Уход и... Инструменты Дизайн ногтей

Внутренний радиус скругления. Photoshop - определить радиус скругления углов на psd-макете

Многие моделируемые детали имеют скругления, поэтому при построении тел требуется выполнять операцию скругления ребер тела. Рассмотрим построение поверхности, которая в дальнейшем будет использоваться для скругления ребер тел. Пока будем строить поверхности скругления, не связывая их с телами.

Пусть имеются две пересекающиеся поверхности, описываемые радиус-векторами . Вблизи линии пересечения пространство делится поверхностями на четыре сектора.

Сектор 1: перпендикуляры, восстановленные от поверхностей к точкам первого сектора, имеют направление, совпадающее с нормалями обеих поверхностей.

Сектор 2: перпендикуляр, восстановленный от первой поверхности к точкам второго сектора, совпадает по направлению с нормалью первой поверхности, а перпендикуляр, восстановленный от второй поверхности к точкам второго сектора, противоположен по направлению нормали второй поверхности.

Сектор 3: перпендикуляры, восстановленные от поверхностей к точкам третьего сектора, противоположны по направлению нормалям обеих поверхностей.

Сектор 4: перпендикуляр, восстановленный от первой поверхности к точкам четвертого сектора, противоположен по направлению нормали первой поверхности, а перпендикуляр, восстановленный от второй поверхности к точкам четвертого сектора, совпадает по направлению с нормалью ко второй поверхности.

Построим поверхность скругления, представляющую собой след от качения сферы радиуса , касающейся одновременно двух поверхностей.

Рис. 4.10.1. Скругление плоских граней

Сфера будет двигаться около линии пересечения поверхностей в одном из четырех упомянутых секторов. На рис. 4.10.1 показано сечение поверхностей и сферы.

Частные случаи.

Если скругляемыми поверхностями являются плоскости, то угол а между поверхностями остается постоянным при движении вдоль линии их пересечения. Пусть радиус скругления остается постоянным и равным р. В этом случае линии перехода с поверхности скругления на сопрягаемые плоскости можно получить как эквидистантные линии к линии пересечения.

Имея согласованные по параметру линии перехода и линию пересечения плоскостей 1 (i), поверхность скругления можно представить в виде (3.10.3)

Линии перехода построим в виде линий на поверхностях. Каждая из них представляет собой двухмерную линию и поверхность (в данном случае - плоскость). Двухмерные линии могут быть получены как эквидистантные линии к линии пересечения плоскостей , отстоящие от нее на расстоянии . Знак d зависит от ориентации линии пересечения и от сектора, в котором строится поверхность скругления. Область определения параметра t поверхности скругления зависит от дальнейшего ее использования. Полученная поверхность скругления по форме совпадает с частью цилиндрической поверхности. Как правило, в рассмотренном случае строится именно часть цилиндрической поверхности. Аналогичным образом в качестве поверхности скругления между цилиндрической поверхностью и ортогональной ее оси плоскостью может быть использована часть поверхности тора.

Общий случай.

Рассмотрим построение поверхности скругления в общем случае. Построим точки касания катящейся сферы радиуса с поверхностями. Продолжение нормалей к поверхностям в точках касания пересекутся в центре катящейся сферы. Обозначим нормали (1.7.18) поверхностей через , а проекции на эти нормали векторов из точек касания до центра сферы - через соответственно. Величины по модулю равны радиусу сферы , но имеют знак, характеризующий упомянутый сектор. Параметры точек касания сферы связаны уравнением

Это векторное уравнение содержит три скалярных уравнения для компонент нормалей поверхностей и четыре искомых параметра , v, а, b. Построение поверхности скругления по уравнению (4.10.1) сходно с задачей построения линии пересечения поверхностей. В обоих случаях результатом решения являются две двухмерные линии на соответствующих поверхностях.

Переменный радиус скругления.

