Уход и... Инструменты Дизайн ногтей

Методы математической морфологии при обработке изображений. Морфологические операции в дискретном пространстве

Определение Морфология (от греч. morphe – форма) может
расшифровываться как «форма», «структура».
Математическая морфология предназначена для
исследования структуры некоторых множеств
однотипных объектов. Любое изображение в
компьютерной графике также обычно
представляется в виде набора пикселов, поэтому
операции математической морфологии могут
быть применены и к изображению - для
исследования некоторых свойств его формы и
структуры, а также для его обработки.

Определение 2

Математическая морфология (ММ) -
(Морфология от греч. μορφή «форма» и λογία
«наука») - теория и техника анализа и обработки
геометрических структур, основанная на теории
множеств, топологии и случайных функциях. В
основном применяется в обработке цифровых
изображений, но также может быть применима
на графах, полигональной сетке, стереометрии и
многих других пространственных структурах.

Основные операции над множествами

Пример совмещения изображений на основе логических операций

Базовые понятия

В качестве исходных данных принимаются двоичное
изображение B и некоторый структурный элемент S.
Результатом операции также является двоичное
изображение.
Структурный элемент суть тоже некоторое двоичное
изображение (геометрическая форма – shape). Он может
быть произвольного размера и произвольной структуры.
Чаше всего используются симметричные элементы, как
прямоугольник фиксированного размере или круг
некоторого диаметра. В каждом элементе выделяется
особая точка, называемая начальной (origin). Она может
быть расположена в любом месте элемента, хотя в
симметричных это обычно центральный пиксел.

SE = strel(shape, parameters)

Примеры структурных элементов

Алгоритм

В начале результирующая поверхность заполняется 0, образуя
полностью черное изображение. Затем осуществляется зондирование
(probing) или сканирование исходного изображения пиксель за
пикселем структурным элементом. Для зондирования каждого
пикселя на изображение «накладывается» структурный элемент так,
чтобы совместились зондируемая и начальные точки. Затем
проверяется некоторое условие на соответствие пикселей
структурного элемента и точек изображения «под ним». Если условие
выполняется, то на результирующем изображении в соответствующем
месте ставится 1 (в некоторых случаях будет добавляться не один
единичный пиксель, а все единички из структурного элемента).

Дилатация - наращивание

B S Sb
b B
заполнение «дырок» определенной
формы и размера, задаваемыми
структурным элементом

Эрозия - сужение

B S {b | b s B s S}
удаление объектов определенной
формы и размера, задаваемыми
структурным элементом

Замыкание (closing)

B S (B S) S
сглаживает контуры объекта
«заливает» узкие разрывы и узкие
углубления
ликвидирует небольшие отверстия
заполняет промежутки контура

Размыкание (opening)

B S (B S) S
сглаживает контуры объекта
обрывает узкие перешейки
ликвидирует узкие выступы

Сравнение замыкания и размыкания

Выделение границ

Над парой двоичных изображений также могут
применяться обычные теоретико-множественные
логические операции как AND, OR, NOT, MINUS.
Выделение границ:
В\(B-S) –внутренняя граница;
(В S)\B- внешняя граница.

Преобразование успех / неудача (hit-or-miss)

Задача – найти на изображении
местоположение объектов заданной
формы
Используется составной структурный
элемент: B1 – для выделения объекта, B2для выделения фона

Примеры

– Получить внешнюю и внутреннюю границы
– Провести скелетонизацию
– Провести выделение объектов, сравнить с вашими результатами
(дополнительно)
Для работы можно использовать бинарное изображение
https://yadi.sk/i/jXKrtZcTbskTR
Обработать заголовки газетной статьи

Пусть дано евклидово пространство E N , на множестве объектов (подмножеств) которого введены отношения включения (Ì), объединения (È) и пересечения (Ç). Рассмотрим некоторое преобразованиеY: E N ®E N (операторY).

Оператор Yназываетсяувеличивающим (increasing), если

(XÌY)Þ(Y(X)ÌY(Y)), X,YÌE N ,

то есть оператор сохраняет отношение принадлежности.

Оператор Yназываетсядилатацией (расширением ), если

Y(Ux i) = UY(x i), "x i ÌE N ,

то есть оператор сохраняет объединение.

Аналогично, оператор, сохраняющий пересечение, называется эрозией (сжатием ), если

Y(Çx i) = Ç(Y(x i)), "x i ÌE N .

Оператор называется экстенсивным , еслиY(X)ÊX иантиэкстенсивным , если

При рассмотрении последовательного применения операторов вводятся понятия:

    усиливающий оператор (Y(Y(X))ÊY(X));

    ослабляющий оператор (Y(Y(X))ÍY(X));

    равносильный оператор (Y(Y(X)) =Y(X)).

Морфологическими фильтрами называется множество операторов, являющихся одновременно равносильными и увеличивающими .

Морфологические операции на бинарных изображениях

Классическое описание операций бинарной математической морфологии было дано в терминах теории множеств , оперирующей такими понятиями как объединение множеств, пересечение множеств и отношение включения. При этом бинарные изображения рассматриваются непосредственно как множества пикселей (Рис. 6.1.1.).

