Уход и... Инструменты Дизайн ногтей

Степень поляризации частично поляризованного света: определение, описание и формула. Поляризация при отражении и преломлении. Эллиптическая и круговая поляризация

Следствием теории Максвелла является поперечность электромагнитных (световых) волн распространяющихся в вакууме или изотропной среде: векторы напряженности электрического и магнитного полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости v распространения волны (то есть перпендикулярно световому лучу). Явление поляризации света служит надежным обоснованием поперечности световой волны. При рассмотрении поляризации обычно все рассуждения связывают с плоскостью колебаний вектора напряженности электрического поля Е - светового вектора , так как химическое, физиологическое и другие виды воздействия света на вещество обусловлены главным образом электрическими колебаниями. Однако при этом следует помнить об обязательном существовании перпендикулярного ему вектора напряженности магнитного поля Н .

Поляризация электромагнитной волны. Записывая решение для электрического поля плоской электромагнитной волны в виде

мы предполагали, что направление вектора амплитуды колебаний не зависит от времени. В этом случае вектор электрического поля всегда и во всех точках волны направлен вдоль одной и той же прямой - колеблется в одной плоскости неизменной ориентации в пространстве.

Плоскость, в которой происходят колебания светового вектора, то есть плоскость, содержащая вектор и направление распространения волны, называется плоскостью колебаний. Если эта плоскость не меняет во времени своей ориентации, то волна называется - линейно (плоско) поляризованной .

Выбирая ось х вдоль направления распространения волны, а ось у - вдоль векторной амплитуды , записываем (6.1) в виде

Однако существует и вторая линейно поляризованная волна, имеющая ту же частоту и распространяющаяся в том же направлении:

Электрические колебания в этой волне направлены вдоль оси z, так что волны (6.2) и (6.3) линейно независимы. Обе они являются решением одного и того же волнового уравнения, так что их суперпозиция также является решением того же уравнения. Сложив эти волны, мы найдем общее выражение для монохроматической волны с данной частотой w , распространяющейся вдоль оси х. Математически эта процедура ничем не отличается от сложения взаимно ортогональных колебаний. Если зафиксировать какую-то точку х и следить за изменением вектора электрического поля в ней, то конец вектора будет описывать эллиптическую , в общем случае, траекторию в плоскости, параллельной y0z. Вращение вектора происходит с частотой волны . В этом случае говорят, что свет имеет эллиптическую поляризацию . Если разность фаз кратна , то эллиптическая поляризация вырождается в линейную . При равенстве амплитуд Е 0,у и Е 0,г эллипс превращается в окружность. Тогда говорят о круговой поляризации волны. В соответствии с двумя возможными направлениями вращения вектора возможны право- и левополяризованные волны . Любую электромагнитную волну можно представить как линейную комбинацию двух линейно поляризованных волн или как линейную комбинацию двух волн с круговой поляризацией. Иными словами, электромагнитные волны имеют две внутренние степени свободы.

Естественный и поляризованный свет. В свете, испускаемом обычными источниками, имеются колебания, совершающиеся в различных направлениях, перпендикулярных к лучу. В таких световых волнах, исходящих из различных элементарных излучателей (атомов), векторы имеют различные ориентации, причем все эти ориентации равновероятны, что обусловлено большим числом атомных излучателей. Такой свет называется естественным , или неполяризованным .

Если под влиянием внешних воздействий на свет или внутренних особенностей источника света (лазер) появляется предпочтительное, наиболее вероятное направление колебаний, то такой свет называется частично поляризованным . Неполяризованный (естественный) свет может испускаться лишь огромным числом элементарных излучателей. Электромагнитная волна от отдельного элементарного излучателя (атома, молекулы) всегда поляризована. С помощью различных поляризаторов из пучка естественного света можно выделить часть, в которой колебания вектора будут происходить в одном определенном направлении в плоскости, перпендикулярной лучу, то есть выделенный свет будет линейно поляризованным.

На рисунках направление колебаний электрического поля линейно поляризованной волны изображается следующим образом. Если вектор Е колеблется в плоскости чертежа, то на направление вектора скорости волны наносится ряд вертикальных стрелочек (рис. 6.1-1), а если в плоскости, перпендикулярной чертежу, - ряд точек (рис. 6.1-2). Естественный (неполяризованный) свет условно обозначается чередующимися черточками, которым соответствует, например, компонента Е y вектора напряженности электрического поля, и точками, соответствующими другой компоненте Е z (рис. 6.1-3).

Рис. 6.1. Условные обозначения типа поляризации волны

Существуют приборы (поляризаторы), пропускающие только колебания, происходящие параллельно некоторой плоскости, называемой плоскостью поляризации прибора, и полностью задерживающие ортогональные колебания. Если пропустить через такой прибор пучок света, то на выходе он будет линейно поляризованным. При вращении прибора вокруг направления луча интенсивность выходящего света будет изменяться от I MAX до I MIN .

Степень поляризации света - это величина

Отметим, что формула (6.4) пригодна для расчета степени поляризации света лишь в том случае, когда частично поляризованный свет представляет собой смесь естественного света и света линейно поляризованного и не работает, например, в случае смеси естественного света и света поляризованного по кругу. В общем случае степень поляризации может быть рассчитана как отношение интенсивности поляризованной компоненты к суммарной интенсивности волны, то есть сумме интенсивностей поляризованной и естественной компонент смеси:

Нетрудно показать, что (6.4) есть частный случай последней формулы.

Если падающий пучок света линейно поляризован, то при положении прибора, когда его плоскость поляризации ортогональна плоскости колебаний волны, свет через прибор не пройдет, то есть . В соответствии с формулой (6.4) степень поляризации такого света . Для частично поляризованного света

и . Для естественного света, где волны разных поляризаций смешаны в равной степени и все направления эквивалентны, интенсивность выходящего света не изменяется при вращении поляризатора, так что и .

Закон Малюса. В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е , например природные кристаллы турмалина. Монокристалл турмалина поглощает колебания вектора Е в одном направлении настолько сильно, что сквозь пластинку толщиной порядка 1 мм проходит только линейно поляризованный луч. Кристаллы йодистого хинина еще сильнее поглощают одну из поляризаций: кристаллическая пленка толщиной в десятую долю миллиметра практически полностью отделяет один из линейно поляризованных лучей.

Пусть естественный свет распространяется перпендикулярно плоскости рисунка 6.2.

Рис. 6.2. Разложение вектора амплитуды колебаний А в волне, падающей на поляризатор

Вектор амплитуды колебаний электрического поля волны, совершающихся в плоскости, образующей с плоскостью поляризатора угол , можно разложить на два колебания с амплитудами

Первое колебание с амплитудой А || пройдет через прибор (поляризатор), второе - с амплитудой А - будет задержано (поглощено). Интенсивность прошедшей волны пропорциональна квадрату амплитуды

Падающая волна является смесью волн с различными углами . Усредняя по углам, получаем для интенсивности света на выходе из поляризатора:

где - интенсивность падающего на поляризатор света. В естественном свете все значения угла равновероятны:

так что интенсивность света, прошедшего через поляризатор, будет равна . При вращении поляризатора вокруг направления луча естественного света интенсивность прошедшего света остается неизменной, но изменяется лишь ориентация плоскости колебаний света, выходящего из прибора.

Рассмотрим теперь падение линейно поляризованного света с интенсивностью на тот же поляризатор (рис. 6.3).