Пусть требуется построить поверхность скругления переменного радиуса. Для этого нам потребуется кривая пересечения поверхностей. Величины радиуса скругления будем считать функциями длины дуги s линии пересечения скругляемых поверхностей. В данном случае катящаяся сфера будет иметь переменный радиус. Кроме того, положение центра катящейся сферы связано с точкой на линии пересечения. Расположим центр катящейся сферы в нормальной плоскости кривой пересечения. Нормальная плоскость ортогональна касательному вектору кривой. Вместо векторного уравнения (4.10.1) параметры точек касания сферы свяжем уравнениями

Эти уравнения содержат четыре скалярных уравнения относительно четырех искомых параметров . Параметр s линии пересечения является известной величиной. По текущему параметру s мы вычислим радиусы точку и касательный вектор кривой в ней Решив систему уравнений (4.10.2) и (4.10.3), получим параметры , касания катящейся сферы и поверхностей.

Система уравнений (4.10.2), (4.10.3) может быть использована вместо системы уравнений (4.10.1) для построения поверхности скругления постоянного радиуса. В этом случае необязательно в качестве параметра кривой пересечения использовать длину ее дуги.

Результатом решения системы уравнений (4.10.1) или системы уравнений (4.10.2) и (4.10.3) являются две двухмерные линии на поверхностях

на соответствующих поверхностях. В общем случае линии могут быть получены как сплайны, проходящие через заданные точки. Пространственные линии, построенные по этим линиям на поверхностях, обозначим соответственно через

(4.10.5)

Они определяют края поверхности скругления, полученной качением сферы одновременно по двум поверхностям.

По двум кривым на поверхностях (4.10.5) и (4.10.6), являющимися следами касания катящейся сферы, построим поверхность скругления. Первый параметр поверхности скругления совместим с параметром t граничных кривых (4.10.5) и (4.10.6). При движении вдоль второго параметра поверхности скругления при фиксированном первом параметре должна быть описана дуга окружности. Построим эту дугу окружности в виде рациональной кривой Безье (2.6.16). Для этого при каждом значении параметра кривых на поверхности нужно знать радиус-вектор средней точки и ее вес. Вес средней точки рациональной кривой Безье (2.6.16) равен косинусу половины угла между векторами .

где вес w(t) и радиус-вектор определяются равенствами (4.10.7) и (4.10.8), а через z обозначен второй параметр поверхности. Рассмотренная поверхность скругления не имеет четких границ в направлении первого параметра. Эти границы будут определены при дальнейшем использовании поверхности для скругления ребер тел. На рис. 4.10.2 приведен пример поверхности скругления. В зависимости от замкнутости скругляемых поверхностей и линий (4.10.5) и (4.10.6) поверхность скругления может быть замкнутой или незамкнутой.

При решении системы уравнений (4.10.1) и (4.10.2) требуется вычислять производные нормалей поверхностей по параметрам. Эти производные дают формулы Вейнгартена (1.7.26).

Рис. 4.10.2. Поверхность скругления

Радиус-вектор точки поверхности за ее пределами может быть вычислен по одной из формул (3.14.8)-(3.14.10) в зависимости от замкнутости поверхности. Эти же формулы позволяют определить нормали поверхности и их производные за пределами поверхности.

Как известно, все приборы, машины, механизмы и аппараты состоят из неких деталей. Каждая из них, в свою очередь, имеет несколько частей, имеющих строго определенное назначение. Они называются в технике элементами деталей, и к ним относятся, к примеру, фаски, галтели, проточки, резьбы и т.п.

Многие детали, используемые в качестве составных частей машин и механизмов и изготавливаемые как из металлов, так и из различных пластических масс, имеют закругления и фаски . Эти элементы характеризуются размерами и радиусами , которые устанавливаются таким документом, как ГОСТ 10948-64 . В нем содержится таблица данных, с параметрами закруглений и фасок которые в обязательном порядке должны соответствовать стандарту.

