом

Атомные часы January 27th, 2016

Родиной первых в мире карманных часов со встроенным атомным стандартом времени станет не Швейцария и даже не Япония. Идея их создания зародилась в самом сердце Великобритании у лондонской марки Hoptroff

Атомные или как их ещё называют «квантовые часы» - это устройство, которое измеряет время, используя для этого собственные колебания, связанные с процессами, происходящими на уровне атомов или молекул. Ричард Хоптроф (Richard Hoptroff) решил, что современным джентльменам, которые проявляют интерес к сверхтехнологичным устройствам, пора бы сменить свои карманные механические часы на нечто более экстравагантное и неординарное, а также отвечающее современным урбанистическим тенденциям.

Так, публике были продемонстрированы элегантные по своему внешнему виду карманные атомные часы Hoptroff No. 10, которые могут удивить современное искушённое обилием гаджетов поколение не только своим ретро-стилем и фантастической точностью хода, но и сроком эксплуатации. По заявлению разработчиков, имея при себе эти часы, вы сможете оставаться самым пунктуальным человеком на протяжении не менее 5 млрд лет.

Что еще можно узнать о них интересного …

Фото 2.

Для всех тех, кто никогда не интересовался подобными часами, стоит вкратце рассказать принцип их действия. Внутри «атомного устройства» нет ничего, что напоминало бы классические механические часы. В Hoptroff No. 10 отсутствуют механические детали как таковые. Вместо этого карманные атомные часы оснащаются герметичной камерой, заполненной радиоактивным газообразным веществом, температура которого находится под контролем специальной печи. Точный отсчёт времени происходит следующим образом: лазеры возбуждают атомы химического элемента, являющегося своего рода «наполнителем» часов, а резонатор фиксирует и измеряет каждый атомный переход. Сегодня базовым элементом подобных устройств является цезий. Если вспомнить систему единиц СИ, то в ней значение секунды связно с количеством периодов электромагнитного излучения при переходе атомов цезия-133 с одного на другой энергетический уровень.

Фото 3.

Если в смартфонах сердцем устройства считается процессорный чип, то в Hoptroff No. 10 данную роль берёт на себя модуль-генератор эталонного времени. Его поставкой занимается фирма Symmetricom, а сам чип изначально был ориентирован на использование в военной отрасли - в беспилотных летательных аппаратах.

Атомные часы CSAC снабжены термостатом с регулированием температуры, внутри которого содержится камера с парами цезия. Под воздействием лазера на атомы цезия-133 начинается их переход из одного энергетического состояния в другое, для измерения которого используется СВЧ-резонатор. С 1967 года Международная система единиц (СИ) определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Исходя из этого, сложно себе представить более точные с технической точки зрения часы на цезиевой основе. Со временем, учитывая последние достижения в области измерения времени, точность новых оптических часов на базе иона алюминия, пульсирующего с частотой ультрафиолетового излучения (в 100 000 раз превышающей микроволновые частоты цезиевых часов), в сотни раз превысит точность атомных хронометров. Выражаясь доступным языком, погрешность хода новой карманной модели No.10 от Hoptroff составляет 0,0015 секунды в год, что в 2,4 миллиона раз превышает стандарты COSC.

Фото 4.

Функциональная сторона устройства также на грани фантастики. С его помощью можно узнать: время, дату, день недели, год, широту и долготу в разных величинах, давление, влажность, звездные часы и минуты, прогноз приливов и многие другие показатели. Часы поставляются в золотом исполнении, а для создания их корпуса из драгоценного металла планируется использовать трехмерную печать.

Ричард Хоптроф искреннее полагает, что именно данный вариант производства своего детища является наиболее предпочтительным. Чтобы немного изменить дизайнерскую составляющую конструкции, вовсе не нужно будет перестраивать производственную линию, а использовать для этого функциональную гибкость печатающего 3D-устройства. Правда, стоит отметить, что показанный прототип часов был изготовлен классическим способом.

Фото 5.

Время нынче стоит очень дорого, а карманные часы Hoptroff No. 10 - тому прямое подтверждение. По предварительной информации, первая партия атомных устройств составит 12 единиц, а что касается стоимости, то цена за 1 экземпляр будет составлять $78 000.

Фото 6.