@Рис. 6.1.1. Базовые понятия теории множеств применительно к бинарным фигурам.

Определим трансляцию множества AÌE по zÎE как преобразование (Рис. 6.1.2.)

A z = {y| aÎA, y=a=z}.

Пусть даны A,BÌE. Операция

AB = {a=b| aÎA, bÎB} = U{B a } = U{A b }

называется сложением Минковского . Операция

AB= {z|B z ÍA} =U{A z }

называется вычитанием Минковского .

Множество B будем в дальнейшем называть структурирующим элементом B. Так как операции, определяемые этими выражениями удовлетворяют требованиям сохранения соответственно объединения и пересечения бинарных образов, то они называются также дилатацией (расширением) иэрозией (сжатием) изображения X структурирующим элементом B (по структурирующему элементу B) и являются базовыми операциями ММ (рис. 6.1.2).

@Рис. 6.1.2.. Базовые операции бинарной математической морфологии.

Эти операции являются двойственными по отношению друг к другу в том смысле что:

XB = (X С B V) С,

где X С – дополнение к X, а B V = {–b| bÎB}.

Следовательно, все положения или теоремы, доказанные относительно одной из операций автоматически могут быть представлены в двойственной форме относительно другой операции.

Фундаментальный результат, полученный Матероном (теорема Матерона), состоит в том, что любой увеличивающий оператор Y, инвариантный относительно трансляции, может быть представлен в виде объединения эрозий:

,

где k(Y) – ядроY(X), то есть такое множество структурирующих элементов B, чтоY(B) содержит начало координат.

Этот результат также имеет двойственную форму:

,

где Y*(X) = (Y(X C)) C .

Именно в силу теоремы Матерона эрозия и дилатация являются базовыми операциями ММ, то есть любой морфологический фильтр может быть представлен в виде объединения эрозий или пересечения дилатаций.

Введем, наконец, операции открытия изакрытия , часто используемые в морфологии. Операция

X◦B= (XB)B(6.1.1)

называется открытием X по B и имеет ясный физический смысл:

X◦Bс = U{B z | B z ÍX}.

Этот оператор является антиэкстенсивным и увеличивающим.

Закрытием X по B называется

X·B = (XB)B. (6.1.2)

Этот оператор является экстенсивным и увеличивающим.

Кроме того, оба эти оператора являются равносильными, а, следовательно, открытие и закрытие – это два простейших морфологических фильтра (рис. 6.1.3).

@Рис. 6.1.3. Простейшие фильтры в бинарной математической морфологии.

Рассмотрим геометрический смысл операторов математической морфологии на примере обработки искусственного изображения (рис. 6.1.4), который мы уже рассматривали ранее в разделе, посвященном бинарной фильтрации. На изображении представлен прямоугольный объект, имеющий «дефекты формы» типа внутренних «дырок» и внешних «выступов». Попробуем морфологическими средствами удалить эти дефекты формы объекта.

@Рис. 6.1.4. Изображение с «дефектами» типа «дырок» и «выступов»

Поскольку объект имеет прямоугольную форму, будем использовать структурирующий элемент также прямоугольной формы. Габаритные размеры структурирующего элемента должны быть не меньше, чем характерный «поперечный» размер (минимальная хорда) дефектов формы, подлежащих удалению.

Начнем с удаления внешних «выступов» формы. Для этого используется процедура открытия. На первом этапе этой процедуры выполняется операция сжатия (эрозии) объекта, которая удаляет («съедает») внешние «выступы» формы. Однако внешний размер объекта при этом уменьшается, а внутренние дефекты, напротив, увеличиваются в размерах, в связи с чем после сжатия необходимо выполнить расширение (дилатацию) объекта с тем же структурирующим элементом. В результате выполнения всей операции открытия в целом внешние размеры и форма объекта оказываются восстановлены, но внутренние дефекты формы сохраняются (рис. 6.1.5, 6.1.6).


@Рис. 6.1.5. Результат сжатия (эрозии) @Рис. 6.1.6. Результат открытия объекта объекта (удаление внешних «выступов» формы)

Рассмотрим теперь морфологическую технику удаления внутренних дефектов формы («дырок»). Для этого используется процедура закрытия. На первом этапе этой процедуры выполняется операция расширения (дилатации) объекта, которая удаляет («заращивает») внутренние «дыры» и «каналы». Однако внешний размер объекта при этом увеличивается, внешние дефекты, также увеличиваются в размерах, в связи с чем после расширения необходимо выполнить сжатие (эрозию) объекта с тем же структурирующим элементом. В результате выполнения всей операции закрытия в целом размеры и внутренняя целостность объекта оказываются восстановлены, но внешние дефекты формы сохраняются (рис. 6.1.7, 6.1.8).


@Рис. 6.1.7. Результат расширения @Рис. 6.1.8. Результат закрытия (дилатация) объекта объекта (удаление внутренних «дырок» формы)

Для того чтобы устранить и внешние и внутренние дефекты формы в данном примере необходимо сначала применить к исходному изображению (рис. 6.1.4) открытие, а затем к результату открытия – закрытие с тем же прямоугольным структурирующим элементом (рис. 6.1.9, 6.1.10).