ГОСТ 10948 – 64


Стандартные размеры фасок и радиусов
1-й ряд 2-й ряд 1-й ряд 2-й ряд 1-й ряд 2-й ряд 1-й ряд 2-й ряд
0.10 0.10 1.0 1.0 10 10 100 100
- 0.12 - 1.2 - 12 - 125
0.16 0.16 1.6 1.6 16 16 160 160
- 0.20 - 2.0 - 20 - 200
0.25 0.25 2.5 2.5 25 25 250 250
- 0.30 - 3.0 - 32
0.40 0.40 4.0 4.0 40 40
- 0.50 - 5.0 - 50
0.60 0.60 6.0 6.0 63 63
- 0.80 - 8.0 - 80

Галтелями в технике принято называть те скругления , которые часто располагаются на внутренних и углах различных деталей машин. Это слово имеет немецкое происхождение, и в переводе на русский язык означает «выемка », «желобок ». Использование галтелей существенно облегчает и упрощает изготовление различных деталей с помощью таких распространенных технологических процессов, как ковка, штамповка и литье. Кроме того, их применение значительно улучшает прочностные характеристики осей и валов в тех местах, где производится переход от одного диаметра к другому.

Галтели часто используются при проектировании и изготовлении ступенчатых валов. В тех местах, где сочленяются их части, имеющие различные диаметры, они намного повышают общую прочность всей конструкции, а также снижают концентрацию внутренних напряжений материалов.

В тех случаях, когда галтель находится внутри отверстия, то размер выполняемой на его краю фаски выбирается таким образом, чтобы поверхность фаски и скругление не соприкасались друг с другом.

Галтели практически всегда используются при изготовлении коленчатых валов двигателей внутреннего сгорания, выпускаемых из высокопрочных чугунов, легированных и углеродистых сталей. Если вал производится методом литья, то он обычно бывает полым, и поэтому радиусы галтелей, толщина «щек», диаметры шатунных и коренных шеек у них увеличены.

Фаски также являются одними из элементов деталей. Если посмотреть на этимологию этого слова, то окажется, что оно имеет французское происхождение: в языке Вольтера и Гюго «faccete » означает «скошенные части ребер или же угло в». Фаски предназначены преимущественно для того, чтобы притуплять слишком острые углы деталей и, тем самым, обеспечивать безопасность персонала, производящего сборку различных машин и механизмов, их эксплуатацию, обслуживание и ремонт.

Фаски , а также те параметры, которые они имеют, принято изображать и указывать на чертежах в тех случаях, когда это проистекает из того технического решения, которое имеет та или иная деталь. В противном случае ни сами фаски , ни их параметры на чертежах не указываются, однако непосредственно на изготавливаемых деталях все острые кромки надлежит притупить.

Одной из важнейших систем двигателей внутреннего сгорания является система газораспределения, которая во многом определяет функционирование агрегатов. Чтобы обеспечить в них нормальный газообмен, необходимо достичь закрытия и открытия впускных и выпускных отверстий, причем в строго определенном порядке и в строго определенные промежутки времени. Для этого используются специальные металлические клапаны, которые приводятся в движение предназначенными для этой цели механизмами. Одними из обязательных элементов клапанов являются уплотнительные фаски: именно они обеспечивают беспрепятственный выход газов, а также гарантированное уплотнение отверстий.

Чтобы построить скругление с переменным радиусом, необходимо задать точки на

скругляемых ребрах и радиусы скругления в этих точках.

На вкладкеПеременный радиус расположена одноименная панель, содержащая таб

лицу параметров скругления: номера точек, расстояния до них от начальных точек соот

ветствующих ребер и значения радиусов скругления в этих точках (рис. 97.4, б). Пока

точки для построения скругления не указаны, таблица параметров пуста.





Рис. 97.4. Построение скругления с переменным радиусом: а) указание точек,

б) задание параметров скругления, в) результат выполнения команды

Укажите в окне модели нужные точки. Выбранные точки будут отмечены «крестиками»

и пронумерованы в порядке указания (рис. 97.4, а).

В таблицеПеременный радиус задайте значения радиусов скругления в указанных

131


Если необходимо, уточните значения в колонке% илиДлина. Обратите внимание на то,

что при изменении значений в этих колонках соответствующая точка смещается в окне

Для изменения какого либо значения сделайте одинарный или двойной щелчок в нуж

ной ячейке. После одинарного щелчка возможен ввод в ячейку значения с клавиатуры,

а после двойного - ввод с клавиатуры или выбор с помощью счетчика.