По словам Ричарда Хоптроффа, управляющего директора марки, лондонская прописка Hoptroff сыграла ключевую роль в возникновении этой идеи. “В своих кварцевых механизмах мы используем высокоточную колебательную систему с сигналом GPS. Но в центре Лондона не так-то просто поймать этот самый сигнал. Однажды во время поездки в Гринвичскую обсерваторию я увидел там атомные часы Hewlett Packard и решил приобрести себе нечто подобное через Интернет. И не смог. Вместо этого мне на глаза попалась информация о чипе компании Symmetricon, и после трех дней раздумий я понял, что он прекрасно подойдет для карманных часов”.

Чип, о котором идет речь, представляет собой цезиевые атомные часы SA.45s (CSAC), принадлежащие к первому поколению миниатюрных атомных часов для GPS-приемников, ранцевых радиостанций и беспилотных аппаратов. Несмотря на свои скромные габариты (40 мм х 34,75 мм), в наручные часы он все же вряд ли поместится. Поэтому Хоптрофф решил оснастить ими карманную модель довольно солидных размеров (82 мм в диаметре).

Помимо звания самых точных часов в мире, Hoptroff No 10 (десятый по счету механизм марки) претендует также на первый золотой корпус, изготовленный с использованием технологии 3D-печати. Хоптрофф пока не может с точностью сказать, сколько золота потребуется для изготовления корпуса (работа над первым прототипом завершилась, когда номер уже ушел в печать), но предполагает, что его стоимость составит “минимум несколько тысяч фунтов”. А учитывая весь тот объем научных исследований, потребовавшихся для разработки продукта (взять хотя бы функцию расчета приливов и отливов по гармоническим постоянным для 3 тыс. различных портов), можно ожидать, что его конечная розничная цена составит около 50 тыс. фунтов стерлингов.

Золотой корпус модели No 10 на выходе из 3D-принтера и в готовом виде

Покупатели автоматически становятся членами эксклюзивного клуба и должны будут подписать письменное обязательство не использовать чип атомных часов как оружие. “Это одно из условий нашего договора с поставщиком, - объясняет г-н Хоптрофф, - поскольку изначально атомный чип применялся в системах наведения ракет”. Не так уж много за возможность получить часы с безупречной точностью.

Счастливые обладатели No.10 от Hoptroff получат в свое распоряжение гораздо больше, чем просто высокоточные часы. Модель также выполняет функцию карманного навигационного устройства, позволяющего определить долготу с точностью до одной морской мили даже после многолетнего пребывания в море при помощи простого секстанта. Модель получит два циферблата, однако дизайн одного из них пока держится в секрете. Другой же представляет собой круговерть счетчиков, отображающих целых 28 усложнений: от всех возможных хронометрических функций и указателей календаря до компаса, термометра, гигрометра (прибора для измерения уровня влажности), барометра, счетчиков широты и долготы и индикатора времени прилива/отлива. И это не говоря уже о жизненно важных индикаторах состояния атомного термостата.

У Hoptroff в планах производство ряда новых продуктов, в числе которых электронная версия легендарных усложненных часов Space Traveller Джорджа Дэниэлса. Сейчас над ними ведется работа, цель которой - интегрировать в часы технологию Bluetooth для сохранения личной информации владельца и обеспечения автоматической настройки таких усложнений, как индикатор фаз Луны.

Первые экземпляры No.10 появятся уже в следующем году, а пока компания занимается поиском подходящих партнеров среди ретейлеров. “Мы, конечно, могли бы попытаться продавать их через Интернет, но это модель премиум-класса, поэтому, чтобы по достоинству оценить эти часы, их все же нужно подержать в руках. А значит, нам все-таки придется воспользоваться услугами ретейлеров, и мы готовы начать переговоры”, - говорит в заключение г-н Хоптрофф.

И даже Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Атомные часы являются наиболее точными приборами для измерения времени, которые существуют сегодня, и приобретают все большее значение с развитием и усложнением современных технологий.

Принцип работы

Атомные часы точное время отсчитывают не благодаря радиоактивному распаду, как может показаться по их названию, а используя колебания ядер и окружающих их электронов. Их частоту определяет масса ядра, гравитация и электростатический «балансир» между положительно заряженным ядром и электронами. Это не совсем соответствует обычному часовому механизму. Атомные часы являются более надежными хранителями времени, потому что их колебания не изменяются в зависимости от таких факторов окружающей среды, как влажность, температура или давление.

