Уход и... Инструменты Дизайн ногтей

Основное свойство дроби. Правила. Основное свойство алгебраической дроби. Операции с дробями

Условимся считать, что под "действиями с дробями" на нашем уроке будут пониматься действия с обыкновенными дробями. Обыкновенная дробь - это дробь, обладающая такими атрибутами, как числитель, дробная черта и знаменатель. Это отличает обыкновенную дробь от десятичной, которая получается из обыкновенной путём приведения знаменателя к числу, кратному 10. Десятичная дробь записывается с запятой, отделяющей целую часть от дробной. У нас пойдёт речь о действиях с обыкновенными дробями, так как именно они вызывают наибольшие затруднения у студентов, позабывших основы этой темы, пройденной в первой половине школьного курса математики. Вместе с тем при преобразованиях выражений в высшей математике используются в основном именно действия с обыкновенными дробями. Одни сокращения дробей чего стоят! Десятичные же дроби особых затруднений не вызывают. Итак, вперёд!

Две дроби и называются равными, если .

Например, , так как

Равными также являются дроби и (так как ), и (так как ).

Очевидно, равными являются и дроби и . Это означает, что если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной: .

Это свойство называется основным свойством дроби.

Основное свойство дроби можно использовать для перемены знаков у числителя и знаменателя дроби. Если числитель и знаменатель дроби умножить на -1, то получим . Это означает, что значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свой знак:

Сокращение дробей

Пользуясь основным свойством дроби, можно заменить данную дробь другой дробью, равной данной, но с меньшим числителем и знаменателем. Такую замену называют сокращением дроби.

Пусть, например, дана дробь . Числа 36 и 48 имеют наибольший общий делитель 12. Тогда

.

В общем случае сокращение дроби возможно всегда, если числитель и знаменатель не являются взаимно простыми числами. Если числитель и знаменатель - взаимно простые числа, то дробь называется несократимой.

Итак, сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Всё вышесказанное применимо и к дробным выражениям, содержащим переменные.

Пример 1. Сократить дробь

Решение. Для разложения числителя на множители, представив предварительно одночлен - 5xy в виде суммы - 2xy - 3xy , получим

Для разложения знаменателя на множители используем формулу разности квадратов:

В результате

.

Приведение дробей к общему знаменателю

Пусть даны две дроби и . Они имеют разные знаменатели: 5 и 7. Пользуясь основным свойством дроби, можно заменить эти дроби другими, равными им, причём такими, что у полученных дробей будут одинаковые знаменатели. Умножив числитель и знаменатель дроби на 7, получим

Умножив числитель и знаменатель дроби на 5, получим

Итак, дроби приведены к общему знаменателю:

.

Но это не единственное решение поставленной задачи: например, данные дроби можно привести также к общему знаменателю 70:

,

и вообще к любому знаменателю, делящемуся одновременно на 5 и 7.

Рассмотрим ещё один пример: приведём к общему знаменателю дроби и . Рассуждая, как в предыдущем примере, получим

,

.

Но в данном случае можно привести дроби к общему знаменателю, меньшему, чем произведение знаменателей этих дробей. Найдём наименьшее общее кратное чисел 24 и 30: НОК(24, 30) = 120 .

Так как 120:4=5, то чтобы записать дробь со знаменателем 120, надо и числитель, и знаменатель умножить на 5, это число называется дополнительным множителем. Значит .

Далее, получаем 120:30=4. Умножив числитель и знаменатель дроби на дополнительный множитель 4, получим .

Итак, данные дроби приведены к общему знаменателю.

Наименьшее общее кратное знаменателей этих дробей является наименьшим возможным общим знаменателем.

Для дробных выражений, в которые входят переменные, общим знаменателем является многочлен, который делится на знаменатель каждой дроби.

Пример 2. Найти общий знаменатель дробей и .

Решение. Общим знаменателем данных дробей является многочлен , так как он делится и на , и на . Однако этот многочлен не единственный, который может быть общим знаменателем данных дробей. Им может быть также многочлен , и многочлен , и многочлен и т.д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на выбранный без остатка. Такой знаменатель называется наименьшим общим знаменателем.

В нашем примере наименьший общий знаменатель равен . Получили:

;

.

Нам удалось привести дроби к наименьшему общему знаменателю. Это произошло путём умножения числителя и знаменателя первой дроби на , а числителя и знаменателя второй дроби - на . Многочлены и называются дополнительными множителями, соответственно для первой и для второй дроби.

Сложение и вычитание дробей

Сложение дробей определяется следующим образом:

.

Например,

.

Если b = d , то

.

Это значит, что для сложения дробей с одинаковым знаменателем достаточно сложить числители, а знаменатель оставить прежним. Например,

.

Если же складываются дроби с разными знаменателями, то обычно приводят дроби к наименьшему общему знаменателю, а потом складывают числители. Например,

.

Теперь рассмотрим пример сложения дробных выражений с переменными.

Пример 3. Преобразовать в одну дробь выражение

.

Решение. Найдём наименьший общий знаменатель. Для этого сначала разложим знаменатели на множители.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
  2. Затем - деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Расширение дроби. Сокращение дроби. Сравнение дробей.
Приведение к общему знаменателю. Сложение и вычитание дробей.
Умножение дробей. Деление дробей.
Расширение дроби. Значение дроби не меняется, если умножить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется расширением дроби. Например,

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется сокращением дроби. Например,

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:


Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, чтобы привести к общему знаменателю.
П р и м е р. Сравнить две дроби:

Использованное здесь преобразование называется приведением дробей к общему знаменателю.
Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.
П р и м е р.

Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.
П р и м е р.

Деление дробей. Для того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь. Это правило вытекает из определения деления (см. раздел “Арифметические операции”).
П р и м е р.

Великий русский критик В. Г. Белинский сказал, что задача поэзии состоит в том, “чтобы извлекать поэзию жизни Из прозы жизни и потрясать души верным изображением жизни”. Именно таким писателем, писателем, потрясающим души изображением порой самых ничтожных картин существования человека в мире, является Н. В, Гоголь. Величайшая заслуга Гоголя перед русским обществом, на мой взгляд.

Эта статья – попытка собрать воедино разнородную информацию относительно наиболее распространённого в среде любителей солнечных наблюдений телескопа. В той или иной степени она собрана на российских и зарубежных астрономических интернет-форумах, также в интернете собраны и все фотографии, размещённые ниже. Технические параметры, особенности конструкции, возможные.

Десятичная система счисления Десятичная система счисления - позиционная система счисления по основанию 10. Наиболее распространённая система счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев рук у человека. .

Математика. 1 — 4 класс В этом разделе Вы познакомитесь с такими понятиями и терминами, как сложение, вычитание, умножение и деление. Так же вы познакомитесь с математическими действиями и порядком их выполнения, математическими сказками и многим – многим другим. .

for-schoolboy.ru

Сложение обыкновенных дробей выполняется так:

а) если знаменатели дробей одинаковы, то к числителю первой дроби прибавляют числитель второй дроби и оставляют тот же знаменатель, т. е.

б) если знаменатели дробей различны, то дроби сначала приводят к общему знаменателю, предпочтительнее к наименьшему, а затем применяют правило а).

Пример 1. Сложить дроби и Решение. Имеем:

Вычитание обыкновенных дробей выполняют следующим образом:

а) если знаменатели дробей одинаковы, то

б) если знаменатели различны, то сначала дроби приводят к общему знаменателю, а затем применяют правило а).

Умножение обыкновенных дробей выполняют следующим образом:

т. е. перемножают отдельно числители, отдельно знаменатели, первое произведение делают числителем, второе - знаменателем.

Например,

Деление обыкновенных дробей выполняют следующим образом:

т. е. делимое умножают на дробь , обратную делителю

Например, .

Пример 2. Найти значение числового выражения

Решение. 1) Сократив числитель и знаменатель на 3 (это полезно сделать до выполнения действий умножения в числителе и знаменателе), получим т. е. Итак

3) При нахождении значения выражения действия сложения и вычитания можно выполнять одновременно. Наименьшим общим кратным чисел 15, 20, 30 является число 60. Приведем все три дроби к знаменателю 60, использовав дополнительные множители: для первой дроби 4, для второй - 3, для третьей - 2. Получим:

Пример 3. Выполнить действия: а)

Решение, а) Первый способ. Обратим каждое из данных смешанных чисел в неправильную дробь, а затем выполним сложение:

Обратим теперь неправильную дробь в смешанное число:

Второй способ. Имеем

б) В случае умножения и деления смешанных чисел всегда переходят к неправильным дробям:

Значит, в 7

Действия с обыкновенными дробями

Разделы: Математика

1) контроль и систематизация знаний учащихся по теме;

2) развивать вычислительные навыки, логику, математическую зоркость;

3) воспитывать самостоятельность, интерес к предмету, добросовестное отношение к учебному труду.

ОБОРУДОВАНИЕ: компьютерный класс, ПК- 9 шт

1) личностно-ориентированное обучение;

2) уровневая дифференциация;

3) игровая технология;

2. ПОСТАНОВКА ЦЕЛИ УРОКА.

Сегодня на кануне контрольной работы у нас будет возможность проанализировать свою учебную деятельность и отработать вычислительные навыки выполнения всех действий с обыкновенными дробями на электронном тренажере.

Уч-ся записывают на специально подготовленных листах число и наименование работы.

3. АКТУАЛИЗАЦИЯ ОПОРНЫХ ЗНАНИЙ

Чтобы получить допуск к индивидуальной работе вы должны устно ответить на вопросы (у каждого на столе дидактический материал А.П Ершова, В.В.Голобородько «Устная математика»):

1. Сформулируйте основное свойство дроби.

2. Правило нахождения наименьшего общего знаменателя двух дробей.

3. Выполните сложение

4. Какие числа называются взаимно обратными?

5. Как разделить дробь на дробь?

Уч-ся фронтально повторяют правила выполнения действий с обыкновенными дробями и выполняют задание с комментированием.

4. ИНСТРУКЦИЯ по выполнению этапов урока

Сегодня у вас есть возможность проверить себя в 3-х номинациях: информатиков, математиков и аналитиков. Учащиеся делятся на 3 группы, и получают карты самоанализа (Приложение 1), соответственно которым проходят все этапы. (Учитель фиксирует оценки всех трех этапов и выставляет среднеарифметическое в картах команд Приложение 2)

На компьютере, на зачетных листах, по коррекционным карточкам или творческим заданиям

5. 1 этап ЭЛЕКТРОННЫЙ ТРЕНАЖЕР (Приложении 3) — информатики

Прежде всего ваш успех на этом этапе зависит от того на сколько внимательно вы будете выполнять правила игры « Биатлон»

Тренировка состоит из трех этапов, отличающихся друг от друга сложностью заданий. Каждый этап включает «лыжную гонку» и «огневой рубеж». В режиме «лыжной гонки» требуется определить верным или неверным является предложенное утверждение и кликнуть мышью по соответствующей кнопке на экране.