@Рис. 6.1.9. Результат открытия @Рис. 6.1.10. Результат закрытия после открытия (полное восстановление формы)

Как видно из примера (рис. 6.1.9, 6.1.10), последовательная комбинация открытия и закрытия обеспечила полное восстановление формы исходной геометрической фигуры.

В заключение данного раздела рассмотрим особенности морфологической фильтрации изображений с круглым (дисковым) структурирующим элементом. На рис. 6.1.11 – 6.1.13 приведен результат открытия прямоугольного объекта круглым структурирующим элементом. Результат сравнения (вычитания) изображений показывает, что в результате открытия форма объекта была специфическим образом искажена – углы прямоугольника оказались скругленными с радиусом закругления, равным радиусу структурирующего элемента.



@Рис. 6.1.11. Исходный @Рис. 6.1.12. Результат @Рис. 6.1.13. Разность

объект открытия (фильтрация изображений

с круглой маской: эффект

округления углов)

Данный эффект естественным образом следует из геометрического смысла операции открытия: результат открытия представляет собой объединение всех структурирующих элементов, целиком помещающихся внутри исходного объекта. Легко увидеть, что именно в углы прямоугольника дисковый структурирующий элемент никак не может поместиться целиком. В силу этого границу объекта после открытия (закрытия) иногда удобно представлять как кривую, полученную путем «качения» структурирующего элемента по внутренней (внешней) границе исходного объекта (см. также рис. 6.1.3).

И многих других пространственных структурах.

Бинарная морфология

В бинарной морфологии двоичное изображение , представленное в виде упорядоченного набора (упорядоченного множества) черно-белых точек (пикселей), или 0 и 1. Под областью изображения обычно понимается некоторое подмножество точек изображения. Каждая операция двоичной морфологии является некоторым преобразованием этого множества. В качестве исходных данных принимаются двоичное изображение B и некоторый структурный элемент S. Результатом операции также является двоичное изображение.

Структурный элемент

Структурный элемент представляет собой некоторое двоичное изображение (геометрическую форму). Он может быть произвольного размера и произвольной структуры. Чаще всего используются симметричные элементы, как прямоугольник фиксированного размера (BOX(l, w)), или круг некоторого диаметра (DISK (d)). В каждом элементе выделяется особая точка, называемая начальной (origin). Она может быть расположена в любом месте элемента (и вне его ), хотя в симметричных это обычно центральный пиксель.

Основные операции

В начале результирующая поверхность заполняется 0, образуя полностью белое изображение. Затем осуществляется зондирование (probing) или сканирование исходного изображения пиксель за пикселем структурным элементом. Для зондирования каждого пикселя на изображение «накладывается» структурный элемент так, чтобы совместились зондируемая и начальные точки. Затем проверяется некоторое условие на соответствие пикселей структурного элемента и точек изображения «под ним». Если условие выполняется, то на результирующем изображении в соответствующем месте ставится 1 (в некоторых случаях будет добавляться не один единичный пиксель, а все единички из структурного элемента).

По рассмотренной выше схеме выполняются базовые операции. Такими операциями являются расширение и сужение. Производные операции - это некоторая комбинация базовых, выполняемых последовательно. Основными из них являются открытие и закрытие.

Базовые операции

Перенос

Операция переноса X t множества пикселов X на вектор t задаётся в виде X t ={x+t|x∈X}. Следовательно, перенос множества единичных пикселов на бинарном изображении сдвигает все пикселы множества на заданное расстояние. Вектор переноса t может задаваться в виде упорядоченной пары (∆r,∆c), где ∆r - компонент вектора переноса в направлении строк, а ∆c - компонент вектора переноса в направлении столбцов изображения.

Наращивание

Наращивание бинарного изображения A структурным элементом B обозначается texvc не найден; См. math/README - справку по настройке.): A \oplus B и задается выражением:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \oplus B = \bigcup_{b\in B} A_b .

В данном выражении оператор объединения можно считать оператором, применяемым в окрестности пикселов. Структурный элемент B применяется ко всем пикселам бинарного изображения. Каждый раз, когда начало координат структурного элемента совмещается с единичным бинарным пикселом, ко всему структурному элементу применяется перенос и последующее логическое сложение (логическое ИЛИ) с соответствующими пикселами бинарного изображения. Результаты логического сложения записываются в выходное бинарное изображение, которое изначально инициализируется нулевыми значениями.

Эрозия

Эрозия бинарного изображения А структурным элементом В обозначается Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \ominus B и задается выражением:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \ominus B = \{z\in A | B_{z} \subseteq A\} .

При выполнении операции эрозии структурный элемент тоже проходит по всем пикселам изображения. Если в некоторой позиции каждый единичный пиксел структурного элемента совпадет с единичным пикселом бинарного изображения, то выполняется логическое сложение центрального пиксела структурного элемента с соответствующим пикселом выходного изображения. В результате применения операции эрозии все объекты, меньшие чем структурный элемент, стираются, объекты, соединённые тонкими линиями становятся разъединёнными и размеры всех объектов уменьшаются.