Рис. 6.3. Прохождение линейно поляризованной волны через поляризатор

Сквозь прибор пройдет составляющая колебаний с амплитудой

где - угол между плоскостью колебаний вектора Е и плоскостью поляризатора. Следовательно, интенсивность прошедшего света I определяется выражением

которое носит название закона Малюса .

Поляризационные приборы по своему целевому назначению делятся на поляризаторы и анализаторы . Поляризаторы служат для получения поляризованного света. С помощью анализатора можно убедиться, что падающий свет поляризован, и выяснить направление плоскости поляризации. Принципиальных различий в конструкционном отношении между поляризатором и анализатором не существует.

Поставим на пути естественного света два поляризатора, плоскости которых образуют угол (рис. 6.4).


Рис. 6.4. Пропускание естественного света через систему из двух поляризаторов

Из первого поляризатора выйдет линейно поляризованный свет, интенсивность которого , составит половину интенсивности падающего естественного света . Согласно закону Малюса из второго поляризатора (который играет роль анализатора) выйдет свет с интенсивностью

Таким образом, интенсивность света, прошедшего через два поляризатора, равна

Если угол (плоскости поляризации поляризатора и анализатора параллельны), то ; если (анализатор и поляризатор скрещены), то .

Пример 1. В частично поляризованном свете амплитуда колебаний, соответствующая максимальной интенсивности света при прохождении через поляризатор, в n = 2 раза больше амплитуды, соответствующей минимальной интенсивности. Определим степень поляризации света.

Поскольку интенсивность пропорциональна квадрату амплитуды, имеем

Отсюда степень поляризации света равна

Пример 2. На пути света со степенью поляризации Р = 0.6 поставили анализатор так, что интенсивность прошедшего света стала максимальной. Определим, во сколько раз уменьшится интенсивность, если анализатор повернуть на угол ?

В падающем луче по условию (см. предыдущий пример)

При повороте анализатора на угол будут пропущены колебания, параллельные плоскости поляризации прибора. Поэтому интенсивность пропущенных колебаний, прежде бывших параллельными плоскости поляризации, составит

a интенсивность прошедших колебаний, до поворота задерживавшихся анализатором, равна

Суммарная интенсивность прошедших колебаний равна сумме

Стало быть, интенсивность уменьшится при повороте анализатора в 16/13 = 1.23 раза.

Поляризация при отражении и преломлении. Получить поляризованный свет из естественного можно еще одним способом - отражением. Опыт показывает, что отраженный от поверхности диэлектрика и преломленный лучи всегда частично поляризованы. Когда свет падает на диэлектрическую поверхность, то в отраженном луче преобладают колебания, перпендикулярные плоскости падения (точки на рис. 6.5), а в преломленном луче - колебания, параллельные плоскости падения (стрелки на рис. 6.5).

Рис. 6.5. Поляризация света при отражении и преломлении

Степень поляризации зависит от угла падения лучей и от относительного показателя преломления сред. Исследуя это явление, английский физик Д. Брюстер установил, что при определенном значении угла падения

удовлетворяющем условию

отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения луча. Это соотношение известно как закон Брюстера. При

отражается только та компонента вектора напряженности электрического поля, которая параллельна поверхности диэлектрика (перпендикулярна плоскости падения). Соответственно, преломленный луч всегда частично поляризован, так как отражается лишь какая-то доля падающего света (не равная 50 %).

При падении света под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны, отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения луча, а преломленный луч частично поляризован с максимальной степенью поляризации.

Для того чтобы объяснить, почему отраженный при падении под углом Брюстера луч линейно поляризован в плоскости, перпендикулярной плоскости падения, учтем, что отраженный свет есть результат излучения вторичных волн колеблющимися под действием светового вектора волны электрическими зарядами (электронами) в среде II . Эти колебания происходят в направлении колебаний вектора Е .

Разложим колебания вектора Е в среде II на два взаимно перпендикулярных направления (см. рис. 6.6): колебания , происходящие в плоскости падения (показаны стрелками), и колебания , происходящие перпендикулярно плоскости падения (показаны точками). В случае падения под углом Брюстера

отраженный луч перпендикулярен преломленному лучу 0С. Следовательно, параллелен . Из электромагнитной теории Максвелла известно, что колеблющийся электрический заряд не излучает электромагнитных волн вдоль направления своего движения. Поэтому колеблющийся в диэлектрике излучатель типа вдоль направления не излучает. Таким образом, по направлению отраженного луча распространяется свет, посылаемый только излучателями типа , направления колебаний которых перпендикулярны плоскости падения.

Следует отметить, что на опыте закон Брюстера не выполняется вполне строго из-за дисперсии света.

Пример 3. Определим, на какой угловой высоте над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды, был полностью поляризован.

1. Свет естественный и поляризованный.

2. Прохождение света через поляризатор. Закон Малюса.

3. Способы получения поляризованного света.

4. Вращение плоскости поляризации оптически активными веществами.

5. Применение поляризованного света для решения медико-биологических задач. Поляриметрия. Фотоупругость.

6. Основные понятия и формулы.

7. Задачи.

22.1. Свет естественный и поляризованный

Разбирая явление интерференции света, мы выяснили, что естественный свет представляет собой совокупность огромного числа цугов, испущенных различными молекулами (атомами) в различные моменты времени. В луче естественного света все направления колебаний светового вектора, перпендикулярные направлению распространения пучка, равновероятны.

Естественный свет - совокупность электромагнитных волн (цугов) со всевозможными равновероятными направлениями световых векторов (Е), перпендикулярных направлению распространения света.

естественного света.

На рисунке 22.1, а показано сечение луча О плоскостью, перпендикулярной его направлению, и хаотическая ориентация световых векторов различных цугов в этом сечении. Такое сечение называют нормальным сечением. На рисунке 22.1, б показано сечение луча О плоскостью, проходящей через сам луч. Такое сечение называют осевым. Световые векторы цугов, лежащие в осевом сечении, изображены черточками, а световые векторы цугов, перпендикулярные сечению, изображены точками. Количество точек и черточек одинаково.

Рис. 22.1. Сечение луча естественного света двумя плоскостями: а - нормальное сечение; б - осевое сечение

Из естественного света с помощью специальных устройств - поляризаторов - можно получить свет с одинаковой ориентацией всех световых векторов. Такой свет называют плоскополяризованным.

Плоскополяризованный свет - свет, в луче которого ориентация световых векторов всех цугов одинакова.

Осевое сечение луча плоскополяризованного света, в котором лежат все световые векторы, называют плоскостью поляризации.

Ниже показано графическое изображение луча плоскополяризованного света.

На рисунке 22.2, а показано нормальное сечение луча О - все световые векторы колеблются вдоль одной прямой. На рисунке 22.2, б показано осевое сечение, в котором лежат все световые векторы (изображены черточками), - это плоскость поляризации. На рисунке 22.2, в показано осевое сечение луча, перпендикулярное световым векторам (изображены точками).

Свет, в котором имеется преимущественное направление колебаний светового вектора Е, называют частично поляризованным светом. Такой свет представляет собой смесь естественного и плоскополяризованного света.

На рисунке 22.3 представлено графическое изображение луча частично поляризованного света.