В режиме «на огневом рубеже» необходимо выполнить четыре (1 этап) или три (2 и 3 этапы) задания на вычисление суммы, разности, произведения или частного двух дробей. Ваш ответ — это выстрел по мишени. Вы попадаете в «яблочко», если Ваш ответ — несократимая дробь.

Учитель фиксирует оценки выставленные компьютером. В карте команды.

Устная самостоятельная работа уч-ся.

Уч-ся устно отвечают на вопросы, выполняют действия и записывают результат на компьютере. А в карте самоанализа фиксируют свои ошибки.

(каждый ученик группы за компьютером)

По окончанию игры компьютер оценивает ученика.

6. 2 этап ЗАЧЕТ ПО ТЕОРИИ (А.П Ершова «Устная математика»): — аналитики

xn--i1abbnckbmcl9fb.xn--p1ai

Обыкновенные дроби. Действия над обыкновенными дробями

Подписано в печать с готовых диапозитивов 12.02.01. Формат 84х108/32. Гарнитура Балтика. Бумага тип. № 2. Печать офсетная. Усл. печ. л. 25,1. Тираж 5000 экз. Заказ № 106.

Налоговая льгота - общероссийский классификатор продукции ОК-005-093, том 2; 953000- книги, брошюры.

Отпечатано с готовых диапозитивов на ГИПП «Уральский рабочий», 620219, г. Екатеринбург, ул. Тургенева, 13.

Тема №1.

Арифметические вычисления. Проценты.

Обыкновенные дроби. Действия над обыкновенными дробями.

1º. Натуральные числа – это числа, употребляемые при счете. Множество всех натуральных чисел обозначают N, т.е. N= .

Дробью называется число, состоящее из нескольких долей единицы. Обыкновенной дробью называется число вида , где натуральное число n показывает, на сколько равных частей разделена единица, а натуральное число m показывает, сколько таких равных частей взято. Числа m и n называют соответственно числителем и знаменателем дроби.

Если числитель меньше знаменателя, то обыкновенная дробь называется правильной ; если числитель равен знаменателю или больше него, то дробь называется неправильной . Число, состоящее из целой и дробной частей, называется смешанным числом .

Например, — правильные обыкновенные дроби, — неправильные обыкновенные дроби, 1 — смешанное число.

2º. При выполнении действий над обыкновенными дробями следует помнить следующие правила:

1) Основное свойство дроби . Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Например, а) ; б) .

Деление числителя и знаменателя дроби на их общий делитель, отличный от единицы, называется сокращением дроби .

2) Чтобы смешанное число представить в виде неправильной дроби, нужно умножить его целую часть на знаменатель дробной части и к полученному произведению прибавить числитель дробной части, записать полученную сумму числителем дроби, а знаменатель оставить прежним.

Аналогично любое натуральное число можно записать в виде неправильной дроби с любым знаменателем.

Например, а) , так как ; б) и т.д.

3) Чтобы неправильную дробь записать в виде смешанного числа (т.е. из неправильной дроби выделить целую часть), нужно числитель разделить на знаменатель, частное от деления взять в качестве целой части, остаток — в качестве числителя, знаменатель оставить прежним.

Например, а) , так как 200: 7 = 28 (ост. 4);
б) , так как 20: 5 = 4 (ост. 0).

4) Чтобы привести дроби к наименьшему общему знаменателю, надо найти наименьшее общее кратное (НОК) знаменателей этих дробей (оно и будет их наименьшим общим знаменателем), разделить наименьший общий знаменатель на знаменатели данных дробей (т.е. найти дополнительные множители для дробей), умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Например, приведем дроби к наименьшему общему знаменателю:

630: 18 = 35, 630: 10 = 63, 630: 21 = 30.

Значит, ; ; .

5) Правила арифметических действий над обыкновенными дробями :

a) Сложение и вычитание дробей с одинаковыми знаменателями выполняется по правилу:

b) Сложение и вычитание дробей с разными знаменателями выполняется по правилу a), предварительно приведя дроби к наименьшему общему знаменателю.

c) При сложении и вычитании смешанных чисел можно обратить их в неправильные дроби, а затем выполнить действия по правилам a) и b),

d) При умножении дробей пользуются правилом:

e) Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю:

f) При умножении и делении смешанных чисел, их предварительно переводят в неправильные дроби, а затем пользуются правилами d) и e).

Презентация по предмету «Математика» на тему: «Презентация к уроку «Действия с обыкновенными дробями» Выполнила учитель математики Колбина Евгения Викторовна.». Скачать бесплатно и без регистрации. - Транскрипт:

1 Презентация к уроку «Действия с обыкновенными дробями» Выполнила учитель математики Колбина Евгения Викторовна

2 Цели урока. Обучающие: повторение правил сравнения, сложения, вычитания, умножения и деления обыкновенных дробей; обобщение и систематизация знаний об обыкновенных дробях, закрепление и усовершенствование навыков действий с обыкновенными дробями; отработка навыков устного счета и умения применять правила при решении более сложных примеров. Развивающие: развитие умений учебно-познавательной деятельности; развитие культуры устной и письменной речи; развитие навыков самоконтроля и самооценки достигнутых знаний и умений. Воспитательные: воспитание внимательности, активности, самостоятельности, ответственности.

3 Без чего не могут обойтись математики, барабанщики и даже охотники?

4 Какой сейчас месяц? Какое время года? Чем вам нравится зима?

