Уход и... Инструменты Дизайн ногтей

Г кантор сущность теории множеств. «Теория систем и системный анализ. VI. Правила суммы и произведения

Теория множеств – раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики.
Георг Кантор (1845 – † 1918), основатель теории множеств До второй половины 19 века понятие «множества» не рассматривался как математическое («множество книг на полке», «множество человеческих добродетелей» и т. д. – все это чисто бытовые обороты). Положение изменилось, когда немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был быть тем или иным «множеством». Например, натуральное число за Кантором следует рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом», который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано. При этом общему понятию «множества», который рассматривался им как центрального для математики, Кантор давал весьма размытые определения, вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, что подчеркнуто называл свою программу не «теорией множеств» (этот термин появился много позже), а «учением о множествах» (Mengenlehre).
Программа Кантора вызвала резкие протесты со стороны многих современных ему известных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер, который считал, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а все остальное – дело рук человеческих »). Однако, некоторые другие математики – в частности, Готлоб Фреге и Давид Гильберт – поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык.
Однако вскоре выяснилось, что направление Кантора на неограниченный произвол при оперировании с множествами (выраженное им самим в принципе «сущность математики состоит в ее свободе») несовершенна изначально, а именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение). Антиномии ознаменовали собой полный провал программы Кантора.
В начале 20 века Бертран Рассел, изучая наивную теорию множеств, пришел к парадоксу (с тех пор известному как парадокс Рассела). Таким образом была продемонстрирована противоречивость наивной теории множеств и связанной с ней канторовской программы стандартизации математики.
После обнаружения антиномии Рассела часть математиков (например, Л. Э. Я. Брауэр и его школа) решила полностью отказаться от использования теоретико-множественных представлений. Другая же часть математиков, возглавленная Д. Гильбертом, предприняла ряд попыток обосновать ту часть теоретико-множественных представлений, которая казалась им наиболее ответственной за возникновение антиномий, на основе заведомо надежной финитной математики. С этой целью были разработаны различные аксиоматизации теории множеств.
Особенностью аксиоматического подхода является отказ от заложенного в программу Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишенной всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек является некая единая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признается как аксиома континуум-гипотеза, или его отрицание.
Сейчас наиболее распространенной аксиоматической теорией множеств является ZFC – теория Цермело – Френкеля с аксиомой выбора. Вопрос о непротиворечивости этой теории (а тем более – о существовании модели для нее) остается нерешенным.
В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как – «x есть элемент множества A»). Среди производных понятий наиболее важными являются следующие:
Над множествами определены следующие операции:
Для множеств определены следующие бинарные отношения:

Содержание статьи

МНОЖЕСТВ ТЕОРИЯ. Под множеством понимается совокупность каких-либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов. Терминология и многие результаты этой теории широко используются в математике, например в математическом анализе, геометрии и теории вероятностей.

Терминология.

Если каждый элемент множества B является элементом множества A , то множество B называется подмножеством множества A . Например, если множество A состоит из чисел 1, 2 и 3, то у него существует 8 подмножеств (три из них содержат по 1 элементу, три – содержат по 2 элемента, одно подмножество, по определению, есть само множество A и восьмое подмножество – это пустое множество, не содержащее ни одного элемента). Запись x О A означает, что x – элемент множества A , а B М A – что B является подмножеством множества A . Если универсальное множество, из которого мы берем элементы всех множеств, обозначить через I , то элементы, принадлежащие I , но не входящие в A , образуют множество, называемое дополнением множества A и обозначаемое C (A ) или A ў. Множество, не содержащее ни одного элемента, называется пустым множеством.

Над множествами можно производить операции, напоминающие операции, производимые в арифметике над числами. Объединением A B множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B (элемент, принадлежащий множествам A и B одновременно засчитывается при включении в A B только один раз). Пересечением A B множеств A и B называется множество, состоящее из всех элементов, принадлежащих как A , так и B . Предположим, например, что множество I состоит из всех букв русского алфавита, A – из всех согласных, а множество B – из букв, встречающихся в слове «энциклопедия». Тогда объединение A B состоит из всех букв алфавита, кроме а , ё , у , ъ , ь , ы , ю , пересечение A B – из букв д , к , л , н , п , ц , а дополнение C (A ) – из всех гласных. Раздел теории множеств, который занимается исследованием операций над множествами, называется алгеброй множеств. Пустое множество играет в алгебре множеств роль нуля, и поэтому его часто обозначают символом О ; например, A O = A , A O = O .

Булева алгебра.