Рис. 22.2. Сечение луча плоскополяризованного света различными плоскостями:

а - нормальное сечение; б - осевое сечение, содержащее световые векторы (плоскость поляризации); в - осевое сечение, перпендикулярное световым векторам

Рис. 22.3. Сечения луча частично поляризованного света: а - нормальное сечение; б - осевое сечение, в котором преобладают световые векторы, лежащие в его плоскости; в - осевое сечение, в котором преобладают световые векторы, перпендикулярные его плоскости

22.2. Прохождение света через поляризатор. Закон Малюса

Процесс превращения естественного света в поляризованный (поляризация) может быть осуществлен посредством специальных устройств - поляризаторов.

Поляризатор - устройство для получения полностью или (реже) частично поляризованного света.

Мы будем рассматривать только полную линейную поляризацию, при которой из поляризатора выходит плоскополяризованный свет.

Поляризатор пропускает только проекцию светового вектора Е на некоторую плоскость, которую называют главной плоскостью

поляризатора. Эта плоскость проходит через точку падения луча, а ее пространственная ориентация определяется устройством поляризатора.

Обнаружить наличие поляризации света и определить ее степень можно с помощью анализатора. Анализатор - это поляризатор, используемый для определения степени поляризации.

Если на пути луча поляризованного света поставить анализатор и поворачивать его вокруг луча, то интенсивность выходящего света будет меняться от некоторого максимального значения I 0 до нуля. Измеряя интенсивность света, прошедшего через анализатор, Э.Л. Малюс установил (1810 г.), что она подчиняется следующему закону (закон Малюса):

Здесь I 0 - интенсивность света, падающего на анализатор; I - интенсивность прошедшего света; φ - угол между главными плоскостями поляризатора и анализатора.

С математической точки зрения закон Малюса означает, что поляризатор пропускает только проекцию светового вектора Е на главную плоскость поляризатора (рис. 22.4).

Рис. 22.4. Прохождение поляризованного света через анализатор (луч перпендикулярен плоскости рисунка)

Если на поляризатор падает естественный (неполяризованный) свет, то закон Малюса применим к каждому отдельному цугу. В естественном свете все направления световых векторов равновероятны.

22.3. Способы получения поляризованного света

Действие большинства линейных поляризаторов, дающих плоскополяризованный свет, основывается на одном из трех физических явлений: двойном лучепреломлении, линейном дихроизме и поляризации света при отражении и преломлении.

Поляризация при отражении и преломлении

При падении светового луча на границу раздела двух изотропных диэлектриков (например, воздуха и стекла) он частично отражается, а частично проникает во вторую среду. При этом оба луча оказываются частично поляризованными. В отраженном луче преобладают направления вектора Е, перпендикулярные плоскости падения, а в преломленном - параллельные ей. Степень поляризации зависит от угла падения. При некотором угле падения отраженный луч будет поляризован полностью, а степень поляризации преломленного луча будет максимальна (рис. 22.5).

Рис. 22.5. Поляризация света при отражении и преломлении

Этот угол называется углом Брюстера (i Б) и определяется условием:

Степень поляризации преломленного луча может быть значительно повышена путем многократного преломления. Так, при прохождении одной стеклянной пластинки степень поляризации преломленного луча не превышает 15 %. Но после прохождения стопы из 16 наложенных друг на друга пластин вышедший свет будет поляризован практически полностью.

Такая совокупность пластинок называется стопой Столетова. К недостаткам этого метода следует отнести низкую интенсивность полученного поляризованного света.

Поляризация при двойном лучепреломлении

При преломлении светового луча на границе раздела с некоторыми анизотропными средами наблюдается явление двойного лучепреломления - преломленный луч раздваивается. При этом оба луча оказываются полностью поляризованы.

Оптической анизотропией обладают многие кристаллы из-за асимметрии их решеток (например, исландский шпат).

Двойное лучепреломление - раздвоение светового луча при прохождении через некоторые анизотропные среды, обусловленное зависимостью показателя преломления света от его поляризации и направления распространения.

Один луч подчиняется законам преломления и называется обыкновенным «о». Для другого луча эти законы не выполняются, и его называют необыкновенным «е». Явление двойного лучепреломления иллюстрирует рис. 22.6.

Поскольку при двойном лучепреломлении задача получения полностью поляризованного

Рис. 22.6. Двойное лучепреломление

света решается автоматически, остается лишь из двух лучей выделить один. Для этого используют два способа.

1. Призма Николя. Этот поляризатор (рис. 22.7) изготавливается из исландского шпата, для которого показатели преломления обыкновенного и необыкновенного лучей различны: n 0 = 1,65, n е = 1,48. Призма разрезана по диагонали и склеена канадским бальзамом с «промежуточным» показателем преломления n кб = 1,55.

Рис. 22.7. Ход лучей в призме Николя

При соответствующих углах падения на грань призмы обыкновенный луч «о» претерпевает полное внутреннее отражение на прослойке канадского бальзама и поглощается зачерненной верхней гранью. Необыкновенный луч «е» проходит через границу и выходит из призмы параллельно нижней грани.

2. Дихроизм, поляроиды. В некоторых кристаллах с двойным лучепреломлением обыкновенный луч «о» поглощается значительно сильнее, чем необыкновенный «е». Такое явление называется дихроизмом. Дихроизмом в диапазоне видимого света обладает, например, турмалин. В пластине турмалина толщиной 1 мм при падающем видимом свете луч «о» практически целиком поглощается. Выходит только луч «е».

Поляризаторы, использующие дихроизм, называются поляроидами. В настоящее время научились изготавливать поляроиды в виде тонких пленок с большой площадью, что дает возможность получать широкие пучки поляризованного света. Подобные пленки широко применяются в дисплеях калькуляторов и в жидкокристаллических экранах мониторов компьютеров. Поляроидные очки ослабляют солнечные блики на воде или снегу. Для этих же целей при видеосъемке используют поляризационные фильтры.

22.4. Вращение плоскости поляризации оптически активными веществами

Прохождение поляризованного света через некоторые анизотропные среды сопровождается поворотом плоскости его поляризации вокруг направления распространения света. Это явление называется вращением плоскости поляризации. Вещества, в которых наблюдается это явление, называют оптически активными. Примерами твердых оптически активных веществ являются твердые вещества кварц, сахар, киноварь.

Угол поворота плоскости поляризации (а) пропорционален толщине слоя оптически активного вещества (L):

Коэффициент пропорциональности α 0 зависит от структуры вещества и называется постоянной вращения (град/мм). Вращательная способность очень сильно зависит от частоты света. Например, кварцевая пластинка толщиной 1 мм поворачивает плоскость поляризации красного света на 15°, а плоскость поляризации фиолетового света - на 51°.

Способностью поворачивать плоскость поляризации обладают также растворы некоторых веществ. Например, водный раствор сахара и глюкозы, скипидар, винная кислота, никотин. Для них угол поворота зависит еще и от концентрации (С):

Здесь [α 0 ] - удельное вращение (градхсм 2 /г), величина которого зависит от химической природы растворенного вещества и растворителя, от температуры и длины волны света ([α 0 ] ~1/λ 2).

Оптически активные вещества делятся на две группы. В первой из них оптическая активность связана с асимметричным строением молекулы, не имеющей ни центра, ни плоскостей симметрии, т.е. хиральной. В этом случае оптическая активность вещества проявляется во всех агрегатных состояниях и растворах. Ко второй группе относятся вещества, оптическая активность которых связана с асимметричной структурой самого вещества (кристаллической решетки).

Оптически активные вещества могут быть правовращающими и левовращающими. Правовращающее вещество поворачивает плоскость поляризации по часовой стрелке (если смотреть навстречу лучу).