5 Сегодня на уроке мы с вами будем лепить снеговика, только не из снега, а из наших знаний

6 Оценочный лист (Ф.И. ученика) « Сугробы »« 1 ком »« 2 ком »« 3 ком »« Атрибуты » Итого Оценка

7 1. Чтобы сравнить (сложить, вычесть) дроби с разными, надо: 1) привести данные дроби к; 2) сравнить (сложить, вычесть) полученные дроби. 2. Чтобы сложить (вычесть) смешанные числа, надо: 1) привести дробные части к; 2) отдельно выполнить сложение (вычитание) частей и дробных частей. 3. Чтобы умножить дробь на натуральное число, надо ее умножить на это число, а оставить без изменения. знаменателямиНОЗ (наименьшему общему знаменателю) НОЗ целых числитель знаменатель 4. Чтобы умножить дробь на дробь, надо найти произведение и произведение. 5. Для того, чтобы выполнить умножение смешанных чисел, надо их записать в виде дробей, а затем воспользоваться правилом дробей. 6. Чтобы разделить одну дробь на другую, нужно умножить на число, делителю. числителейзнаменателей неправильных умножения делимое обратное «СУГРОБЫ» За каждое верное правило – 1 балл

8 «1 ком» За каждый верный ответ – 1 балл

10 I Вариант 635(а) II Вариант 635(б) «2 ком» За каждое верное действие – 1 балл

12 Трава маленькая-маленькая. Деревья высокие-высокие. Ветер деревья качает-качает. То направо, то налево наклоняет. То вверх, то назад. То вниз сгибает. Птицы летят-улетают. Ученики тихонько за парты садятся. Физминутка

13 Задача Туристы отправились в поход. В первый день они прошли км, что на км больше, чем во второй день. А в третий день они прошли в 2 раза меньше, чем в первый. Сколько километров туристы прошли за эти три дня? «3 ком»

14 1) найдем, сколько туристы прошли во второй день, для этого из отнимем 2) найдем, сколько туристы прошли в третий день, для этого разделим на 2 3) сложим, результат 1 действия и результат второго действия и найдем, сколько они прошли за эти три дня. Ответ: План решения За каждое верное действие – 1 балл + 1 балл за верный ответ

16 Тест «Атрибуты» За каждый верный ответ 1 балл

18 27-30 баллов – «5» баллов – «4» баллов – «3» 0-14 баллов – «2»

19 Домашнее задание: 635 (г), 643 Приготовить доклад на тему: происхождение обыкновенных дробей

20 Итог урока Все понравилось! Сложно, но интересно! Устал!

21 Великий русский писатель Л.Н. Толстой считал, что человек похож на дробь, знаменатель которой — это то, что он думает о себе, а числитель- это то, что думают о нем. Я желаю вам, чтобы числитель в вашей жизни был больше знаменателя.

Данная статья рассматривает действия над дробями. Будут сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида A B , где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

Yandex.RTB R-A-339285-1

Правила выполнения действий с числовыми дробями общего вида

Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 3 5 , 2 , 8 4 , 1 + 2 · 3 4 · (5 - 2) , 3 4 + 7 8 2 , 3 - 0 , 8 , 1 2 · 2 , π 1 - 2 3 + π , 2 0 , 5 ln 3 , то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

Определение 1

Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

  • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: a d ± c d = a ± c d , значения a , c и d ≠ 0 являются некоторыми числами или числовыми выражениями.
  • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом a b ± c d = a · p ± c · r s , где значения a , b ≠ 0 , c , d ≠ 0 , p ≠ 0 , r ≠ 0 , s ≠ 0 являются действительными числами, а b · p = d · r = s . Когда p = d и r = b , тогда a b ± c d = a · d ± c · d b · d .
  • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим a b · c d = a · c b · d , где a , b ≠ 0 , c , d ≠ 0 выступают в роли действительных чисел.
  • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: a b: c d = a b · d c .

Обоснование правил

Определение 2

Существуют следующие математические моменты, на которые следует опираться при вычислении:

  • дробная черта означает знак деления;
  • деление на число рассматривается как умножение на его обратное значение;
  • применение свойства действий с действительными числами;
  • применение основного свойства дроби и числовых неравенств.

С их помощью можно производить преобразования вида:

a d ± c d = a · d - 1 ± c · d - 1 = a ± c · d - 1 = a ± c d ; a b ± c d = a · p b · p ± c · r d · r = a · p s ± c · e s = a · p ± c · r s ; a b · c d = a · d b · d · b · c b · d = a · d · a · d - 1 · b · c · b · d - 1 = = a · d · b · c · b · d - 1 · b · d - 1 = a · d · b · c b · d · b · d - 1 = = (a · c) · (b · d) - 1 = a · c b · d

Примеры

В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

Пример 1

Даны дроби 8 2 , 7 и 1 2 , 7 , то по правилу необходимо числитель сложить, а знаменатель переписать.

Решение

Тогда получаем дробь вида 8 + 1 2 , 7 . После выполнения сложения получаем дробь вида 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 . Значит, 8 2 , 7 + 1 2 , 7 = 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 .

Ответ: 8 2 , 7 + 1 2 , 7 = 3 1 3

Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

8 2 , 7 + 1 2 , 7 = 80 27 + 10 27 = 90 27 = 3 1 3

Пример 2

Произведем вычитание из 1 - 2 3 · log 2 3 · log 2 5 + 1 дроби вида 2 3 3 · log 2 3 · log 2 5 + 1 .

Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

1 - 2 3 · log 2 3 · log 2 5 + 1 - 2 3 3 · log 2 3 · log 2 5 + 1 = 1 - 2 - 2 3 3 · log 2 3 · log 2 5 + 1

Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

Пример 3

Рассмотрим на примере сложения дробей 2 3 5 + 1 и 1 2 .