Вы можете удалить строку таблицы и, следовательно, точку в окне детали. Для этого на

жмите кнопкуУдалить, расположенную над списком.

Настройка параметров скругления с переменным радиусом имеет следующие особен

По умолчанию радиус скругления в граничных точках ребер равен умолчательному -

заданному в полеРадиус на вкладкеПараметры Панели свойств. Граничными точками

ребра являются его начальная и конечная точки. Им соответствуют 0% и 100% длины

ребра. Если радиус скругления в граничной точке должен отличаться от умолчательного,

необходимо указать ее явно в окне модели и задать требуемое значение радиуса в таб

лице параметров скругления.

Если ребро замкнуто, то его начальная и конечная точки совпадают, и при настройке

скругления можно указать только одну из них.

Если для построения скругления выбраны два ребра, конечная точка одного из которых

совпадает с начальной точкой другого, то при настройке скругления можно указать толь

ко одну из них.

Нулевой радиус скругления может быть задан только в граничных точках. Если гранич

ную точку ребра затруднительно точно указать в окне модели, то можно сначала указать

ее примерно, а затем ввести нужное значение - 0% или 100% - в соответствующую

ячейку таблицы параметров. Обратите внимание на то, что для точки, не являющейся

граничной, невозможно задать нулевое значение радиуса, а для граничной точки с нуле

вым радиусом невозможно изменить расстояние от вершины (для этого необходимо

прежде изменить радиус).

Для скругления ребер, на которых не указаны точки, используется умолчательное значе

ние. Например, если при создании скругления с переменным радиусом была включена

опцияПродолжать по касательным ребрам, то эти касательные ребра находятся

системой автоматически. Поскольку указать точки на них невозможно, они скругляются

с умолчательным радиусом.



Фаска


Чтобы создать фаску на ребрах детали, вызовите командуФаска.


Команда не выполняется для ребер, образованных гладко сопряженными гранями.

Выберите способ построения фаски -По стороне и углу илиПо двум сторонам, ак

тивизировав соответствующий переключатель в группеСпособ построения.

Если фаска строится по стороне и углу, введите в полеДлина 1 длину стороны фаски, а

в полеУгол - угол между этой стороной и поверхностью фаски. В справочном поле

Длина 2 появится вычисленное значение длины второго катета фаски.

Если фаска строится по двум сторонам, введите их длины в поляДлина 1 иДлина 2. В

справочном полеУгол появится вычисленное значение угла фаски.

Укажите в окне детали ребра, на которых требуется построить фаску. Если требуется

построить фаски на всех ребрах какой либо грани, укажите эту грань.

После указания первого ребра в окне детали возникает фантом - стрелка, направлен

ная вдоль одной из граней. Стрелка указывает направление, в котором будет отклады

ваться сторона фаски с длинойДлина 1. Относительно этого же направления будет от

кладывается угол фаски.

Если требуется изменить направление, в котором откладывается первая сторона, акти

визируйте нужный переключатель (Первоенаправление илиВторое направление)

в группеНаправление первой стороны. При этом направление стрелки фантома (а

значит, и направление первой стороны фаски) изменится.

Если стороны фаски равны, то результат ее построения не будет зависеть от направле

ния первой стороны.

Не стройте фаску для каждого ребра в отдельности. Если это возможно, указывайте при

создании фаски как можно большее количество ребер, параметры фаски для которых

одинаковы.

Выполнение предыдущего совета может быть затруднено, если фаска неравносторон

няя. Если ребра, выбранные для построения такой фаски, относятся не к одной грани, то

выбор единого направления фаски для всех ребер может привести к неверному резуль

относящиеся к одной грани, и создавать отдельную фаску для каждой грани.

Если несколько ребер, на которых строится фаска, гладко соединяются (имеют общую

касательную в точке соединения), укажите одно из них и включите опциюПо касатель

ным ребрам. В этом случае система автоматически определит другие ребра, на кото

рые требуется продолжить фаску.