Производные операции

Замыкание

Замыкание бинарного изображения А структурным элементом В обозначается Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \bullet B и задается выражением:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \bullet B = (A \oplus B) \ominus B .

Операция замыкания «закрывает» небольшие внутренние «дырки» в изображении, и убирает углубления по краям области. Если к изображению применить сначала операцию наращивания, то мы сможем избавиться от малых дыр и щелей, но при этом произойдёт увеличение контура объекта. Избежать этого увеличения позволяет операция эрозия, выполненная сразу после наращивания с тем же структурным элементом.

Размыкание

Размыканием бинарного изображения А структурным элементом В обозначается Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \circ B и задается выражением:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A \circ B = (A \ominus B) \oplus B .

Операция эрозии полезна для удаления малых объектов и различных шумов, но у этой операции есть недостаток - все остающиеся объекты уменьшаются в размере. Этого эффекта можно избежать, если после операции эрозии применить операцию наращивания с тем же структурным элементом. Размыкание отсеивает все объекты, меньшие чем структурный элемент, но при этом помогает избежать сильного уменьшения размера объектов. Также размыкание идеально подходит для удаления линий, толщина которых меньше, чем диаметр структурного элемента. Также важно помнить, что после этой операции контуры объектов становятся более гладкими.

Условное наращивание

Выделение границ

См. также

Напишите отзыв о статье "Математическая морфология"

Примечания

Литература

  • Л.Шапиро, Дж.Стокман. Компьютерное зрение. изд. - М .: БИНОМ. Лаборатория знаний, 2006. - 752 с.
  • Д.Форсайт, Ж.Понс. Компьютерное зрение. Современный подход. изд. - М .: Вильямс , 2004. - 928 с.