Решение

В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2 · 3 5 + 1 . Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2 , а ко второй 3 5 + 1 . После перемножения дроби приводятся к виду 4 2 · 3 5 + 1 . Общее приведение 1 2 будет иметь вид 3 5 + 1 2 · 3 5 + 1 . Полученные дробные выражения складываем и получаем, что

2 3 5 + 1 + 1 2 = 2 · 2 2 · 3 5 + 1 + 1 · 3 5 + 1 2 · 3 5 + 1 = = 4 2 · 3 5 + 1 + 3 5 + 1 2 · 3 5 + 1 = 4 + 3 5 + 1 2 · 3 5 + 1 = 5 + 3 5 2 · 3 5 + 1

Ответ: 2 3 5 + 1 + 1 2 = 5 + 3 5 2 · 3 5 + 1

Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет. В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

Пример 4

Рассмотрим на примере 1 6 · 2 1 5 и 1 4 · 2 3 5 , когда их произведение будет равно 6 · 2 1 5 · 4 · 2 3 5 = 24 · 2 4 5 . Тогда в качестве общего знаменателя берем 12 · 2 3 5 .

Рассмотрим примеры умножений дробей общего вида.

Пример 5

Для этого необходимо произвести умножение 2 + 1 6 и 2 · 5 3 · 2 + 1 .

Решение

Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2 + 1 6 · 2 · 5 3 · 2 + 1 2 + 1 · 2 · 5 6 · 3 · 2 + 1 . Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10 .

Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10

После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

5 · 3 3 2 + 1: 10 9 3 = 5 · 3 3 · 9 3 10 · 2 + 1 = 5 · 2 10 · 2 + 1 = 3 2 · 2 + 1 = = 3 · 2 - 1 2 · 2 + 1 · 2 - 1 = 3 · 2 - 1 2 · 2 2 - 1 2 = 3 · 2 - 1 2

Ответ: 5 · 3 3 2 + 1: 10 9 3 = 3 · 2 - 1 2

Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1 , тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 1 6 · 7 4 - 1 · 3 видно, что корень из 3 может быть заменен другим 3 1 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 1 6 · 7 4 - 1 · 3 = 1 6 · 7 4 - 1 · 3 1 .

Выполнение действие с дробями, содержащими переменные

Правила, рассмотренные в первой статье, применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

Необходимо доказать, что A , C и D (D не равное нулю) могут быть любыми выражениями, причем равенство A D ± C D = A ± C D равноценно с его областью допустимых значений.

Необходимо взять набор переменных ОДЗ. Тогда А, С, D должны принимать соответственные значения a 0 , c 0 и d 0 . Подстановка вида A D ± C D приводит разность вида a 0 d 0 ± c 0 d 0 , где по правилу сложения получаем формулу вида a 0 ± c 0 d 0 . Если подставить выражение A ± C D , тогда получаем ту же дробь вида a 0 ± c 0 d 0 . Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A ± C D и A D ± C D считаются равными.

При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида A D ± C D = A ± C D .

Примеры сложения и вычитания дробей с переменными

Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это незаметно, так как необходимо выполнять некоторые преобразования. Например, x 2 3 · x 1 3 + 1 и x 1 3 + 1 2 или 1 2 · sin 2 α и sin a · cos a . Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

Пример 6

Вычислить: 1) x 2 + 1 x + x - 2 - 5 - x x + x - 2 , 2) l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) , x - 1 x - 1 + x x + 1 .

Решение

  1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x 2 + 1 x + x - 2 - 5 - x x + x - 2 = x 2 + 1 - 5 - x x + x - 2 . После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, что x 2 + 1 - 5 - x x + x - 2 = x 2 + 1 - 5 + x x + x - 2 = x 2 + x - 4 x + x - 2
  2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​ l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) = l g 2 x + 4 + 4 x · (l g x + 2)
    Сложение было выполнено. Видно, что можно произвести сокращение дроби. Ее числитель может быть свернут по формуле квадрата суммы, тогда получим (l g x + 2) 2 из формул сокращенного умножения. Тогда получаем, что
    l g 2 x + 4 + 2 · l g x x · (l g x + 2) = (l g x + 2) 2 x · (l g x + 2) = l g x + 2 x
  3. Заданные дроби вида x - 1 x - 1 + x x + 1 с разными знаменателями. После преобразования можно перейти к сложению.

Рассмотрим двоякий способ решения.

Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

x - 1 x - 1 = x - 1 (x - 1) · x + 1 = 1 x + 1

Значит, x - 1 x - 1 + x x + 1 = 1 x + 1 + x x + 1 = 1 + x x + 1 .

В таком случае необходимо избавляться от иррациональности в знаменателе.

1 + x x + 1 = 1 + x · x - 1 x + 1 · x - 1 = x - 1 + x · x - x x - 1

Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x - 1 . Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

x - 1 x - 1 + x x + 1 = x - 1 x - 1 + x · x - 1 x + 1 · x - 1 = = x - 1 x - 1 + x · x - x x - 1 = x - 1 + x · x - x x - 1

Ответ: 1) x 2 + 1 x + x - 2 - 5 - x x + x - 2 = x 2 + x - 4 x + x - 2 , 2) l g 2 x + 4 x · (l g x + 2) + 4 · l g x x · (l g x + 2) = l g x + 2 x , 3) x - 1 x - 1 + x x + 1 = x - 1 + x · x - x x - 1 .

В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей с добавлением дополниетльных множителей к числителям.