После подтверждения выполнения операции на ребрах детали появится фаска, а в Дере

ве модели - пиктограмма фаски.



Часть XIX. Приемы моделирования деталей

Создавайте фаски и скругления по возможности в конце процесса построения детали, а

не сразу после возникновения формообразующих элементов, на ребрах которых требу

ется образовать фаски и скругления. В этом случае расчеты при выполнении формооб

разующих операций будут производиться быстрее.



Круглое отверстие


Чтобы создать круглое отверстие со сложным профилем, выделите грань, на которой

оно должно расположиться. Затем вызовите командуОтверстие.

Рис. 97.5. Панель свойств отверстия

После вызова команды на Панели свойств появятся элементы управления для выбора

профиля отверстия и ввода его геометрических размеров (рис. 97.5).

Выберите из списка тип (форму) отверстия. Эскиз профиля выбранного типа отверстия

отображается в окне просмотра снизу от списка типов.

Этот эскиз - параметрический. Параметры отверстия управляются значениями соот

ветствующих им размеров в эскизе. Список переменных параметров отверстия отобра

жается ниже окна просмотра.

Чтобы изменить какой либо параметр отверстия, введите нужное значение в соответс

твующее поле таблицы параметров.

134


Глава 97. Дополнительные конструктивные элементы

Не все значения размеров можно менять в произвольном порядке. Например, нельзя

сделать диаметр резьбы больше номинального диаметра отверстия. Если требуется уве

личить диаметр отверстия, сначала измените номинальный диаметр, а затем - диаметр

Введите нужные значения всех параметров отверстия.

Если среди параметров выбранного отверстия в эскизе есть общая глубинаH, становят

ся доступными переключатели группыСпособ построения. Они позволяют указать, ка

ким способом определяется глубина отверстия).

Если активизирован переключательНа глубину, то глубина отверстия будет равна за

данному в списке параметров значению. Если активизирован переключательДо вер

шины илиЧерез все, то параметр H исчезает из списка параметров, а глубина отверс

тия определяется автоматически. Принцип автоматического определения глубины такой

же, как при вырезании элемента выдавливания. Если активизирован переключательДо

вершины, требуется указать эту вершину.

Фантом отверстия с заданными параметрами отображается в окне детали. Точка привяз

ки отверстия (она помечена на эскизе красным цветом) по умолчанию располагается в

начале локальной системы координат грани, на которой создается это отверстие.

Чтобы разместить отверстие в нужном месте грани, расфиксируйте поля ввода коорди

нат точки привязки. Для этого щелкните мышью по полю т. Перекрестие в этом поле

сменится «галочкой». Укажите положение отверстия мышью или введите координаты

центра отверстия.

Если вы работаете с многотельной деталью, то кроме настройки параметров может по

надобиться задание области применения операции. Для этого служит вкладка Панели

свойствРезультат операции. Подробно об области применения операций и способах

ее задания рассказано в разделе 95.4 на с. 120.

После задания всех параметров отверстия нажмите кнопкуСоздать на Панели специ

ального управления.

Деталь с отверстием на указанной грани будет показана в окне, а пиктограмма отверстия

появится в Дереве модели.

Если отверстие полностью пересекает тело, то результатом построения будет тело, со

стоящее из нескольких частей (см. главу 94).

Вы можете создать собственную библиотеку отверстий или дополнить системную биб

лиотеку отверстий (см. раздел 137.3 на с. 502).



Ребро жесткости


Перед построением ребра жесткости детали требуется создать эскиз, определяющий

форму этого ребра.

0,5; 0,8; 1; 1,2; 1,5; 1,8; 2; 2,2; 2,5; 2,8; 3; 3,5; 4; 4,5; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21;22; 23; 24; 25; 26; 28; 30; 32; 34; 35; 36; 38; 40; 42; 44; 45; 46; 48; 50; 52; 55; 58; 60; 62; 65; 68; 70; 72; 75; 78; 80; 82; 85; 88; 90; 92; 95; 98; 100; 105; 110; 115; 120; 125; 130; 135; 140; 145; 150; 155; 160; 165; 170; 175; 180; 185; 190; 200; 210; 220; 230; 240; 250; 260; 270; 280; 290; 300; 310; 320; 330; 340; 350; 360; 370; 380; 390; 400; 410; 420; 430; 440; 450; 460; 470; 480; 500.