Алгебра множеств является подразделом булевых алгебр, впервые возникших в трудах Дж.Буля (1815–1864). В аксиомах булевой алгебры отражена аналогия между понятиями «множества», «событие» и «высказывания». Логические высказывания можно записать с помощью множеств и проанализировать с помощью булевой алгебры.

Даже не вдаваясь в детальное изучение законов булевой алгебры, мы можем получить представление о том, как она используется на примере одной из логических задач Льюиса Кэрролла. Пусть у нас имеется некоторый набор утверждений:

2831. Не бывает котенка, который любит рыбу и которого нельзя научить всяким забавным штукам;

2. Не бывает котенка без хвоста, который будет играть с гориллой;

3. Котята с усами всегда любят рыбу;

4. Не бывает котенка с зелеными глазами, которого можно научить забавным штукам;

5. Не бывает котят с хвостами, но без усов.

Какое заключение можно вывести из этих утверждений?

Рассмотрим следующие множества (универсальное множество I включает в себя всех котят): A – котята, любящие рыбу; B – котята, обучаемые забавным штукам; D – котята с хвостами; E – котята, которые будут играть с гориллой; F – котята с зелеными глазами и G – котята с усами. Первое утверждение гласит, что множество котят, которые любят рыбу, и дополнение множества котят, обучаемых забавным штукам, не имеют общих элементов. Символически это записывается как

I. Основные понятия и аксиомы теории множеств

За тысячи лет своего существования от простейших представлений о числе и фигуре математики пришла к образованию многих новых понятий и методов. Она превратилась в мощное средство изучения природы и гибкое орудие практики. XX век принес математике новые идеи, теории, расширилась сфера её применения. Математика занимает особое положение в системе наук - её нельзя отнести ни к гуманитарным, ни к естественным наукам. Но она ввела те основные понятия, которые используются в них. Таким понятием является понятие «множество», которое впервые возникло в математике и в настоящее время является общенаучным.

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия.

В конце 19 века Георг Кантор, немецкий математик, основоположник теории множеств, дал интуитивное определение понятию «множеству» так: «Множество есть многое, мыслимое как единое целое» . Такое определение множества потребовало введения трех символов .

Первый из них должен представлять множество как нечто «единое», т.е. являться представителем самого множества. В качестве такого символа принято применять любую прописную букву какого-либо алфавита: например, обозначать множества прописными буквами латинского алфавита А, В, …, Х или какого-либо другого по соглашению.

Второй символ должен представлять «многое», то есть рассматриваться как элемент множества. В качестве этого символа принято использовать строчные буквы этого же алфавита: a, b, …, z.

Третий символ должен однозначно соотнести элемент множеству. В качестве соответствующего символа определен знак , который происходит от первой буквы греческого слова (быть). Запись определяет отношение: х есть элемент Х. Для того чтобы указать, что х не есть элемент Х, пишут .

Стоит отметить, что такое определение понятия множества приводит к ряду внутренних противоречий теории - так называемым парадоксам.

Например, рассмотрим парадокс Рассела. Парикмахер
(элемент х), проживающий в некоторой деревне, которые не бреются сами (пусть Х - множество всех тех и только тех жителей данной деревни, которые не бреются сами). Бреет ли парикмахер самого себя? То есть или ? Ответить на вопрос невозможно, поскольку полагая, например, что , сразу приходим к противоречию: , и обратно.

В школьном курсе математики учащимися рассматривается понятие множества, как неопределяемое понятие, под которым понимается совокупность объектов окружающей нас действительности, мыслимую как единое целое. А каждый объект этой совокупности называют элементом данного множества .

На настоящее время существует несколько аксиоматических систем теории множеств:

Система аксиом Цермело. К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC).

Аксиомы теории NBG. Данная система аксиом, предложенная фон Нейманом, впоследствии пересмотренная и упрощенная Робинсоном, Бернайсом и Геделем.

Система Цермело (Z-система) состоит из 7 аксиом. Опишем данные аксиомы в тех рамках, в которых они используются в школьном курсе математики.

Аксиома объемности (Z1). Если все элементы множества А принадлежат множеству В, а все элементы множества В принадлежат также множеству А, то А=В.

Для пояснения данной аксиомы нам необходимо использовать термин «подмножество»: Если каждый элемент множества A является элементом множества Z, то говорят, что А - подмножество Z, и пишут . Символ именуется «включение». Если не исключается возможность ситуации, когда Z=A, то для того чтобы акцентировать на этом внимание, пишут .

Введя термин «подмножество», сформулируем аксиому 1 в символьном виде: .

Аксиома пары (Z2). Для произвольных a и b существует множество, единственными элементами которого являются {a,b}.