Пример 7

Вычислить значения дробей: 1) x 3 + 1 x 7 + 2 · 2 , 2) x + 1 x · ln 2 (x + 1) · (2 x - 4) - sin x x 5 · ln (x + 1) · (2 x - 4) , 3) 1 cos 2 x - x + 1 cos 2 x + 2 · cos x · x + x

Решение

  1. Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3 · x 7 + 2 · 2 , тогда к первой дроби x 7 + 2 · 2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 3 · x 7 + 2 · 2 + 3 · 1 3 · x 7 + 2 · 2 = = x · x 7 + 2 · 2 + 3 3 · x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2
  2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться произведение вида x 5 · ln 2 x + 1 · 2 x - 4 . Отсюда x 4 является дополнительным множителем к первой дроби, а ln (x + 1) ко второй. После чего производим вычитание и получаем, что:
    x + 1 x · ln 2 (x + 1) · 2 x - 4 - sin x x 5 · ln (x + 1) · 2 x - 4 = = x + 1 · x 4 x 5 · ln 2 (x + 1) · 2 x - 4 - sin x · ln x + 1 x 5 · ln 2 (x + 1) · (2 x - 4) = = x + 1 · x 4 - sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x - 4) = x · x 4 + x 4 - sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x - 4)
  3. Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1 cos x - x · cos x + x + 1 (cos x + x) 2 . Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x - x · cos x + x 2 .

После чего получаем, что

1 cos 2 x - x + 1 cos 2 x + 2 · cos x · x + x = = 1 cos x - x · cos x + x + 1 cos x + x 2 = = cos x + x cos x - x · cos x + x 2 + cos x - x cos x - x · cos x + x 2 = = cos x + x + cos x - x cos x - x · cos x + x 2 = 2 · cos x cos x - x · cos x + x 2

Ответ:

1) x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2 , 2) x + 1 x · ln 2 (x + 1) · 2 x - 4 - sin x x 5 · ln (x + 1) · 2 x - 4 = = x · x 4 + x 4 - sin x · ln (x + 1) x 5 · ln 2 (x + 1) · (2 x - 4) , 3) 1 cos 2 x - x + 1 cos 2 x + 2 · cos x · x + x = 2 · cos x cos x - x · cos x + x 2 .

Примеры умножения дробей с переменными

При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

Пример 8

Произвести умножение дробей x + 2 · x x 2 · ln x 2 · ln x + 1 и 3 · x 2 1 3 · x + 1 - 2 sin 2 · x - x .

Решение

Необходимо выполнить умножение. Получаем, что

x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x) = = x - 2 · x · 3 · x 2 1 3 · x + 1 - 2 x 2 · ln x 2 · ln x + 1 · sin (2 · x - x)

Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x 2 , тогда получим выражение вида

3 · x - 2 · x · x 1 3 · x + 1 - 2 ln x 2 · ln x + 1 · sin (2 · x - x)

Ответ: x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x) = 3 · x - 2 · x · x 1 3 · x + 1 - 2 ln x 2 · ln x + 1 · sin (2 · x - x) .

Деление

Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x + 2 · x x 2 · ln x 2 · ln x + 1 и разделить на 3 · x 2 1 3 · x + 1 - 2 sin 2 · x - x , тогда это можно записать таким образом, как

x + 2 · x x 2 · ln x 2 · ln x + 1: 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x) , после чего заменить произведением вида x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 - 2 sin (2 · x - x)

Возведение в степень

Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С, где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида A C r справедливо равенство A C r = A r C r . Результат – дробь, возведенная в степень. Для примера рассмотрим:

x 0 , 7 - π · ln 3 x - 2 - 5 x + 1 2 , 5 = = x 0 , 7 - π · ln 3 x - 2 - 5 2 , 5 x + 1 2 , 5

Порядок выполнения действий с дробями

Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

Пример 9

Вычислить 1 - x cos x - 1 c o s x · 1 + 1 x .

Решение

Так как имеем одинаковый знаменатель, то 1 - x cos x и 1 c o s x , но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

1 + 1 x = 1 1 + 1 x = x x + 1 x = x + 1 x

При подстановке выражения в исходное получаем, что 1 - x cos x - 1 cos x · x + 1 x . При умножении дробей имеем: 1 cos x · x + 1 x = x + 1 cos x · x . Произведя все подстановки, получим 1 - x cos x - x + 1 cos x · x . Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

x · 1 - x cos x · x - x + 1 cos x · x = x · 1 - x - 1 + x cos x · x = = x - x - x - 1 cos x · x = - x + 1 cos x · x

Ответ: 1 - x cos x - 1 c o s x · 1 + 1 x = - x + 1 cos x · x .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Арифметические действия с обыкновенными дробями

1. Сложение.

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же.

Пример. .

Чтобы сложить дроби с разными знаменателями, надо привести их к наименьшему общему знаменателю, а затем сложить полученные числители и под суммой подписать общий знаменатель.

Пример.

Короче записывают так:

Чтобы сложить смешанные числа, нужно отдельно найти сумму целых и сумму дробных частей. Действие записывается так:

2. Вычитание.

Чтобы вычесть дроби с одинаковыми знаменателями, нужно вычесть числитель вычитаемого из числителя уменьшаемого и оставить прежний знаменатель. Действие записывают так:

Чтобы вычесть дроби с разными знаменателями, нужно сначала привести их к наименьшему общему знаменателю, затем из числителя уменьшаемого вычесть числитель вычитаемого и под их разностью подписать общий знаменатель. Действие записывают так:

Если нужно вычесть одно смешанное число из другого смешанного числа, то, если можно, вычитают дробь из дроби, а целое из целого. Действие записывают так:

Если же дробь вычитаемого больше дроби уменьшаемого, то берут одну единицу из целого числа уменьшаемого, раздробляют ее в надлежащие доли и прибавляют к дроби уменьшаемого, после чего поступают, как описано выше. Действие записывают так:

Аналогично поступают, когда надо вычесть из целого числа дробное.