Эволюция атомных часов

За многие годы ученые поняли, что атомы обладают резонансными частотами, связанными со способностью каждого поглощать и испускать электромагнитное излучение. В 1930-х и 1940-х годах было разработано оборудование для высокочастотной связи и РЛС, которое могло взаимодействовать с частотами резонанса атомов и молекул. Это способствовало возникновению идеи часов.

Первые экземпляры были построены в 1949 году Национальным институтом стандартов и технологий (NIST). В качестве источника вибрации в них использовался аммиак. Однако они оказались ненамного точнее существующего стандарта времени, и в следующем поколении был применен цезий.

Новый стандарт

Изменение точности измерения времени оказалось настолько большим, что в 1967 году Генеральная конференция по мерам и весам определила секунду SI как 9 192 631 770 колебаний атома цезия на его резонансной частоте. Это означало, что время больше не было связано с движением Земли. Наиболее стабильные атомные часы в мире были созданы в 1968 году и использовались в качестве части системы отсчета времени NIST вплоть до 1990-х годов.

Вагон усовершенствований

Одним из последних достижений в этой области является лазерное охлаждение. Это улучшило отношение сигнал - шум и сократило неопределенность в тактовом сигнале. Для размещения этой системы охлаждения и другого оборудования, используемого для улучшения цезиевых часов, потребуется место размером с железнодорожный вагон, хотя коммерческие варианты могут поместиться в чемодане. Одна из таких лабораторных установок отсчитывает время в г. Боулдере, штат Колорадо, и является самыми точными часами на Земле. Они ошибаются лишь на 2 наносекунды в день или на 1 с в 1,4 млн лет.

Сложная технология

Такая огромная точность является результатом сложного технологического процесса. Прежде всего жидкий цезий помещают в печь и нагревают до тех пор, пока он не превратится в газ. Атомы металла на высокой скорости выходят через небольшое отверстие в печи. Электромагниты заставляют их разделиться на отдельные пучки с разными энергиями. Необходимый луч проходит через U-образное отверстие, и атомы подвергаются облучению энергией микроволнового излучения частотой 9.192.631.770 Гц. Благодаря этому они возбуждаются и переходят в другое энергетическое состояние. Затем магнитное поле отфильтровывает другие энергетические состояния атомов.

Детектор реагирует на цезий и показывает максимум при правильном значении частоты. Это необходимо для настройки кварцевого генератора, управляющего механизмом тактирования. Деление его частоты на 9.192.631.770 и дает один импульс в секунду.

Не только цезий

Хотя наиболее распространенные атомные часы используют свойства цезия, есть и другие их типы. Они отличаются применяемым элементом и средствами определения изменения энергетического уровня. Другими материалами являются водород и рубидий. Атомные часы на водороде функционируют подобно цезиевым, но требуют емкости со стенками из особого материала, препятствующего слишком быстрой потере атомами энергии. Рубидиевые часы наиболее просты и компактны. В них стеклянная ячейка, заполненная газообразным рубидием, изменяет поглощение света при воздействии сверхвысокой частоты.

Кому необходимо точное время?

Сегодня время можно отсчитывать с особой точностью, но почему это важно? Это необходимо в таких системах, как мобильные телефоны, интернет, GPS, авиационные программы и цифровое телевидение. На первый взгляд это не очевидно.

Пример того, как используется точное время, - синхронизация пакетов. Через среднюю линию связи проходят тысячи телефонных звонков. Это возможно только потому, что разговор не передается полностью. Телекоммуникационная компания разделяет его на мелкие пакеты и даже пропускает часть информации. Затем они проходят через линию вместе с пакетами других разговоров и на другом конце восстанавливаются, не смешиваясь. Система тактирования телефонной станции может определять, какие пакеты принадлежат данному разговору, по точному времени отправки информации.

GPS

Другой реализацией точного времени является система глобального позиционирования. Она состоит из 24 спутников, которые передают свои координаты и время. Любой приемник GPS может соединиться с ними и сравнить время трансляции. Разница позволяет пользователю определить свое местоположение. Если бы эти часы были не очень точными, то система GPS была бы непрактичной и ненадежной.