Данная аксиома используется при пояснении декартова произведения множеств, где первоначальным понятием является «упорядоченная пара». Под упорядоченной парой понимают совокупность двух элементов, каждый из которых занимает в записи определенное место. Обозначают упорядоченную пару так: (а,b).

Аксиома суммы (Z3). Для произвольных множеств А и В существует единственное множество С, элементами которого являются все элементы множества А и все элементы множества В и которое никаких других элементов больше не содержит.

В символьном виде аксиому Z3 можно записать так: . На основании данной аксиомы и вытекающих из неё теорем указываются свойства операций множеств, описание которых будут изложены в пункте 3. Аксиомы Z1 и Z2 позволяют нам ввести понятие операции объединения, пересечения, дополнение, разности множеств.

Аксиома степени (Z4). Для любого множества Х существует множество всех его подмножеств Р(Х).

Аксиома бесконечности (Z6). Существует, по крайней мере, одно бесконечное множество - натуральный ряд чисел.

Аксиома выбора (Z7) . Для всякого семейства непустых множеств существует функция, которая каждому множеству семейства сопоставляет один из элементов этого множества. Функция называется функцией выбора для заданного семейства.

Стоит отметить важность соответствующих аксиом, так как множества и отношения между ними являются предметом изучения любой математической дисциплины.

Укажем ещё одно важное открытие в теории множеств - изображение отношений между подмножествами, для наглядного представления . Одним из первых, кто пользовался этим методом, был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц. Затем этот метод довольно основательно развил и Леонард Эйлер. После Эйлера этот же метод разрабатывал чешский математик Бернард Больцано. Только в отличие от Эйлера он рисовал не круговые, а прямоугольные схемы. Методом кругов Эйлера пользовался и немецкий математик Эрнест Шредер. Но наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна. В честь Венна вместо кругов Эйлера соответствующие рисунки называют иногда диаграммами Венна, а в некоторых книгах их называют также диаграммами Эйлера-Венна . Диаграммы Эйлера-Венна используются не только в математике и логике, но и в менеджменте и других прикладных направлениях.

II. Отношения между множествами и способы их задания

Итак, под множествами понимается совокупность любых объектов, мыслимая как единое целое. Множества могут состоять их объектов самой различной природы. Их элементами могут быть буквы, атомы, числа, уравнения, точки, углы и т. д. Именно этим объясняется чрезвычайная широта теории множеств и ее приложение к самым разнообразным областям знания (математике, физике, экономике, лингвистике и т. д.).

Считают, что множество определяется своими элементами, то есть множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. Различают два способа задания множеств.

  1. перечисления элементов .

Например, если множество А состоит из элементов а, b, с, то пишут: А = {a, b, c}.

Не каждое множество можно задать с помощью перечисления элементов. Множества, все элементы которых можно перечислить называют конечными. Множества, все элементы которых нельзя перечислить называют бесконечными. Их нельзя задать с помощью перечисления элементов. Исключение составляют бесконечные множества, в которых ясен порядок образование каждого следующего элемента на основе предыдущего. Например, множество натуральных чисел - бесконечное множество. Но известно, что в нем каждое следующее число, начиная со второго, на 1 больше предыдущего. Поэтому можно задать так N = {1, 2, 3, 4, …}.

  1. Множество можно задать с помощью указания характеристического свойства.

Характеристическим свойством данного множества называется свойство, которым обладают все элементы этого множества и не обладают ни один, не принадлежащий ему элемент. Обозначается: А = {x|…}, где после вертикальной черты записывается характеристическое свойство элементов данного множества.

Например, В={1,2,3}. Нетрудно заметить, что каждый элемент множества В - натуральное число, меньшее 4. Именно это свойство элементов множества В является для него характеристическим. В этом случае пишут: и читают: «Множество В состоит из таких элементов х, что х принадлежит множеству натуральных чисел и х меньше четырех» или множество В состоит из натуральных чисел, меньших 4. Множество В можно задать и по - другому: или , и т.д.

При этом, если элемент не подчиняется характеристическому свойству множества, то он данному множеству и не принадлежит. Существуют множества, которые можно задать только с помощью указания характеристического свойства, например, .

Особую важность в школьном курсе математике имеют числовые множества , т.е. множества, элементами которого являются числа . Для названия числовых множеств в математике приняты специальные обозначения:

N = {1, 2, 3, 4, …} - множество натуральных чисел;

Z = {…,-4, -3, -2, -1, 0, 1, 2, 3, 4, …} - множество целых чисел (содержит все натуральные числа и числа, им противоположные);

Q = {x | x=p/q, где p∈Z, q∈N} - множество рациональных чисел (состоит из чисел, допускающих представление в виде обыкновенной дроби);

J - множество иррациональных чисел (множество, состоящее из бесконечных десятичных непериодических дробей, например: 1,23456342 …;, и др.)