Пример. .

3. Распространение свойств сложения и вычитания на дробные числа. Все законы и свойства сложения и вычитания натуральных чисел справедливы и для дробных чисел. Их применение во многих случаях значительно упрощает процесс вычисления.

4. Умножение.

Чтобы умножить дробь на дробь, нужно умножить числитель на числитель, а знаменатель на знаменатель и первое произведение сделать числителем, а второе - знаменателем.

При умножении следует делать (если возможно) сокращение.

Пример. .

Если учесть, что целое число представляет собой дробь со знаменателем 1, то умножение дроби на целое число и целого числа на дробь можно выполнять поэтому же правилу.

Примеры.

5. Умножение смешанных чисел.

Чтобы перемножить смешанные числа, нужно предварительно обратить их в неправильные дроби и потом перемножать по правилу умножения дробей.

Пример. .

6. Деление дроби на дробь.

Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой на числитель второй и первое произведение записать числителем, а второе - знаменателем.

Пример. .

По этому же правилу можно выполнять деление дроби на целое число и целого на дробь, если представить целое число в виде дроби со знаменателем 1.

Примеры.

7. Деление смешанных чисел.

Чтобы выполнить деление смешанных чисел, их предварительно обращают в неправильные дроби и затем делят по правилу деления дробей.

Пример. .

8. Замена деления умножением.

Если в какой-нибудь дроби поменять местами числитель и знаменатель, получится новая дробь, обратная данной. Например, для дроби обратная дробь будет .

Очевидно, что произведение двух взаимно обратных дробей равно 1.

  1. Нахождение дроби от числа.

Существует много задач, в которых требуется найти часть или дробь данного числа. Такие задачи решают умножением.

Задача. Хозяйка имела 20 руб.; их она израсходовала на покупки. Сколько стоят покупки?

Здесь требуется найти числа 20. Сделать это можно так:

Ответ. Хозяйка израсходовала 8 руб.

Примеры. Найти от 30. Решение. .

Найти от . Решение. .

  1. Нахождение числа по известной величине его дроби.

Иногда требуется по известной части числа и дроби, выражающей эту часть, определить все число. Такие задачи решаются делением.

Задача. В классе 12 комсомольцев, что составляет части всех учащихся класса. Сколько всех учащихся в классе?

Решение. .

Ответ. 20 учащихся.

Пример. Найти число, которого составляет 34.

Решение. .

Ответ. Искомое число равно .

  1. Нахождение отношения двух чисел.

Рассмотрим задачу: Рабочий изготовил за день 40 деталей. Какую часть месячного задания выполнил рабочий, если месячный план составляет 400 деталей?

Решение. .

Ответ. Рабочий выполнил часть месячного плана.

В данном случае часть (40 деталей) выражено в долях целого (400 деталей). Говорят также, что найдено отношение числа изготовленных за день деталей к месячному плану.

  1. Превращение десятичной дроби в обыкновенную.

Чтобы преобразовать десятичную дробь в обыкновенную, ее записывают со знаменателем и, если возможно, сокращают:

Примеры.

  1. Превращение обыкновенной дроби в десятичную.

Существует несколько способов превращения обыкновенной дроби в десятичную.

Первый способ. Чтобы обратить обыкновенную дробь в десятичную, нужно числитель разделить на знаменатель.

Примеры. .

Второй способ. Чтобы превратить обыкновенную дробь в десятичную, нужно помножить числитель и знаменатель данной дроби на такое число, чтобы в знаменателе получилась единица с нулями (если это возможно).

Пример.

  1. Сравнение десятичных дробей по величине . Чтобы выяснить, какая из двух десятичных дробей больше, надо сравнить их целые части, десятые, сотые и т.д. При равенстве целых частей больше та дробь, у которой десятых частей больше; при равенстве целых и десятичных - та больше, у которой больше сотых, и т.д.

Пример. Из трех дробей 2,432; 2,41 и 2,4098 наибольшая первая, так как в ней сотых наибольше, а целые и десятые во всех дробях одинаковы.

Действия с десятичными дробями

  1. Умножение и деление десятичной дроби на 10, 100, 1000 и т.д.

Чтобы умножить десятичную дробь на 10, 100, 1000 и т.д. надо перенести запятую соответственно на один, два, три и т.д. знака вправо. Если при этом не хватает знаков у числа, то приписывают нули.

Пример. 15,45 · 10 = 154,5; 32,3 · 100 = 3230.

Чтобы разделить десятичную дробь на 10, 100, 1000 и т.д., надо перенести запятую соответственно на один, два, три и т.д. знака влево. Если для перенесения запятой не хватает знаков, их число дополняют соответствующим числом нулей слева.

Примеры. 184,35: 100 = 1,8435; 3,5: 100 = 0,035.

  1. Сложение и вычитание десятичных дробей.

Десятичные дроби складывают и вычитают почти так же, как складывают и вычитают натуральные числа. Разряд записывается под разрядом, запятая - под запятой

Примеры.

  1. Умножение десятичных дробей.

Чтобы перемножить две десятичные дроби, достаточно, не обращая внимания на запятые, перемножить их как целые числа и в произведении отделить запятой справа столько десятичных знаков, сколько их было во множимом и множителе вместе.

Пример 1. 2,064 · 0,05.

Перемножаем целые числа 2064 · 5 = 10320. В первом сомножителе было три знака после запятой, во втором - два. В произведении число десятичных знаков должно быть пять. Отделяем их справа и получаем 0,10320. Нуль, стоящий в конце, можно отбросить: 2,064 · 0,05 = 0,1032.