Ссылки

Отрывок, характеризующий Математическая морфология

Мне почему-то стало его очень жаль... Ещё ничего о нём не зная, я уже была почти что уверенна, что этот человек никак не мог сделать что-то по-настоящему плохое. Ну, просто не мог!.. Стела, улыбаясь, следила за моими мыслями, которые ей видимо очень нравились...
– Ну, хорошо, согласна – ты права!.. – видя её довольную мордашку, наконец-то честно признала я.
– Но ты ведь ещё ничего о нём не знаешь, а ведь с ним всё не так просто, – лукаво улыбаясь, довольно произнесла Стелла. – Ну, пожалуйста, расскажи ей, Печальный...
Человек грустно нам улыбнулся, и тихо произнёс:
– Я здесь потому, что убивал... Многих убивал. Но не по желанию, а по нужде это было...
Я тут же жутко расстроилась – убивал!.. А я, глупая, поверила!.. Но почему-то у меня упорно не появлялось ни малейшего чувства отторжения или неприязни. Человек явно мне нравился, и, как бы я не старалась, я ничего с этим поделать не могла...
– А разве это одинаковая вина – убивать по желанию или по необходимости? – спросила я. – Иногда люди не имеют выбора, не так ли? Например: когда им приходится защищаться или защищать других. Я всегда восхищалась героями – воинами, рыцарями. Последних я вообще всегда обожала... Разве можно сравнивать с ними простых убийц?
Он долго и грустно на меня смотрел, а потом также тихо ответил:
– Не знаю, милая... То, что я нахожусь здесь, говорит, что вина одинаковая... Но по тому, как я эту вину чувствую в моём сердце, то – нет... Я никогда не желал убивать, я просто защищал свою землю, я был там героем... А здесь оказалось, что я просто убивал... Разве это правильно? Думаю – нет...
– Значит, вы были воином? – с надеждой спросила я. – Но тогда, это ведь большая разница – вы защищали свой дом, свою семью, своих детей! Да и не похожи вы на убийцу!..
– Ну, мы все не похожи на тех, какими нас видят другие... Потому, что они видят лишь то, что хотят видеть... или лишь то, что мы хотим им показать... А насчёт войны – я тоже сперва так же, как ты думал, гордился даже... А здесь оказалось, что гордиться-то нечем было. Убийство – оно убийство и есть, и совсем не важно, как оно совершилось.
– Но это не правильно!.. – возмутилась я. – Что же тогда получается – маньяк-убийца получается таким же, как герой?!.. Этого просто не может быть, такого быть не должно!
Во мне всё бушевало от возмущения! А человек грустно смотрел на меня своими печальными, серыми глазами, в которых читалось понимание...
– Герой и убийца точно так же отнимают жизнь. Только, наверное, существуют «смягчающие вину обстоятельства», так как защищающий кого-то человек, даже если и отнимает жизнь, то по светлой и праведной причине. Но, так или иначе, им обоим приходится за это платить... И платить очень горько, ты уж поверь мне...
– А можно вас спросить – как давно вы жили? – немного смутившись, спросила я.
– О, достаточно давно... Это уже второй раз я здесь... Почему-то две мои жизни были похожими – в обоих я за кого-то воевал... Ну, а потом платил... И всегда так же горько... – незнакомец надолго умолк, как будто не желая больше об этом говорить, но потом всё же тихо продолжил. – Есть люди, которые любят воевать. Я же всегда это ненавидел. Но почему-то жизнь второй уже раз возвращает меня на тот же самый круг, как будто меня замкнули на этом, не позволяя освободиться... Когда я жил, все народы у нас воевали между собой... Одни захватывали чужие земли – другие те же земли защищали. Сыновья свергали отцов, братья убивали братьев... Всякое было. Кто-то свершал немыслимые подвиги, кто-то кого-то предавал, а кто-то оказывался просто трусом. Но никто из них даже не подозревал, какой горькой окажется плата за всё содеянное ими в той жизни...
– А у вас там была семья? – чтобы изменить тему, спросила я. – Были дети?
– Конечно! Но это уже было так давно!.. Они когда-то стали прадедами, потом умерли... А некоторые уже опять живут. Давно это было...
– И вы всё ещё здесь?!.. – в ужасе оглядываясь вокруг, прошептала я.
Я даже представить себе не могла, что вот так он существует здесь уже много, много лет, страдая и «выплачивая» свою вину, без какой-либо надежды уйти с этого ужасающего «этажа» ещё до того, как придёт его час возвращения на физическую Землю!.. И там он опять должен будет начать всё сначала, чтобы после, когда закончится его очередная «физическая» жизнь, вернуться (возможно сюда же!) с целым новым «багажом», плохим или хорошим, в зависимости от того, как он проживёт свою «очередную» земную жизнь... И освободиться из этого замкнутого круга (будь он хорошим или плохим) никакой надежды у него быть не могло, так как, начав свою земную жизнь, каждый человек «обрекает» себя на это нескончаемое, вечное круговое «путешествие»... И, в зависимости от его действий, возвращение на «этажи» может быть очень приятным, или же – очень страшным...
– А если вы не будете убивать в своей новой жизни, вы ведь не вернётесь больше на этот «этаж», правда же?– с надеждой спросила я.
– Так я ведь не помню ничего, милая, когда возвращаюсь туда... Это после смерти мы помним свои жизни и свои ошибки. А, как только возвращаемся жить обратно – то память сразу же закрывается. Потому, видно, и повторяются все старые «деяния», что мы не помним своих старых ошибок... Но, говоря по-честному, даже если бы я знал, что буду снова за это «наказан», я всё равно никогда бы не оставался в стороне, если б страдала моя семья... или моя страна. Странно всё это... Если вдуматься, то тот, кто «распределяет» нашу вину и плату, как будто желает, чтобы на земле росли одни трусы и предатели... Иначе, не наказывал бы одинаково мерзавцев и героев. Или всё-таки есть какая-то разница в наказании?.. По справедливости – должна была бы быть. Ведь есть герои, совершившие нечеловеческие подвиги... О них потом столетиями слагают песни, о них живут легенды... Уж их-то точно нельзя «поселять» среди простых убийц!.. Жаль, не у кого спросить...
– Я тоже думаю, не может такого быть! Ведь есть люди, которые совершали чудеса человеческой смелости, и они, даже после смерти, как солнца, столетиями освещают путь всем оставшимся в живых. Я очень люблю про них читать, и стараюсь найти как можно больше книг, в которых рассказывается о человеческих подвигах. Они помогают мне жить, помогают справляться с одиночеством, когда уже становится слишком тяжело... Единственное, что я не могу понять, это: почему на Земле герои всегда должны погибнуть, чтобы люди могли увидеть их правоту?.. И когда того же самого героя уже нельзя воскресить, тут уж все, наконец, возмущаются, поднимается долго спавшая человеческая гордость, и, горящая праведным гневом толпа, сносит «врагов», как пылинки, попавшиеся на их «верном» пути... – во мне бушевало искреннее возмущение, и я говорила наверняка слишком быстро и слишком много, но у меня редко появлялась возможность выговориться о том, что «болит»... и я продолжала.
– Ведь даже своего бедного Бога люди сперва убили, а только потом уже стали ему молиться. Неужели нельзя настоящую правду увидеть ещё до того, когда уже бывает поздно?.. Неужели не лучше сберечь тех же самых героев, равняться на них и учиться у них?.. Неужели людям всегда нужен шоковый пример чужого мужества, чтобы они могли поверить в своё?.. Почему надо обязательно убить, чтобы потом можно было поставить памятник и славить? Честное слово, я бы предпочитала ставить памятники живым, если они этого стоят...

Электронный математический и медико-биологический журнал.

Том 13. Вып. 2. 2014.


Современное состояние биологической науки
2014 г. Седова Г. П.

«Биология приближается к важному перекрестку дорог. С одной стороны идут представители традиционных направлений – зоологии и ботаники; они идут по проторенному пути, который становится все менее плодотворным и все более однообразным, т.к. мысль исследователей, работающих в этих областях, в большинстве случаев не отличалась ни строгостью, ни творческой силой. Поэтому их работа характеризуется скудостью количественных данных и невысоким теоретическим уровнем. С другой стороны идут представители новой биологии – биофизики, биостатистики, молекулярной биологии, биоматематики и теории систем; они следуют по иному пути, имеющему истоки в математике, физике, химии и технике – областях, которые сами часто отличались изящной строгостью и концептуальной силой. Но, несмотря на свой внешний лоск и подчас блестящие достижения, работа этой второй группы ученых обесценивается из-за недостатка конкретных знаний и даже пренебрежительного отношения к детальным фактам, касающимся клеток, организмов и популяций, а также их сложной интеграции в пространстве и времени. Каждый из этих подходов к изучению жизни, взятый в отдельности, может так и не привести к цели – к широкому научному познанию жизненных явлений.