R = (-∞; +∞) - множество действительных чисел.

Множество всех действительных чисел Л. Эйлер изобразил с помощью кругов. (Рис. 1)

Cтоит отметить, что все любые числовые множества можно задать с помощью числового промежутка. (Рис. 2)

Типы числовых промежутков


Множество С, рассмотренное выше, это числовое множество и его можно указать с помощью числового промежутка (Рис. 3)

Рисунок 3 - Числовой промежуток

Укажем еще одно важное правило для задания числовых множеств: Конечные числовые множества изображаются на числовой прямой отдельными точками.

В математике иногда приходится рассматривать множества, содержащие только один элемент, и даже множества, не имеющие ни одного элемента. Множество, не содержащее ни одного элемента, называют пустым . Его обозначают знаком ∅. Например, дано множество A={x|x∈N∧-2

Стоит отметить, когда речь идет о двух и более множествах, то между ними могут быть какие-либо отношения или нет. Если множества находятся в каких-либо отношениях, то речь идет или об отношении равенства или отношении включении .

Множество А включается во множество В, если каждый элемент множества А принадлежит множеству В. Обозначается данное отношение так: A⊂B. Или, по-другому говорят, что множество А является подмножеством множества В.

Множества А и В называются равными , тогда и только тогда, когда каждый элемент множества А принадлежит множеству В и вместе с этим каждый элемент множества В принадлежит множеству А. Обозначается данное отношение так: А=В

Например:

1) A={a,b,c,d} и B={b,d}, эти множества находятся в отношении включения B⊂A, т.к. каждый элемент множества В принадлежит множеству А.

2) M={x|x∈R∧x<6}=(-∞;6) и K{x|x∈R∧x≤8}=(-∞;8], эти множества находятся в отношении включения M⊂K, т.к. каждый элемент множества M принадлежит множеству K (Рис. 4)

Рисунок 4 - Числовой промежуток

3) A={x|x∈N∧x:2}={2,4,6,8,10,...} и B={x|x∈N∧x:3}={3,6,9,12,...}, эти два множества не находятся ни в каких отношениях A⊄B, так как во множестве А есть элемент 2, не принадлежащий множеству В

и B⊄A, т.к. во множестве В есть элемент 3, не принадлежащий множеству А.

Следовательно, данные множества не находятся ни в каких отношениях.

III. Операции и свойства операций над множествами

Опр.1. Пересечением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат и А и В одновременно.

A∩B={x|x∈A∧x∈B}

Опр.2. Объединением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат множеству А или множеству В (т.е. хотя бы одному из этих множеств).

A∪B={x|x∈A∨x∈B}

Опр.3. Разностью множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат А и не принадлежат В одновременно.

А\ В ={x∈A∧x∉B}

Опр.4. Дополнением множества А до универсального множества называется множество, каждый элемент которого принадлежит универсальному и не принадлежит А.

Выражения с множествами

Из множеств, знаков операций над ними и, может быть, скобок можно составлять выражения. Например, А∩В\С.

Необходимо знать порядок выполнения операций в таких выражениях и уметь их читать.

Порядок выполнения операций

    если нет скобок, то в первую очередь выполняется дополнение до универсального множества простого множества, затем пересечение и объединение (они равноправны между собой), в последнюю очередь - разность;

    если в выражении есть скобки, то сначала выполняют операции в скобках по порядку, приведенному в пункте 1), а затем все операции за скобками.

Например, а) А∩В\С; б) А∩(В\С); в) А∩(В\С)" .

Чтение выражения начинается с результата последней операции. Например, выражение а) читается так: разность двух множеств, первое из которых пересечение множеств А и В, а второе - множество С.

Круги Эйлера

Операции над множествами и отношения между ними можно изобразить с помощью кругов Эйлера. Это специальные чертежи, на которых обычные множества изображаются кругами, универсальное множество - прямоугольником

Задача. Изобразить с помощью кругов Эйлера множество (А∪В)"∩С.

Решение. Расставим порядок выполнения операций в данном выражении: (А∪В)"∩С. Заштрихуем результаты операций согласно порядку их выполнения

Свойства операции над множествами (рис.5)

Свойства I - 8 и 1 0 - 8 0 связаны между собой гак называемым принципом двойственности:

если в любом из двух столбиков свойств поменять знаки ∩→∪, ∪→∩, ∅→U, U→∅, то получится другой столбик свойств.