4.5. Нанесение размера радиуса дуги окружности. Нормальные радиусы скруглений

При нанесении размера радиуса перед размерным числом помещают прописную букву высотой, равной высоте размерного числа.

Если надо указать размеры, определяющие положение центра дуги окружности, то размерную линию радиуса окружности проводят между дугой или её продолжением и центром. Последний в этом

случае изображают пересечением ()

выносных (рис. 4.21, размер

R 1 ) или центровых линий (рис. 4.22).Размерная линия радиуса

имеет только одну стрелку.

При нанесении размеров

положения вершины скругленного

угла или центра дуги скругления

выносные линии

проводят от

точек пересечения

сторон угла

от центра

дуги скругления

При проведении нескольких радиусов из

одного центра их размерные линии не должны

располагаться на одной прямой (рис. 4.22).

При большой величине радиуса центр дуги окружности допускается приближать к дуге, а размерную линию проводить с изломом под углом 90О (рис. 4.23).

Если не требуется указывать

размеры, определяющие

положение

центра дуги окружности , то размер-

ную линию допускается не доводить

до центра и смещать относительно

его (рис. 4.24).

совпадении

нескольких

радиусов их

размерные

линии допускается не доводить до

центра, кроме крайних (рис. 4.25).

Размеры радиусов

наружных

скруглений наносят, как показано на

рис. 4.26а, а внутренних скруглений -

на рис. 4.26б. Следует избегать сов-

падения направления размерной линии радиуса с направлением штриховки. И в этом случае способ нанесения размерных чисел при различных положениях размерных линий определяется наибольшим удобством чтения чертежа.

Радиусы скруглений , раз-

мер которых в масштабе чертежа

1мм и менее, на чертеже не

изображают, нанося только

размер дуги с её внешней

стороны (рис. 27а).

Размеры одинаковых

радиусов допускается указывать

на общей полке (рис. 4.27б).

Ниже приводятся нормальные радиусы скруглений по ГОСТ

10948-64*: 0,2; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,2; 1,6; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32; 40; 50; 60; 80; 100; 125; 160; 200; 250.

Если радиусы скруглений, сгибов и т.п. на всем чертеже одинаковы или какой-то радиус является преобладающим, то вместо нанесения размеров этих радиусов на изображении рекомендуется в технических требованиях делать запись типа: “Радиусы скруглений 4 мм ”, “Внутренние радиусы сгибов 10 мм ”, “Неуказанные радиусы 8 мм ” и т.п.

Если дуга окружности на чертеже больше 180 О , то принанесении её размера указывают диаметр окружности, а для дуги

окружности, не превышающей 180 О ,указывают её радиус .

Размер окружности, даже преры-

вающейся, но имеющей противолежащие

точки на диаметре, всегда следует

задавать диаметром (рис. 4.28).

Допускается не наносить на чертеже

радиуса дуги

окружности

сопрягающихся параллельных линий (рис.

4.29). Тем самым на чертеже контура

призматической шпонки с закругленными

торцами и паза под такую шпонку

допускается наносить

только два

размера: длину и ширину .

4.6 .Нанесение длины дуги окружности

При нанесении размера

дуги окружности

размерную

линию проводят

концентрично дуге, выносные

линии - параллельно биссект-

рисе угла, а над размерным

(рис. 4.30а).

охватывает

большой угол, то выносные

линии должны выходить за

7min пределы размерных на 1...5 мм; расстояние от контурной линии

до ближайшей размерной должно быть не менее 10 мм, а между параллельными размерными

линиями - не менее 7 мм ;

шахматный порядок нанесения размерных чисел при наличии нескольких концентричных размерных дуг.