Однако есть некоторые признаки того, что за пересечением этих различных путей подхода к биологии не обязательно должно будет следовать их еще большее расхождение. В самом деле, если бы «традиционалисты» могли научиться в большей мере использовать математику и теоретическое мышление, а новая школа сделалась более «биологичной», то создалась бы по существу полная возможность эффективного сотрудничества, способного привести к величайшим революционным последствиям».

Приведенное высказывание взято из сборника статей под названием «Теоретическая и математическая биология» и принадлежит американскому биологу нового направления Т. Г. Уотермэну. Несмотря на то, что оно относится к 60-м годам прошлого века, оно актуально и в настоящее время.

Ушли в прошлое времена, когда в художественных произведениях ученый, занимающийся биологией, изображался в виде чудаковатого вида человека, гоняющегося с сачком за бабочками; постепенно уходят в прошлое времена, когда в биологию шли молодые люди, не слишком склонные к точным наукам. Биология становится междисциплинарной наукой. Но и в настоящее время в ней преобладают описания явлений, процессов, а не их объяснения. Часто отсутствуют строгие понятия, определения, законы. А это соответствует детскому или юношескому, незрелому ее состоянию.

Традиционные отрасли биологии – ботаника и зоология себя уже исчерпали. Все растущие на Земле растения изучены, составлены их определители. Животный мир планеты также достаточно хорошо изучен. Можно сказать, что в мире растений и животных все систематизировано и классифицировано. Разве что под вопросом остаются только Лохнесское чудовище, снежный человек, кыштымский карлик и недавно объявившаяся чупакабра.

Качественно новый этап в изучении жизни связан с появлением биофизики – науки, пограничной между физикой и биологией. Биофизика возникла тогда, когда была обнаружена связь между физическими и биологическими явлениями.

Дальнейшее развитие этой науки привело к постановке основного вопроса, который и сейчас стоит перед биологией, и от прямого ответа на который она всячески уклоняется. Вопрос этот можно сформулировать следующим образом:

Можно ли явление жизни объяснить исключительно с точки зрения физико-химических представлений, или с живым организмом связано особое состояние материи, отличное от тех состояний, которые свойственны неживой материи?

Представление о существовании в живых организмах особой жизненной энергии имеет большую историю, оно присутствует в философских учениях и религиях многих народов мира. Это прана индусов, Святой Дух христиан, энергия ци китайцев, ки японцев и т.д.

Во второй половине XIX века сформировалось направление в биологии, известное под названием витализма; наиболее ярким его представителем является немецкий биолог Ганс Дриш (1867–1941). Дриш считал, что механистическим подходом нельзя объяснить многие жизненные процессы. Виталистические взгляды в несколько измененном виде поддерживались и другими учеными и находят своих сторонников и в настоящее время.

Академическая наука считает подобные взгляды антинаучными. В биологической литературе можно прочитать, что виталистические концепции потерпели крах. Долгое время в качестве «доказательства» такого краха приводился тот факт, что немецкий химик Фридрих Велер в 1828 г. синтезировал

мочевину. И это в течение многих десятилетий преподносилось школьникам и студентам всех поколений как «доказательство» отсутствия грани между живой и неживой материей. А что на самом деле доказал результат Велера?

Только то, что органические вещества, вырабатываемые живым организмом, могут быть получены химическим путем. Это был первый органический синтез. Но не более того. Никак нельзя согласиться с мнением тех ученых, которые считают, что синтез Велера нанес сокрушительный удар по витализму и изгнал жизненную силу из живых организмов. Можно согласиться с тем, что Велер своим экспериментом изгнал «жизненную силу» из органической химии, хотя вряд ли кто считал, что, например, она есть в мочевине. Но ни Велер, и никто другой до настоящего времени не изгнал «жизненную силу» из живой клетки, из живого организма. Все органические вещества, какими бы сложными они не были, вне живой клетки – это мертвые вещества, или, используя название В. И. Вернадского, косная материя. И только в условиях живой клетки эти мертвые вещества приобретают особые свойства, важнейшим из которых является способность к удвоению своей массы. Именно эта способность, свойственная только живой клетке, обеспечивает непрерывность жизни на нашей планете. «Живое не создано из мертвого, и нет никаких успехов в этих исканиях». Несмотря на то, что это высказывание В. И. Вернадского относится к первой половине прошлого века, оно верно и по сей день. И по сей день еще никто не создал даже самое примитивнейшее одноклеточное существо из неживой материи. Так что говорить о крахе виталистических концепций слишком преждевременно.