Предел совершенства

С развитием технологий и атомных часов стали заметны неточности Вселенной. Земля движется неравномерно, что приводит к случайным колебаниям продолжительности лет и дней. В прошлом эти изменения остались бы незамеченными, поскольку инструменты для измерения времени были слишком неточны. Однако, к большому разочарованию исследователей и ученых, время атомных часов приходится корректировать для компенсации аномалий реального мира. Они являются удивительными инструментами, способствующими продвижению современных технологий, но их совершенство ограничено пределами, установленными самой природой.

, Galileo) невозможны без атомных часов. Атомные часы используются также в системах спутниковой и наземной телекоммуникации, в том числе в базовых станциях мобильной связи, международными и национальными бюро стандартов и службами точного времени , которые периодически транслируют временные сигналы по радио.

Устройство часов

Часы состоят из нескольких частей:

  • квантовый дискриминатор,
  • комплекс электроники.

Национальные центры стандартов частоты

Многие страны сформировали национальные центры стандартов времени и частоты :

  • (ВНИИФТРИ), п. Менделеево Московской области;
  • (NIST), Боулдер (США , Колорадо);
  • Национальный институт передовой промышленной науки и технологии () (AIST), Токио (Япония);
  • Федеральное физико-техническое агентство (нем. ) (PTB), Брауншвейг (Германия);
  • Национальная лаборатория метрологии и испытаний (фр. ) (LNE), Париж (Франция).
  • Национальная физическая лаборатория Великобритании (NPL), Лондон , Великобритания .

Учёные разных стран работают над совершенствованием атомных часов и основанных на них государственных первичных эталонов времени и частоты, точность таких часов неуклонно повышается. В России обширные исследования, направленные на улучшение характеристик атомных часов, проводятся в .

Типы атомных часов

Не всякий атом (молекула) подходит в качестве дискриминатора для атомных часов. Выбирают атомы, которые нечувствительны к различным внешним воздействиям: магнитным, электрическим и электромагнитным полям. В каждом диапазоне электромагнитного спектра излучения имеются такие атомы. Это: атомы кальция , рубидия , цезия , стронция , молекулы водорода , йода , метана , оксид осмия(VIII) и т. д. В качестве основного (первичного) стандарта частоты выбран сверхтонкий переход атома цезия. Характеристики всех остальных (вторичных) стандартов сравниваются с этим стандартом. Для того, чтобы осуществить такое сравнение, в настоящее время используются так называемые оптические гребёнки (англ. ) - излучение с широким частотным спектром в виде эквидистантных линий, расстояние между которыми привязывается к атомному стандарту частоты. Оптические гребёнки получают с помощью фемтосекундного лазера с синхронизацией мод и микроструктурированного оптоволокна , в котором происходит уширение спектра до одной октавы .

В 2006 году исследователи из американского Национального института стандартов и технологий под руководством Джима Бергквиста (англ. Jim Bergquist ) разработали часы, действующие на одном атоме . При переходах между энергетическими уровнями иона ртути генерируются фотоны видимого диапазона со стабильностью в 5 раз выше, чем микроволновое излучение цезия-133. Новые часы могут также найти применение в исследованиях зависимости изменения фундаментальных физических постоянных от времени. По состоянию на апрель 2015 года самыми точными атомными часами являлись часы, созданные в Национальном институте стандартов и технологий США . Погрешность составила лишь одну секунду в 15 миллиардов лет. В качестве одного из возможных применений часов указывалась релятивистская геодезия, основная идея которой - использование сети часов в качестве гравитационных датчиков, что поможет провести невероятно детальное трёхмерное измерение формы Земли.

Ведутся активные разработки компактных атомных часов для использования в повседневной жизни (наручные часы, мобильные устройства) . В начале 2011 американская компания Symmetricom объявила о коммерческом выпуске цезиевых атомных часов размером с небольшую микросхему. Часы работают на основе эффекта когерентного пленения населённости. Их стабильность - 5 · 10 -11 за час, масса - 35 г, потребляемая мощность - 115 мВт .