положительна (α> 0). Левовращающее вещество поворачивает плоскость поляризации против часовой стрелки. Величина вращательной способности для него отрицательна (α< 0).

Хиральные молекулы могут существовать в двух зеркально симметричных формах - правой и левой. Эти две изомерные формы называются антиподами. Важно знать, что в живой природе (по крайней мере, на Земле) все важнейшие биологические молекулы существуют только в одной из двух возможных форм. Поэтому если каким-либо способом изготовить пищу из других антиподов, то животные ее не смогут усвоить. Причина этого - чисто геометрическая. Все химические реакции начинаются с того, что молекулы располагаются друг относительно друга должным образом. Только после этого начинается взаимодействие их электронов. Для хиральных молекул, ориентации которых не соответствуют друг другу, добиться этого невозможно, как невозможно надеть левую перчатку на правую руку.

Известно, что биологический сахар является правовращающим, а сахар, изготовленный химическим путем, представляет собой смесь, содержащую правые и левые антиподы в равных количествах. Такая смесь называется рацемической. Рацемические смеси не вращают плоскость поляризации, так как положительный и отрицательный эффекты в них скомпенсированы. Если в раствор синтетического сахара поместить бактерии, то через некоторое время раствор станет левовращающим. Это означает, что бактерии усваивают только «правовращающие» молекулы сахара.

22.5. Применение поляризованного света для решения медико-биологических задач

Поляризация и связанные с нею эффекты широко используются в медико-биологических исследованиях.

Поляриметрия

Поляриметрия - это оптические методы исследования сред с естественной или наведенной магнитным полем оптической активностью, основанные на измерениях величины вращения плоскости поляризации света.

Этот метод используют для определения оптической активности сывороточных белков с целью диагностики рака, для определения содержания сахара в крови и в моче, в биофизических исследованиях, а также в пищевой промышленности. Соответствующие измерительные приборы называются поляриметрами или сахариметрами (если они специально приспособлены для измерения концентрации сахара).

Поляризационная микроскопия

Поляризационный микроскоп отличается от обычного оптического микроскопа тем, что перед конденсором помещен поляризатор, обеспечивающий освещение объекта поляризованным светом. В тубусе между объективом и окуляром помещается анализатор. Если главные оси поляризатора и анализатора скрещены, то в микроскоп видны только те фрагменты биологического объекта, которые вращают плоскость поляризации. При этом яркость наблюдаемых фрагментов тем выше, чем больше угол поворота.

Фотоупругость

Механические напряжения, создаваемые в прозрачных телах, способны изменять их оптические свойства: оптически изотропные тела могут становиться анизотропными, а анизотропные - изменять свою анизотропию. Комплекс таких явлений называют фотоупругостью.

Явление фотоупругости используется в травматологии для определения механического напряжения, возникающего в костных тканях. Из прозрачного материала (часто плексигласа) создают модель сустава. В ненагруженном состоянии в скрещенных поляроидах эта модель однородна и выглядит темной. Под действием механической нагрузки подобной той, которой кость подвергается в реальных условиях, возникает анизотропия модели, как следствие - вращение плоскости поляризации. Угол вращения пропорционален механическому напряжению. При этом появляется характерная картина полос и пятен. По этой картине, а также по тем ее изменениям, которые возникают при увеличении или уменьшении нагрузки, можно делать выводы о механических напряжениях, возникающих в модели, а следовательно, и в реальном суставе.

22.6. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

22.7. Задачи

1. Чему равен угол φ между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшилась в 4 раза?

2. Определить удельное вращение [α 0 ] для раствора сахара, если при прохождении света через трубку с раствором угол поворота плоскости поляризации равен α = 22°. Длина трубки равна L = 10 см, концентрация раствора равна С = 0,33 г/см 3 .

3. Определить толщину L кварцевой пластинки, для которой угол поворота плоскости поляризации света с длиной волны λ = 509 нм равен α = 180°. Постоянная вращения в кварце для этой длины волны α 0 = 29,7 град/мм.

4. Раствор сахара, налитый в трубку длиной L = 20 см, поворачивает плоскость поляризации света (λ = 0,5 мкм) на угол а = 30°. Найти концентрацию сахара в растворе, если удельное вращение, вызываемое раствором сахара для этой длины волны [α 0 ] = 6,67 град*см 2 /г.

5. Раствор глюкозы с концентрацией С 1 = 0,28 г/см 3 , налитый в кювету сахариметра, поворачивает плоскость поляризации света на угол а 1 = 32°. Определить концентрацию С 2 глюкозы в кювете той же длины, если раствор вращает плоскость поляризации на угол

6. При какой высоте солнца над горизонтом солнечный свет отражается от поверхности озера плоскополяризованным? Показатель преломления воды в области видимого света n = 1,33.

Свет, излучаемый отдельным атомом, представляет собой электромагнитную волну, т. е. совокупность двух поперечных взаимно перпендикулярных волн - электрической (образованной колебанием вектора напряженности электрического поля и магнитной (образованной колебанием вектора напряженности магнитного поля идущих вдоль общей прямой называемой световым лучом (рис. 337).

Луч (свет), у которого электрические колебания совершаются все время в одной и только одной плоскости, называется поляризованным лучом (светом); разумеется, что при этом магнитные колебания совершаются в другой (перпендикулярной) плоскости (названной плоскостью поляризации света). Из данного определения следует, что свет, излучаемый отдельным атомом, является поляризованным (во всяком случае в течение всего периода излучения этого атома).

Опыт и теория показывают, что химическое, физиологическое и другие виды воздействия света на вещество обусловлены главным образом электрическими колебаниями. Поэтому, а также для упрощения рисунков, изображающих световую волну (или луч), мы будем в дальнейшем говорить только об электрических колебаниях, а плоскость, в которой они совершаются, называть плоскостью световых колебаний, или просто плоскостью колебаний. Тогда луч поляризованного света можно схематически изобразить так, как это сделано на рис. 338, а (луч перпендикулярен плоскости рисунка; векторы соответствуют амплитудным значениям напряженности электрического поля

На практике мы никогда не встречаемся со светом от одного отдельного атома, поскольку всякий реальный источник света (светящееся тело) состоит из множества атомов, излучающих беспорядочно, т. е. испускающих световые волны со всевозможными ориентациями плоскости колебаний. Эти волны налагаются друг на друга, в результате чего любому лучу, исходящему от реального (естественного) источника света, будет соответствовать множество разнообразно ориентированных плоскостей колебания (рис. 338, б). Такой луч (свет) является неполяризованным и называется естественным лучом (светом).

Обычно интенсивность излучения каждого из атомов, составляющих светящееся тело, в среднем одинакова; поэтому у естественного света амплитудные (максимальные) значения вектора одинаковы во всех плоскостях колебания. Бывают, однако, случаи, когда у светового луча амплитудные значения вектора оказываются неодинаковыми для различных плоскостей колебания; такой луч называется частично поляризованным. На рис. 338, в изображен частично поляризованный луч, у которого колебания совершаются преимущественно в вертикальной плоскости.

В отличие от естественного поляризованный свет характеризуется не только интенсивностью (зависящей от амплитуды напряженности поля и цветом (зависящим от длины волны X), но еще и положением

плоскости колебаний. Поэтому, например, поляризованные лучи 1, 2 и 3 (рис. 339), интенсивность и цвет которых одинаковы, не тождественны друг другу. Однако человеческий глаз не обнаруживает различия между поляризованными лучами, имеющими различную ориентацию плоскости колебания, и вообще не отличает поляризованного света от естественного.