Конечно, если задуматься о происхождении жизни (не важно, возникла ли она на Земле или на других планетах), то материалистический взгляд на мир не оставляет материалистически мыслящему исследователю иного выбора, как признание того, что в конечном итоге живая материя произошла из неживой. Больше ей просто неоткуда было появиться. Но это могло произойти, как и считают некоторые ученые, в такие отдаленные времена, когда на Земле существовали условия, совершенно не похожие на современные, и могли произойти такие изменения в структуре материи, которые невозможны в настоящий, относительно спокойный период существования нашей планеты. Поэтому в настоящий период образование живой материи из мертвой невозможно. Состояние современной науки не позволяет преодолеть грань между живой и неживой материей. Но некоторые ученые считают, что наука приближается к преодолению этой грани.

В мае 2010 г. группа американских ученых под руководством Крейга Вентера заявила о том, что ими создан искусственный геном бактерии и внедрен в лишенную собственного генома клетку другой бактерии. И этот геном в ней заработал. Получилась синтетическая клетка. Ей даже дали название Синтия.

Это бесспорно очень большое научное достижение. И многими средствами массовой информации оно было преподнесено как создание искусственной жизни, что не соответствует действительности. Ведь искусственный геном был внедрен в живую клетку, созданную природой, а не человеком.

Сам же геном не способен к самостоятельному существованию. К. Вентер об этом открытии высказался таким образом: «Мы создали новую жизнь на базе уже существующей, с помощью синтетической ДНК перепрограммированием клетки, превращая их в новые с заданной ДНК».

В январе 2012 г. группа японских биологов заявила, что они «сделали шаг» к протоклетке. С помощью уникальной технологии из набора органических веществ они создали модель клетки, способную самостоятельно функционировать и размножаться. Главное, чего хотели добиться исследователи, это самостоятельное деление клетки; они считают, что им это удалось. Но специалисты не согласны с этим. Их основные аргументы следующие:

Важнейшие компоненты для деления ДНК были добавлены в готовом виде, были применены синтетические катализаторы, условия были далеки от естественных, деление происходило по законам физики.

Попытки создания искусственной живой клетки продолжаются. Некоторые ученые считают, что близки к этому. Удастся им это, или нет, покажет время.

Изучение многоклеточных организмов привело ученых к мысли о том, что многие явления, например, морфогенез нельзя объяснить простым объединением клеток. Это заставляло думать о существовании надклеточных факторов, что явилось причиной появления ряда полевых гипотез. Наиболее известной является гипотеза А. Г. Гурвича. Она разрабатывалась им с 1912 г.

Согласно этой гипотезе, с живой клеткой связано особое состояние материи, биологическое поле, не сводимое ни к каким известным физическим полям. Область действия этого поля выходит за пределы клетки, и клетки оказывают своими полями влияние друг на друга. Происходит объединение клеточных полей в единое «актуальное» поле. По мнению Гурвича, клеточное поле анизотропно, оно непрерывно и преемственно.

Несмотря на то, что заслуги Гурвича признаны академической наукой, но к его теории биологического поля отношение какое-то неопределенное, настороженное, как бы здесь не примешались идеи витализма. И до сих пор всеобщего официального признания эта теория не получила.

Вообще, если мы попытаемся в словарях, справочниках выяснить значение слова «биополе» – то четкого определения его мы не найдем. Чаще всего это будут определения типа: «Биополе – псевдонаучная концепция, согласно которой существует совокупность «тонких» полей, генерируемых живым организмом» (Википедия).

«Биополе – термин, используемый для объяснения парапсихологических явлений» (Большой энциклопедический словарь).

А вот мнения физиков по этому вопросу:

«На вопрос: что такое биополе? Подавляющее большинство трезво мыслящих ученых категорически ответит: это то, чего нет и не может быть, как нет и не может быть явлений, для объяснения которых биополе специально придумано» [В. Е. Жвирблис «Асимметрия против хаоса»].

«Существование биополя, т.е. поля, которое не сводится к известным физическим полям и, следовательно, не регистрируется обычными физическими приборами, противоречит ожиданиям современной физики. До сих пор не существует никаких проявлений биополя, подтвержденных научным экспериментом» (Акад. А. Б. Мигдал).

В 80-х годах прошлого века в лаборатории института радиотехники и электроники АН СССР были проведены исследования физических полей биологических объектов (Ю. В. Гуляев, Э. Э. Годик). Выводы, к которым пришли исследователи следующие:

Никаких особых полей вокруг живых организмов нет, а то, что называют биополем это комбинация известных физике полей.

«Отныне экспериментально установленной истиной признается: человек может воздействовать на другого человека лишь с помощью двух видов излучений – теплового и электрического. И еще – через изменение влажности окружающего воздуха. Остальные излучения – магнитное, радиотепловое (идущее внутри тела), акустическое – слишком слабы».

Вот оказывается как все просто с точки зрения физиков в живом организме: электрические и тепловые поля, ну и еще кое-какие, более мелкие.

Никакого биополя, никакой жизненной энергии. Это все выдумки дилетантов, невежд, или «ученых с большой дороги». Но только у меня в связи с этим возникает простой вопрос:

Все упомянутые поля физиками хорошо изучены, и если кроме них в живом организме ничего нет, так почему же физики, хотя бы в союзе с химиками, до сих пор не создали искусственную живую клетку? Речь идет не о том, чтобы ее скомбинировать из фрагментов живых клеток, созданных природой, а создать ее «с нуля», из неорганических элементов. До сих пор это никому не удалось. И большой вопрос: удастся ли кому-то в будущем.