Примечания

  1. Поставлен новый рекорд точности атомных часов (неопр.) . Membrana (5 февраля 2010). Проверено 4 марта 2011. Архивировано 9 февраля 2012 года.
  2. Указанные частоты характерны именно для прецизионных кварцевых резонаторов, с самой высокой добротностью и стабильностью частоты, достижимой при использовании пьезоэффекта. Вообще же, кварцевые генераторы используются на частотах от единиц кГц до нескольких сотен МГц. (Альтшуллер Г. Б., Елфимов Н. Н., Шакулин В. Г. Кварцевые генераторы: Справочное пособие. - М. : Радио и связь, 1984. - С. 121, 122. - 232 с. - 27 000 экз. )
  3. Н. Г. Басов , В. С. Летохов . Оптические стандарты частоты. // УФН. - 1968. - Т. 96 , № 12 .
  4. National metrology laboratories (англ.) . NIST, 3 февраля 2011 г. (Проверено 14 июня 2011)
  5. Oskay W., Diddams S., Donley A., Frotier T., Heavner T., et al. Single-Atom Optical Clock with High Accuracy (англ.) // Phys. Rev. Lett. . - American Physical Society, 4 июля 2006. - Vol. 97, no. 2 . -

В прошлом, 2012 году, исполнилось сорок пять лет с того момента, когда человечество решило использовать атомное хронометрирование для максимально точного измерения времени. В 1967 году в Международной категория времени перестала определяться астрономическими шкалами - на смену им пришел цезиевый стандарт частоты. Именно он и получил популярное нынче название - атомные часы. Точное время, которое они позволяют определить, имеет ничтожную погрешность в одну секунду за три миллиона лет, что позволяет использовать их в роли стандарта времени в любом уголке мира.

Немного истории

Сама идея использовать колебания атомов для сверхточного измерения времени впервые была высказана еще в 1879 году британским физиком Уильямом Томсоном. В роли излучателя атомов-резонаторов этот ученый предлагал применить водород. Первые попытки реализовать идею на практике предпринимались лишь в 40-х гг. двадцатого века. А первые в мире работающие атомные часы появились в 1955 году в Великобритании. Их создателем стал британский физик-экспериментатор доктор Луи Эссен. Работали эти часы на основе колебаний атомов цезия-133 и благодаря им ученые наконец смогли измерять время с намного большей точностью, чем было до этого. Первый прибор Эссена допускал погрешность не более секунды на каждые сто лет, однако впоследствии многократно увеличилась и погрешность в секунду может набежать лишь за 2-3 сотни миллионов лет.

Атомные часы: принцип работы

Как же работает это хитроумное «устройство»? В качестве генератора резонансной частоты атомные часы применяют молекул или атомов на квантовом уровне. устанавливает связь системы «атомное ядро - электроны» с несколькими дискретными энергетическими уровнями. Если на такую систему будет воздействовать со строго заданной частотой, то произойдет переход данной системы с низкого уровня на высокий. Возможен также и обратный процесс: переход атома с более высокого уровня на низкий, сопровождаемый излучением энергии. Эти явления можно контролировать и фиксировать все энергетические скачки, создав что-то вроде колебательного контура (его еще называют атомным осциллятором). Его резонансная частота будет соответствовать разности энергий соседних уровней перехода атомов, разделенной на константу Планка.

Такой колебательный контур имеет неоспоримые достоинства по сравнению со своими механическими и астрономическими предшественниками. Для одного такого атомного осциллятора резонансная частота атомов какого-либо вещества будет одинакова, чего нельзя сказать о маятниках и пьезокристаллах. К тому же, атомы не меняют со временем своих свойств и не изнашиваются. Поэтому атомные часы являются чрезвычайно точным и практически вечным хронометром.

Точное время и современные технологии

Телекоммуникационные сети, спутниковая связь, GPS, NTP-сервера, электронные транзакции на бирже, интернет-аукционы, процедура покупки билетов через интернет - все эти и многие другие явления давно уже прочно вошли в нашу жизнь. А ведь если бы человечество не изобрело атомные часы, всего бы этого попросту не было. Точное время, синхронизация с которым позволяет свести к минимуму любые ошибки, задержки и опоздания, дает возможность человеку максимально полно использовать этот бесценный невосполнимый ресурс, которого никогда не бывает слишком много.