Естественный свет можно поляризовать, т. е. превратить его в поляризованный свет. Для этого надо создать такие условия, при которых колебания вектора напряженности электрического поля могли бы совершаться только вдоль одного определенного направления. Подобные условия могут, например, иметь место при прохождении естественного света через среду, анизотропную в отношении электрических колебаний. Как известно, анизотропия свойственна кристаллам (см. § 51). Поэтому можно ожидать поляризации света, проходящего через кристалл. Действительно, опыт показывает, что многие природные и искусственно созданные кристаллы поляризуют проходящий через них естественный свет.

В самых общих чертах физическая сущность процесса поляризации света, проходящего через кристалл, состоит в следующем. Согласно электромагнитной теории Максвелла (см. § 105), переменное электрическое поле световой волны вызывает в кристаллическом диэлектрике переменный поляризационный ток, т. е. переменное смещение заряженных частиц (атомов, ионов), составляющих кристаллическую решетку. Поляризационный ток выделяет джоулево тепло; следовательно, в кристалле происходит превращение световой энергии в теплоту.

Благодаря анизотропии кристалла возможная величина смещения его частиц, а следовательно, и сила поляризационного тока оказываются неодинаковыми для различных плоскостей кристаллической решетки. Очевидно, что световая волна, идущая в плоскости, соответствующей значительным возможным смещениям частиц, вызывает сильный поляризационный ток и потому практически полностью поглощается кристаллом. Если же световая волна идет в плоскости, соответствующей малым смещениям частиц, то она вызывает слабый поляризационный ток и проходит через кристалл без существенного поглощения.

Таким образом, из электрических колебаний естественного света, имеющих всевозможные направления, через кристалл проходят (без поглощения) только те, которые совершаются в плоскости, соответствующей минимуму поляризационного тока; остальные колебания в той или иной мере ослабляются, так как через кристалл проходят только их проекции на эту плоскость. В результате у света, прошедшего через кристалл, электрические колебания совершаются лишь в одной определенной плоскости, т. е. свет оказывается поляризованным.

К природным кристаллам, поляризующим свет, относится, например, турмалин. Естественный луч, прошедший через пластинку турмалина вырезанную параллельно оптической оси кристалла, полностью поляризуется и имеет электрические колебания только в главной плоскости в плоскости, содержащей оптическую ось и луч (рис. 340).

В каждом кристалле имеется направление, относительно которого атомы (или ионы) кристаллической решетки расположены симметрично; оно называется оптической осью кристалла. Подчеркнем, что оптическая ось - это не какая-то одна линия, а определенное направление в кристалле; все прямые, проведенные в кристалле параллельно этому направлению, являются оптическими осями.

Если естественный луч идет вдоль оптической оси, то все его электрические колебания перпендикулярны ей. В таком случае (благодаря симметричному расположению частиц кристалла относительно оптической оси) все электрические колебания совершаются в одинаковых условиях и все они проходят через кристалл. Поэтому естественный луч, идущий вдоль оптической оси, не поляризуется. При всех иных направлениях луча имеет место его поляризация.

Если за пластинкой 1 помещена вторая пластинка турмалина 2, ориентированная так, что ее оптическая ось перпендикулярна оптической оси пластинки то через вторую пластинку луч не пройдет (так как его электрические колебания перпендикулярны главной плоскости пластинки 2). Если же оптически оси пластинок 1 и 2 составляют угол а, отличный от то свет (луч) проходит через пластинку 2. Однако, как это следует из рис. 341, амплитуда световых колебаний, прошедших через пластинку 2, будет меньше амплитуды световых колебаний, падающих на эту пластинку:

Так как интенсивность света пропорциональна квадрату амплитуды световых колебаний, то

где интенсивность света, падающего на пластинку 2, У - интенсивность света, прошедшего через эту пластинку. Соотношение (12) называется законом Малюса.

Таким образом, поворот пластинки 2 вокруг поляризованного луча сопровождается изменением интенсивности света, прошедшего через эту пластинку; максимум интенсивности имеет место при минимум (соответствующий полному гашению света) - при

Пластинка 7, поляризующая естественный свет, называется поляризатором, а пластинка 2, посредством которой изменяется интенсивность поляризованного света (и тем самым обнаруживается факт поляризации), называется анализатором. Понятно, что обе пластинки совершенно одинаковы (их можно поменять местами); данные названия характеризуют лишь назначение пластинок.

Следует отметить, что турмалин обладает значительным селективным поглощением - пропускает преимущественно зеленый свет; это является недостатком турмалина как поляризатора (и анализатора).

В последние годы для поляризации света широко применяются так называемые поляроиды (поляризационные фильтры). Поляроид представляет собой прозрачную полимерную пленку толщиной около содержащую множество мелких искусственных кристалликов - поляризаторов, например кристалликов герапатита (сульфат иодистого хинина). Оптические оси всех кристалликов герапатита ориентируются в одном направлении в процессе изготовления поляроида. Поляроидная пленка сравнительно недорога, весьма эластична, имеет большую площадь, обладает почти одинаковым (незначительным) поглощением для всех длин волн видимого света.

Одним из интересных практических применений поляроида является его использование на автотранспорте для защиты водителей от слепящего действия фар встречных автомашин. С этой целью на ветровое стекло и на стекла фар наклеиваются поляроидные пленки, оптические оси которых параллельны и составляют 45° с горизонтом. Тогда, как это видно на рис. 342, оптическая ось поляроида ветрового стекла одной машины будет перпендикулярна оптической

оси поляроида фар встречной машины (ориентация оптических осей показана на рисунке стрелками). Согласно закону Малюса, при такой ориентации оптических осей поляроидов поляризованный свет фар не пройдет через ветровое стекло встречной машины; следовательно, водитель практически не видит света фар встречных машин (но увидит, конечно, эти машины в свете фар своего автомобиля).

Направлению распространения волны;

  • Круговую поляризацию - правую либо левую, в зависимости от направления вращения вектора индукции;
  • Эллиптическую поляризацию - случай, промежуточный между круговой и линейными поляризациями.
  • Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.

    При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально . Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.

    Линейная Круговая Эллиптическая


    Теория явления

    Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

    Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

    Линейную поляризацию имеет обычно излучение антенн .

    По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

    Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

    Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например креветка-богомол павлиновая способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.

    История открытия

    Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Э. Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог. Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Х. Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, т. е. их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы). В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей. Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света. В 1808 г. французский физик Э. Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.

    Параметры Стокса

    Изображение поляризации языком параметров Стокса на сфере Пуанкаре

    В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например,полудлинами сторон прямоугольника, в который вписан эллипс поляризации A 1 , A 2 и разностью фаз φ , либо полуосями эллипса a , b и углом ψ между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса :

    , ,

    Независимыми являются только три из них, ибо справедливо тождество:

    Если ввести вспомогательный угол χ , определяемый выражением (знак соответствует правой, а - левой поляризации), то можно получить следующие выражения для параметров Стокса:

    На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре , поэтому эта сфера называется сферой Пуанкаре.

    Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

    См. также

    Литература

    • Ахманов С.А., Никитин С.Ю. - Физическая оптика, 2 издание, M. - 2004.
    • Борн М., Вольф Э. - Основы оптики, 2 издание, исправленное, пер. с англ.,М. - 1973

    Примечания


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Поляризация света" в других словарях:

      Физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены … Физическая энциклопедия

      Современная энциклопедия

      Поляризация света - ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные… … Иллюстрированный энциклопедический словарь

      поляризация света - поляризация Свойство света, характеризующееся пространственно временной упорядоченностью ориентации магнитного и электрического векторов. Примечания 1. В зависимости от видов упорядоченности различают: линейную поляризацию, эллиптическую… … Справочник технического переводчика

      - (лат. от polus). Свойство лучей света, которые, будучи отраженными или преломленными, утрачивают способность отражаться или преломляться вновь, по известным направлениям. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

      Упорядоченность в ориентации векторов напряженностей электрических E и магнитных H полей световой волны в плоскости, перпендикулярной световому лучу. Различают линейную поляризацию света, когда E сохраняет постоянное направление (плоскостью… … Большой Энциклопедический словарь

    Доктор технических наук А. ГОЛУБЕВ.

    Две совершенно одинаковые пластинки из слегка затемнённого стекла или гибкого пластика, сложенные вместе, практически прозрачны. Но стоит повернуть какую-нибудь одну на 90 о, как перед глазом окажется сплошная чернота. Это может показаться чудом: ведь каждая пластинка прозрачна при любом повороте. однако внимательный взгляд обнаружит, что при определённых углах её поворота блики от воды, стекла и полированных поверхностей исчезают. Это же можно наблюдать, рассматривая экран компьютерного ЖК-монитора через пластинку: при её повороте яркость экрана меняется и при определённых положениях гаснет совсем. «Виновник» всех этих (и многих других) любопытных явлений - поляризованный свет. Поляризация - это свойство, которым могут обладать электромагнитные волны, в том числе видимый свет. Поляризация света имеет множество интересных применений и заслуживает того, чтобы о ней поговорить подробнее.

    Наука и жизнь // Иллюстрации

    Механическая модель линейной поляризации световой волны. Щель в заборе пропускает колебания верёвки только в вертикальной плоскости.

    В анизотропном кристалле световой луч расщепляется на два, поляризованные во взаимно-перпендикулярных (ортогональных) направлениях.

    Обыкновенный и необыкновенный лучи пространственно совмещены, амплитуды световых волн одинаковы. При их сложении возникает поляризованная волна.

    Так свет проходит через систему из двух поляроидов: а - когда они параллельны; б - скрещены; в - расположены под произвольным углом.

    Две равные силы, приложенные в точке А во взаимно-перпендикулярных направлениях, заставляют маятник двигаться по круговой, прямолинейной или эллиптической траектории (прямая - это «вырожденный» эллипс, а окружность - его частный случай).

    Наука и жизнь // Иллюстрации

    Физпрактикум. Рис. 1.

    Физпрактикум. Рис. 2.

    Физпрактикум. Рис. 3.

    Физпрактикум. Рис. 4.

    Физпрактикум. Рис. 5.

    Физпрактикум. Рис. 6.

    Физпрактикум. Рис. 7.

    Физпрактикум. Рис. 8.

    Физпрактикум. Рис. 9.

    В природе существует множество колебательных процессов. Один из них - гармонические колебания напряжённостей электрического и магнитного полей, образующие переменное электромагнитное поле, которое распространяется в пространстве в виде электромагнитных волн. Волны эти поперечные - векторы е и н напряжённостей электрического и магнитного полей взаимно-перпендикулярны и колеблются поперек направления распространения волны.

    Электромагнитные волны условно разделяют на диапазоны по длинам волн, образующих спектр. Наибольшую его часть занимают радиоволны с длиной волны от 0,1 мм до сотен километров. Небольшой, но очень важный участок спектра - оптический диапазон. Он делится на три области - видимую часть спектра, занимающую интервал приблизительно от 0,4 мкм (фиолетовый свет) до 0,7 мкм (красный свет), ультрафиолетовую (УФ) и инфракрасную (ИК), невидимые глазом. Поэтому поляризационные явления доступны непосредственному наблюдению только в видимой области.

    Если колебания вектора напряжённости электрического поля е световой волны поворачиваются в пространстве случайным образом, волна называется неполяризованной, а свет - естественным. Если эти колебания происходят только в одном направлении, волна линейно-поляризована. Неполяризованную волну в линейно-поляризованную превращают при помощи поляризаторов - устройств, пропускающих колебания только одного направления.

    Попробуем изобразить этот процесс более наглядно. Представим себе обычный деревянный забор, в одной из досок которого прорезана узкая вертикальная щель. Проденем сквозь эту щель верёвку; её конец за забором закрепим и начнём верёвку встряхивать, заставляя её колебаться под разными углами к вертикали. Вопрос: а как будет колебаться верёвка за щелью?

    Ответ очевиден: за щелью верёвка станет колебаться только в вертикальном направлении. Амплитуда этих колебаний зависит от направления приходящих к щели смещений. Вертикальные колебания пройдут сквозь щель полностью и дадут максимальную амплитуду, горизонтальные - щель не пропустит совсем. А все другие, «наклонные», можно разложить на горизонтальную и вертикальную составляющие, и амплитуда будет зависеть от величины вертикальной составляющей. Но в любом случае за щелью останутся только вертикальные колебания! То есть щель в заборе - это модель поляризатора, преобразующего неполяризованные колебания (волны) в линейно-поляризованные.

    Вернёмся к свету. Получить из естественного, неполяризованного света линейно-поляризованный можно несколькими способами. Наиболее часто применяют полимерные плёнки с длинными молекулами, ориентированными в одном направлении (вспомним про забор с щелью!), призмы и пластинки, обладающие двойным лучепреломлением, или оптической анизотропией (неодинаковости физических свойств по различным направлениям).

    Оптическая анизотропия наблюдается у многих кристаллов - турмалина, исландского шпата, кварца. Само явление двойного лучепреломления заключается в том, что луч света, падающий на кристалл, разделяется в нём на два. При этом показатель преломления кристалла для одного из этих лучей постоянен при любом угле падения входного луча, а для другого зависит от угла падения (то есть для него кристалл анизотропен). Это обстоятельство настолько поразило первооткрывателей, что первый луч назвали обыкновенным, а второй - необыкновенным. И весьма существенно, что эти лучи линейно-поляризованы во взаимно-перпендикулярных плоскостях.

    Заметим, что в таких кристаллах существует одно направление, по которому двойного преломления не происходит. Это направление называется оптической осью кристалла, а сам кристалл - одноосным. Оптическая ось - это именно направление, все идущие вдоль него линии обладают свойством оптической оси. Известны также двухосные кристаллы - слюда, гипс и другие. В них также происходит двойное преломление, но оба луча оказываются необыкновенными. В двухосных кристаллах наблюдаются более сложные явления, которых мы касаться не станем.

    В некоторых одноосных кристаллах обнаружилось ещё одно любопытное явление: обыкновенный и необыкновенный лучи испытывают существенно различное поглощение (это явление назвали дихроизмом). Так, в турмалине обыкновенный луч поглощается практически полностью уже на пути около миллиметра, а необыкновенный проходит весь кристалл насквозь почти без потерь.

    Двоякопреломляющие кристаллы применяют для получения линейно-поляризованного света двумя способами. В первом используют кристаллы, не обладающие дихроизмом; из них изготавливают призмы, составленные из двух треугольных призм с одинаковой или перпендикулярной ориентацией оптических осей. В них либо один луч отклоняется в сторону, так что из призмы выходит только один линейно-поляризованный луч, либо выходят оба луча, но разведённые на большой угол. Во втором способе используются сильнодихроичные кристаллы, в которых один из лучей поглощается, или тонкие плёнки - поляроиды в виде листов большой площади.