Правила нанесения размерных чисел угловых размеров иллюстрирует рис. 4.33. Размерные числа, расположенные выше горизонтальной линии , помещают над размерными линиями со стороны их выпуклос-

ти, а расположенные ниже горизонтальной

линии - со стороны вогнутости размерных линий. В заштрихо-

ванной зоне размерные числа указывают на горизонтально нанесенных полках линий-выносок.

При создании макетов в Photoshop дизайнеры очень любят использовать скругление углов для самых различных блоков.

Причем, они любили это делать всегда, с самых незапамятных времен. Спору нет, блоки с такими углами смотрятся гораздо приятнее, что положительным образом сказывается на самом дизайне сайта.

Но вот верстальщику в данной ситуации не совсем легко. Как передать в коде такое скругление углов? Раньше, до появления CSS3, выходили из положения трудоемким и кропотливым способом - вырезали из изображения скругленные углы и всталяли их в код к качестве фоновых изображений.

Но вот появился CSS3 и дело значительно облегчилось, так как в этой спецификации есть свойство, специально созданное для отрисовки круглых углов у блоков. Оно называется

,
1 -moz
, , к примеру.

А вот как его узнать? Не звонить же дизайнеру с вопросом - какой радиус ты заложил в макете?

Скажу, что сразу ответ на этот вопрос я не получил. По привычке отправился на форум forum.htmlbook.ru , но конкретного ничего не вынес оттуда. После поисков в Инете все-же решение было найдено. И оно оказалось очень простым.

Давайте масштабируем макет так, чтобы был хорошо виден скругленный угол блока. Видим на нем, как прямая линия блока плавно переходит в скругление, которое после своего завершения опять превращается в прямую. Для нас интересны здесь две точки - там, где скругление начинается, и там, где оно заканчивается. Назовем их касательными точками:

Проведем в качестве вспомогательных линий две направляющие - вертикальную и горизонтальную. На рисунке они отображены тонкими синими линиями. Нам они будут необходимы для того, чтобы получить точку их пересечения. Затем выберем в панели инструментов Photoshop прямоугольное выделение (Rectangular Marqee).

И построим квадрат (зажав клавишу Shift) так, чтобы его левый верхний угол совпал с точкой пересечения направляющих. Протянем его мышкой так, чтобы стороны расширяющегося квадрата совпали с касательными точками, о которых говорилось ранее. Как только линии квадрата и касательные точки совпадут, отпускаем мышь - построение закончено.

Можно выполнить построение другим способом. Начать выделение из одной точки (касательной) и закончить в другой, то есть, как бы по диагонали. Результат будет тот же самый, но не нужно создавать направляющие:

Теперь откроем панель “Инфо”, и взглянем на размеры построенного квадрата. Длины сторон и будут радиусом скругления для данного блока на макете:

Не верите? Это точно - любая из сторон построенного квадрата будет радиусом данного скругления! Чтобы еще немного разъяснить, я нарисовал в AutoCAD круг с радиусом

так, чтобы вписать его правый верхний угол в центр созданного круга. На рисунке хорошо видно, что любая из его сторон является радиусом круга, в который он вписан:

При построении квадрата выделения на psd-макете бывает, что невозможно точно попасть так, чтобы стороны квадрата совпали с направляющими guideline. Для себя нашел такой выход. Ну, не попал, так не попал.

Строю квадрат дальше. Когда он построен и мышь отпущена, я просто перемещаю выделение в нужное место с помощью клавиш-стрелок на клавиатуре. А дальше - все как и прежде. Смотрю на панель “Инфо” и получаю точный радиус скругления:

Как видно, все оказалось очень просто. Теперь, зная точное значение радиуса скругления, можно создать шаблон сайта, максимально соответсвующий psd-макету.

P.S.

На рисунке с изображением круга и квадрата, созданных в AutoCAD, имеется неточность. В выноске указано, что построен прямоугольник, хотя на самом деле это конечно же квадрат.

Почему на psd-макете радиус скругления равен

1 40px
, а в AutoCAD -
1 41px
? Да просто промахнулся, когда рисовал круг. Сути дела это ведь не меняет, только еще нагляднее показывает верность подхода.