IV. Разбиение множества на классы

Считают, что множество Х разбито на попарно непересекающиеся подмножества или классы, если выполнены следующие условия:

1) пересечение любых двух подмножеств пусто;

2) объединение всех подмножеств совпадает с множеством Х.

Разбиение множества на классы называют классификацией.

V. Декартово произведение множеств

Декартовым произведением множеств А и В называется множество пар, первая компонента каждой из которых принадлежит множеству А, а вторая — множеству В Декартово произведение множеств А и В обозначают А х В. Таким образом, А×В={(x,y)|x∈A˄y∈B}. Операцию нахождения декартова произведения множеств А и В называют декартовым умножением этих множеств. Если А и В — числовые множества, то элементами декартова произведения этих множеств будут упорядоченные пары чисел.

VI. Правила суммы и произведения

Обозначим число элементов конечного множества A символом n(A). Если множества А и В не пересекаются, то n(AUВ)= n(А) +n (В). Если множества А и В пересекаются, то n(А U В) = n (A) + n (В) — n (A ∩ В).

Число элементов декартова произведения множеств A и В подсчитывается по формуле n (А X В) = n (A) . n (В).

Правило подсчета числа элементов объединения непересекающихся конечных множеств в комбинаторике носит название прави-ла суммы, если элемент х можно выбрать k способами, а элемент у — m способами, причем ни один из способов выбора элемента х не совпадает со способом выбора элемента у, то выбор «х или у» можно осуществить k + m способами.

Правило подсчета числа элементов декартова произведения конечных множеств в комбинаторике носит название правила произведения: если элемент х можно выбрать k способами, а элемент y - m способами, то пару (х,y) можно выбрать km способами.

VII. Список использованных источников

    Асеев Г.Г. Абрамов О.М., Ситников Д.Э. Дискретная математика: Учебное пособие. - Ростов н/Д: «Феникс», Харьков: «Торсинг», 2003, -144с.

    Виленкин Н. Я. Алгебра. Учебное пособие для IX - X классов средних школ с математической специализацией, 1968

    Виленкин Н.Я. Рассказы о множествах. М.: Изд-во «Наука». - 1965. - 128с

    Диаграммы Эйлера - Венна.URL:http://studopedia.net/1_5573_diagrammi-eylera-venna.html

    Киреенко С.Г., Гриншпон И. Э. Элементы теории множеств (учебное пособие). - Томск, 2003. - 42 с.

    Куратовский К., Мостовский А. Теория множеств. - М.: Мир, 1970, - 416с.

История

Наивная теория множеств

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия .

В 1870 году немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879-1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen» ). Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре . Тем не менее, другие крупные математики - в частности, Готлоб Фреге , Рихард Дедекинд и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла , топологии и функционального анализа .

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной (см. Кризис математических основ). А именно, был обнаружен ряд теоретико-множественных антиномий : оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний , может быть «доказано» абсолютно любое утверждение).

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело - Френкеля с аксиомой выбора . Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешённым.

Не всеми математиками аксиома выбора принимается безоговорочно. Так, например Эмиль Борель и Анри Лебег считают, что доказательства, полученные при помощи этой аксиомы, имеют другую познавательную ценность, чем доказательства, независимые от неё. Другие же математики, такие как Феликс Хаусдорф и Адольф Френкель, принимают аксиому выбора безоговорочно, признавая за ней ту же степень очевидности, что и за другими аксиомами Цермело - Френкеля.

Основные понятия

В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как - «x есть элемент множества A», «x принадлежит множеству A»). Среди производных понятий наиболее важны следующие:

  • пустое множество , обычно обозначается символом ;
  • семейство множеств;
  • операции:

    Для множеств определены следующие бинарные отношения :

    • править] Расширения

      Основная статья: Теория комплектов

      Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

      Приложения

      См. также

      Примечания

      Литература

      • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
      • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
      • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

  • Математический анализ
  • Подмножество

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ - ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    ТЕОРИЯ МНОЖЕСТВ - теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные . Множества называются конечным , если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a 1 , a 2 ,a 3 , ..., a n }. Множество называется бесконечным , если оно содержит бесконечное число элементов. B={b 1 ,b 2 ,b 3 , ...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными , если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество А i множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2 n .

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а 1 , а 2 , а 3 , ..., а n , ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n 2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m 1 ,m 2 ,m 3 ,..,m n });
  • описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x 1 =1, x 2 =1, x k+2 =x k +x k+1 , k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х 1 =1,х 2 =1 и произвольное х k+1 (при к=1,2,3,...) вычисляется по формуле х k+2 =х k +х k+1 } или Х=}