    Возьмём два поляроида, сложим их и посмотрим сквозь них на какой-нибудь источник ес-тественого света. Если оси пропускания обоих поляроидов (то есть направления, в которых они поляризуют свет) совпадают, глаз увидит свет максимальной яркости; если они перпендикулярны, свет практически полностью погасится.

    Свет от источника, пройдя через первый поляроид, окажется линейно-поляризованным вдоль его оси пропускания и в первом случае свободно пройдёт через второй поляроид, а во втором случае не пройдёт (вспомним пример с щелью в заборе). В первом случае говорят, что поляроиды параллельны, во втором - что поляроиды скрещены. В промежуточных случаях, когда угол между осями пропускания поляроидов отличается от 0 или 90о, мы получим и промежуточные значения яркости.

    Пойдём дальше. В любом поляризаторе входящий свет расщепляется на два пространственно разделённых и линейно-поляризованных во взаимно-перпендикулярных плоскостях луча - обыкновенный и необыкновенный. А что будет, если не разделять пространственно обыкновенный и необыкновенный лучи и не гасить один из них?

    На рисунке показана схема, реализующая этот случай. Свет определённой длины волны, прошедший через поляризатор Р и ставший линейно-поляризованным, падает под углом 90 о на пластинку П, вырезанную из одноосного кристалла параллельно его оптической оси ZZ. В пластинке распространяются две волны - обыкновенная и необыкновенная - в одном направлении, но с разной скоростью (поскольку для них различны показатели преломления). Необыкновенная волна поляризована вдоль оптической оси кристалла, обыкновенная - в перпендикулярном направлении. Предположим, что угол а между направлением поляризации падающего на пластинку света (осью пропускания поляризатора Р) и оптической осью пластинки равен 45 о и амплитуды колебаний обыкновенной и необыкновенной волн А о и А е равны. Это случай сложения двух взаимно-перпендикулярных колебаний с одинаковыми амплитудами. Посмотрим, что получится в результате.

    Для наглядности обратимся к механической аналогии. Есть маятник, к нему прикреплена трубочка с вытекающими из неё тонкой струйкой чернилами. Маятник колеблется в строго фиксированном направлении, и чернила рисуют прямую линию на листе бумаги. Теперь мы толкнём его (не останавливая) в направлении, перпендикулярном плоскости качания, так, что размах его колебаний в новом направлении стал таким же, как и в начальном. Таким образом, мы имеем два ортогональных колебания с одинаковыми амплитудами. Что нарисуют чернила, зависит от того, в какой точке траектории АОВ находился маятник, когда мы его толкнули.

    Предположим, что мы толкнули его в тот момент, когда он занимал крайнее левое положение, в точке А. Тогда на маятник подействуют две силы: одна в направлении первоначального движения (к точке О), другая - в перпендикулярном направлении АС. Поскольку эти силы одинаковы (амплитуды перпендикулярных колебаний равны), маятник пойдет по диагонали AD. Его траекторией станет прямая линия, идущая под углом 45 о к направлениям обоих колебаний.

    Если толкнуть маятник, когда он находится в крайнем правом положении, в точке В, то из аналогичных рассуждений ясно, что его траекторией будет тоже прямая, но повёрнутая на 90 о. Если толкнуть маятник в средней точке О, конец маятника опишет круг, а если в какой-то произвольной точке - эллипс; причём его форма зависит от того, в какой именно точке толкнули маятник. Следовательно, круг и прямая - частные случаи эллиптического движения (прямая - это «вырожденный» эллипс).

    Результирующее колебание маятника, совершаемое по прямой линии, - модель линейной поляризации. Если его траектория описывает окружность, колебание называется поляризованным по кругу или циркулярно-поляризованным. В зависимости от направления вращения, по часовой стрелке или против неё, говорят соответственно о право- или левоциркулярной поляризации. Наконец, если маятник описывает эллипс, колебание называется эллиптически-поляризованным, и в этом случае тоже различают правую или левую эллиптическую поляризацию.

    Пример с маятником даёт наглядное представление, какую поляризацию получит колебание, возникающее при сложении двух взаимно-перпендикулярных линейно-поляризованных колебаний. Возникает вопрос: что служит аналогом задания второго (перпендикулярного) колебания в различных точках траектории маятника для световых волн?

    Им служит разность фаз φ обыкновенной и необыкновенной волн. Толчку маятника в точке А соответствует нулевая разность фаз, в точке В - разность фаз 180 о, в точке О - 90 о, если маятник проходит через эту точку слева направо (от А к В), или 270 о, если справа налево (от В к А). Следовательно, при сложении световых волн с ортогональными линейными поляризациями и одинаковыми амплитудами поляризация результирующей волны зависит от разности фаз складываемых волн.

    Из таблицы видно, что при разности фаз 0 о и 180 о эллиптическая поляризация превращается в линейную, при разности 90 о и 270 о - в круговую с разными направлениями вращения результирующего вектора. А эллиптическую поляризацию можно получить сложением двух ортогональных линейно-поляризованных вол и при разности фаз 90 о или 270 о, если у этих волн различные амплитуды. Кроме того, циркулярно-поляризованный свет можно получить вообще без сложения двух линейно-поляризованных волн, например при эффекте Зеемана - расщеплении спектральных линий в магнитном поле. Неполяризованный свет частотой v, пройдя через приложенное в направлении распространения света магнитное поле, расщепляется на две компоненты с левой и правой циркулярными поляризациями и симметричными относительно ν частотами (ν - ∆ν) и (ν + ∆ν).

    Весьма распространённый способ получения различных видов поляризации и их преобразования - использование так называемых фазовых пластинок из двоякопреломляющего материала c показателями преломления n o и n e . Толщина пластинки d подобрана так, что на её выходе разность фаз между обыкновенной и необыкновенной компонентами волны равна 90 или 180 о. Разности фаз 90 о соответствует оптическая разность хода d(n o - n e), равная λ/4, а разности фаз 180 о - λ/2, где λ - длина волны света. Эти пластинки так и называются - четвертьволновая и полуволновая. Пластинку толщиной в одну четвёртую или половину длины волны изготовить практически невозможно, поэтому тот же результат получают с более толстыми пластинками, дающими разность хода (kλ + λ/4) и (kλ + λ/2), где k - некоторое целое число. Четвертьволновая пластинка превращает линейно-поляризованный свет в эллиптически-поляризованный; если же пластинка полуволновая, то на её выходе получается также линейно-поляризованный свет, но с направлением поляризации, перпендикулярным входящему. Разность фаз в 45 о даст циркулярную поляризацию.

    Если между параллельными или скрещёнными поляроидами поместить двоякопреломляющую пластинку произвольной толщины и посмотреть через эту систему на белый свет, то мы увидим, что поле зрения стало цветным. Если толщина пластинки неодинакова, возникают разноцветные участки, потому что разность фаз зависит от длины волны света. Если один из поляроидов (все равно, какой) повернуть на 90 о, цвета изменятся на дополнительные: красный - на зелёный, жёлтый - на фиолетовый (в сумме они дают белый свет).

    Поляризованный свет предлагали использовать для защиты водителя от слепящего света фар встречного автомобиля. Если на ветровое стекло и фары автомобиля нанести плёночные поляроиды с углом пропускания 45 о, например вправо от вертикали, водитель будет хорошо видеть дорогу и встречные машины, освещённые собственными фарами. Но у встречных автомобилей поляроиды фар окажутся скрещёнными с поляроидом ветрового стекла данного автомобиля, и свет фар встречных машин погаснет.