Пример 2. 1,125 · 0,08; 1125 · 8 = 9000.

Число знаков после запятой должно быть 3 + 2 = 5. Приписываем к 9000 нули слева (009000) и отделяем справа пять знаков. Получаем 1,125 · 0,08 = 0,09000 = 0,09.

  1. Деление десятичных дробей.

Рассматривается два случая деления десятичных дробей без остатка: 1) деление десятичной дроби на целое число; 2) деление числа (целого или дробного) на десятичную дробь.

Деление десятичной дроби на целое число выполняется так же, как и деление целых чисел; получаемые остатки раздробляют последовательно в меньшие десятичные части и продолжают деление до тех пор, пока в остатке будет нуль.

Примеры.

Деление числа (целого или дробного) на десятичную дробь во всех случаях приводят к делению на целое число. Для этого увеличивают делитель в 10, 100, 1000 и т.д. раз, а чтобы частное не изменилось, в то же число раз увеличивают и делимое, после чего делят на целое число (как в первом случае).

Пример. 47,04: 0,0084 = 470400: 84 = 5600;

  1. Примеры на совместные действия с обыкновенными и десятичными дробями.

Рассмотрим сначала пример на все действия с десятичными дробями.

Пример 1. Вычислить:

Здесь пользуются приведением делимого и делителя к целому числу с учетом того, что частное при этом не изменяется. Тогда имеем:

При решении примеров на совместные действия с обыкновенными и десятичными дробями часть действий можно выполнять в десятичных дробях, а часть - в обыкновенных. Надо иметь в виду, что не всегда обыкновенная дробь может быть превращена в конечную десятичную дробь. Поэтому записывать десятичной дробью можно только тогда, когда проверено, что такое преобразование возможно.

Пример 2. Вычислить:

Проценты

Понятие о проценте. Процентом какого-либо числа называется сотая часть этого числа. Например, вместо того, чтобы сказать "54 сотых всех жителей нашей страны составляют женщины", можно сказать "54 процента всех жителей нашей страны составляют женщины". Вместо слова "процент" пишут также значок %, например 35% - значит 35 процентов.

Так как процент есть сотая часть, то отсюда следует, что процент есть дробь со знаменателем 100. Поэтому дробь 0,49, или , можно прочитать как 49 процентов и записать без знаменателя в виде 49%. Вообще, определив, сколько в данной десятичной дроби сотых частей, ее легко записать в процентах. Для этого пользуются правилом: чтобы записать десятичную дробь в процентах, надо перенести в этой дроби запятую на два знака вправо.

Примеры. 0,33 = 33%; 1,25 = 125%; 0,002 = 0,2%; 21 = 2100%.

И наоборот: 7% = 0,07; 24,5% = 0,245; 0,1% = 0,001; 200% = 2.

1. Нахождение процентов данного числа

Задача. Бригада трактористов по плану должна израсходовать 9 т горючего. Трактористы взяли соцобязательство сэкономить 20% горючего. Определить экономию горючего в тоннах.

Если в этой задаче вместо 20% написать равное ему число 0,2, получим задачу, на нахождение дроби числа. А такие задачи решают умножением. Отсюда вытекает способ решения:

20% = 0,2; 9 · 0,2 = 1,8 ( m ).

Вычисления можно записать и так:

( m )

Чтобы найти несколько процентов данного числа, достаточно данное число разделить на 100 и умножить результат на число процентов.

Задача. Рабочий в 1963 г. получал в месяц 90 руб., а в 1964 г. стал получать на 30% больше. Сколько получал он в 1964 г.?

Решение (первый способ).

1) На сколько рублей больше стал получать рабочий?

(руб.)

90 + 27 = 117 (руб).

Второй способ.

1) Сколько процентов прежнего заработка стал получать рабочий в 1964 г.?

100% + 30% = 130%.

2) Какова была месячная зарплата рабочего в 1964 г.?

(руб.)

2. Нахождение числа по данной величине его процентов.

Задача. В колхозе посеяли кукурузу на площади 280 га, что составляет 14% всей посевной площади. Определить посевную площадь колхоза.

Если в этой задаче вместо 14% написать 0,14 или , то получим задачу на нахождение числа по известной величине его дроби. А такие задачи решают делением.

Решение. 14% = 0,14; 280: 0,14 = 2000 (га). Можно это решение оформить и так:

(га)

Чтобы найти число по данной величине нескольких процентов его, достаточно эту величину разделить на число процентов и результат умножить на 100.

Задача. В марте завод выплавил 125,4 т металла, перевыполнив план на 4,5%. Сколько тонн металла завод должен был выплавить в марте по плану?

Решение.

1) На сколько процентов завод выполнил план в марте?

100% + 4,5% = 104,5%.

2) Сколько тонн металла завод должен был выплавить?

(га)

  1. Нахождение процентного отношения двух чисел.

Задача. Нужно вспахать 300 га земли. В первый день вспахали 120 га. Сколько процентов к заданию вспахали в первый день?

Решение.

Первый способ. 300 га составляет 100%, значит, на 1% приходится 3 га. Определив, сколько раз 3 га, составляющие 1%, содержатся в 120 га, мы узнаем сколько процентов к заданию вспахали земли в первый день

120: 3 = 40(%).

Второй способ. Определив, какую часть земли вспахали в первый день, выразим эту дробь в процентах.

Записываем вычисление:

Чтобы вычислить процентное отношение числа а к числу b , нужно найти отношение а к b и умножить его на 100.