    Два скрещённых поляроида составляют основу многих полезных устройств. Через скрещённые поляроиды свет не проходит, но, если поместить между ними оптический элемент, поворачивающий плоскость поляризации, можно открыть свету дорогу. Так устроены быстродействующие электрооптические модуляторы света. Между скрещёнными поляроидами помещается, например, двоякопреломляющий кристалл, на который подаётся электрическое напряжение. В кристалле в результате взаимодействия двух ортогональных линейно-поляризованных волн свет становится эллиптически-поляризованным с составляющей в плоскости пропускания второго поляроида (линейный электрооптический эффект, или эффект Поккельса). При подаче переменного напряжения будет периодически меняться форма эллипса и, следовательно, величина проходящей через второй поляроид составляющей. Так осуществляется модуляция - изменение интенсивности света с частотой приложенного напряжения, которая может быть очень высокой - до 1 гигагерца (10 9 Гц). Получается затвор, прерывающий свет миллиард раз в секунду. Эго используют во многих технических устройствах - в электронных дальномерах, оптических каналах связи, лазерной технике.

    Известны так называемые фотохромные очки, темнеющие на ярком солнечном свету, но не способные защитить глаза при очень быстрой и яркой вспышке (например, при электросварке) - процесс затемнения идёт сравнительно медленно. Поляризационные очки на эффекте Поккельса обладают практически мгновенной «реакцией» (менее 50 мкс). Свет яркой вспышки поступает на миниатюрные фотоприемники (фотодиоды), подающие электрический сигнал, под действием которого очки становятся непрозрачными.

    Поляризационные очки используют в стереокино, дающем иллюзию объёмности. В основе иллюзии лежит создание стереопары - двух изображений, снятых под разными углами, соответствующими углам зрения правого и левого глаза. Их рассматривают так, чтобы каждый глаз видел только предназначенный для него снимок. Изображение для левого глаза проецируют на экран через поляроид с вертикальной осью пропускания, а для правого - с горизонтальной осью и точно совмещают их на экране. Зритель смотрит через поляроидные очки, в которых ось левого поляроида вертикальна, а правого горизонтальна; каждый глаз видит только «своё» изображение, и возникает стереоэффект.

    Для стереоскопического телевидения применяется способ быстрого попеременного затемнения стёкол очков, синхронизированного со сменой изображений на экране. За счёт инерции зрения возникает объёмное изображение.

    Поляроиды широко применяются для гашения бликов от стёкол и полированных поверхностей, от воды (отраженный от них свет сильно поляризован). Поляризован и свет экранов жидкокристаллических мониторов.

    Поляризационные методы используются в минералогии, кристаллографии, геологии, биологии, астрофизике, метеорологии, при изучении атмосферных явлений.

    Литература

    Жевандров Н. Д. Поляризация света. - М.: Наука, 1969.

    Жевандров Н. Д. Анизотропия и оптика. - М.: Наука, 1974.

    Жевандров Н. Д. Применение поляризованного света. - М.: Наука, 1978.

    Шерклифф У. Поляризованный свет / Пер. с англ. - М.: Мир, 1965.

    Физпрактикум

    ПОЛЯРИЗОВАННЫЙ МИР

    О свойствах поляризованного света, самодельных полярископах и о прозрачных предметах, начинающих переливаться всеми цветами радуги, журнал уже писал (см. «наука и жизнь» № ). Рассмотрим этот же вопрос с использованием новых технических устройств.

    Любое устройство с цветным ЖК (жидкокристаллическим) экраном- монитор, ноутбук, телевизор, DVD-плеер, карманный компьютер, смартфон, коммуникатор, телефон, электронную фоторамку, MP3-плеер, цифровой фотоаппарат - можно использовать в качестве поляризатора (прибора, создающего поляризованный свет).

    Дело в том, что сам принцип работы ЖК-монитора основан на обработке поляризованного света (1). Более подробное описание работы можно найти на http://master-tv.com/ , а для нашего физпрактикума важно то, что если мы засветим экран белым светом, например, нарисовав белый квадрат или сфотографировав белый лист бумаги, то получим плоскополяризованный свет, на фоне которого мы и будем производить дальнейшие опыты.

    Интересно, что, приглядевшись к белому экрану при большом увеличении, мы не увидим ни одной белой точки (2) - всё многообразие оттенков получается комбинацией оттенков красного, зелёного и синего цветов.

    Может быть, по счастливой случайности наши глаза тоже используют три вида колбочек, реагирующих на красный, зелёный и синий цвета так, что при правильном соотношении основных цветов мы воспринимаем эту смесь как белый цвет.

    Для второй части полярископа - анализатора - подойдут поляризованные очки фирмы «Polaroid», они продаются в магазинах для рыболовов (уменьшают блики от водной поверхности) или в автомагазинах (убирают блики от стеклянных поверхностей). Проверить подлинность таких очков очень просто: поворачивая очки относительно друг друга, можно практически полностью перекрыть свет (3).

    И, наконец, можно сделать анализатор из ЖК дисплейчика от испорченных электронных часов или других изделий с чёрно-белыми экранами(4). При помощи этих несложных приспособлений можно увидеть немало интересного, а если поставить анализатор перед объективом фотоаппарата - сохранить удачные кадры (5).

    Предмет из абсолютно прозрачной пластмассы - линейка (8), коробочка для CD-дисков (9) или сам «нулевой» диск (см. снимок на первой странице обложки), - помещённый между ЖК-экраном и анализатором, приобретает радужную окраску. Геометрическая фигурка из целлофана, снятого с сигаретной пачки и положенная на листок того же целлофана, становится цветной (6). А если повернуть анализатор на 90 градусов, все цвета изменятся на дополнительные - красный станет зелёным, жёлтый - фиолетовым, оранжевый - синим (7).

    Причина этого явления в том, что прозрачный для естественного света материал на самом деле неоднороден, или, что то же самое, анизотропен. Его физические свойства, в том числе показатели преломления разных участков предмета, неодинаковы. Световой луч в нём расщепляется на два, которые идут с разными скоростями и поляризованы во взаимно-перпендикулярных плоскостях. Интенсивность поляризованного света, результат сложения двух световых волн, при этом не изменится. Но анализатор вырежет из него две плоско-поляризованные волны, колеблющиеся в одной плоскости, которые станут интерферировать (см. «Наука и жизнь» № 1, 2008 г.). Малейшее изменение толщины пластинки или напряжений в её толще приводит к появлению разности хода волн и возникновению окраски.

    В поляризованном свете очень удобно изучать распределение механических напряжений в деталях машин и механизмов, строительных конструкциях. Из прозрачной пластмассы делают плоскую модель детали (балки, опоры, рычага) и прикладывают к ней нагрузку, моделирующую реальную. Разноцветные полосы, возникающие в поляризованном свете, указывают на слабые места детали (острый угол, сильный изгиб и пр.) - в них концентрируются напряжения. Меняя форму детали, добиваются наибольшей её прочности.

    Проделать такое исследование несложно и самим. Из органического стекла (желательно однородного) можно вырезать, скажем, модель гака (крюка для подъёма груза), подвесить её перед экраном, нагружать гирьками разного веса на проволочных петельках и наблюдать, как в ней меняется распределение напряжений.