Или возьмем фотосинтез. В этом процессе задействованы свет и электроны, т.е. то, что физиками хорошо изучено. И если там также все сводится к известным процессам, то почему за 200 лет в проблеме фотосинтеза нет практически никаких существенных сдвигов? Пора уж физикам наладить процесс фотосинтеза в обход растений, в промышленном масштабе, и накормить голодающее население слаборазвитых стран.

Но ведь ничего такого и близко нет. И не лучшее ли это доказательство того, что не так просто устроен живой организм, как самонадеянно считают физики? И не рано ли хоронить идею о существовании в живой клетке, в живом организме биологического поля?

А теперь остановимся на вопросе: почему биологическое поле не обнаруживается никакими, даже лучшими в мире приборами. Вспомним, как обнаруживается электрическое поле, существующее вокруг заряженного тела. С помощью пробного заряда, т.е. с помощью другого заряженного тела. Представим себе, что на место пробного заряда мы поместили бы прибор, пусть самый точный, но предназначенный для измерения каких-либо механических величин. Он бы нам ничего не показал. Отсюда был бы сделан вывод, что никакого электрического поля не существует. Также как электрическое поле заряженного тела обнаруживается по действию его на другое заряженное тело, так и биологическое поле живого организма может быть обнаружено по действию его на другой живой организм.

Математическая морфология

Форма (синяя) и её морфологическое расширение (зеленое) и сужение (желтое) ромбическим структурным элементом.

Математическая морфология (ММ) - (Морфология от греч. μορφή «форма» и λογία «наука») - теория и техника анализа и обработки геометрических структур, основанная на теории множеств , топологии и случайных функциях. В основном применяется в обработке цифровых изображений, но также может быть применима на графах , полигональной сетке , стереометрии и многих других пространственных структурах.

Бинарная морфология

В бинарной морфологии двоичное изображение , представленное в виде упорядоченного набора (упорядоченного множества) черно-белых точек (пикселей), или 0 и 1. Под областью изображения обычно понимается некоторое подмножество точек изображения. Каждая операция двоичной морфологии является некоторым преобразованием этого множества. В качестве исходных данных принимаются двоичное изображение B и некоторый структурный элемент S. Результатом операции также является двоичное изображение.

Структурный элемент

Структурный элемент являет собой некоторое двоичное изображение (геометрическую форму). Он может быть произвольного размера и произвольной структуры. Чаше всего используются симметричные элементы, как прямоугольник фиксированного размере (BOX(l, w)), или круг некоторого диаметра (DISK (d)). В каждом элементе выделяется особая точка, называемая начальной (origin). Она может быть расположена в любом месте элемента, хотя в симметричных это обычно центральный пиксель.

Наиболее распространенные структурные элементы: BOX -прямоугольник заданного размера, DISK[R] - диск заданного размера, RING[R] - кольцо заданного размера.

Основные операции

В начале результирующая поверхность заполняется 0, образуя полностью белое изображение. Затем осуществляется зондирование (probing) или сканирование исходного изображения пиксель за пикселем структурным элементом. Для зондирования каждого пикселя на изображение «накладывается» структурный элемент так, чтобы совместились зондируемая и начальные точки. Затем проверяется некоторое условие на соответствие пикселей структурного элемента и точек изображения «под ним». Если условие выполняется, то на результирующем изображении в соответствующем месте ставится 1 (в некоторых случаях будет добавляться не один единичный пиксель, а все единички из структурного элемента).

По рассмотренной выше схеме выполняются базовые операции. Такими операциями являются расширение и сужение. Производные операции - это некоторая комбинация базовых, выполняемых последовательно. Основными из них являются открытие и закрытие.

Базовые операции

Перенос

Пример переноса при t=(2,1).

Операция переноса X t множества пикселов X на вектор t задаётся в виде X t ={x+t|x∈X}. Следовательно, перенос множества единичных пикселов на бинарном изображении сдвигает все пикселы множества на заданное расстояние. Вектор переноса t может задаваться в виде упорядоченной пары (∆r,∆c), где ∆r - компонент вектора переноса в направлении строк, а ∆c - компонент вектора переноса в направлении столбцов изображения.

Наращивание

Наращивание изображения структурным элементом квадратом.

Наращивание бинарного изображения A структурирующим элементом B обозначается и задается выражением:

.

В данном выражении оператор объединения можно считать оператором, применяемым в окрестности пикселов. Структурирующий элемент B применяется ко всем пикселам бинарного изображения. Каждый раз, когда начало координат структурирующего элемента совмещается с единичным бинарным пикселом, ко всему структурирующему элементу применяется перенос и последующее логическое сложение (логическое ИЛИ) с соответствующими пикселами бинарного изображения. Результаты логического сложения записываются в выходное бинарное изображение, которое изначально инициализируется нулевыми значениями.

Наращивание темно синего квадрата дисковым структурным элементом, результирующего на ярко-голубой квадрат с закругленными концами.

Эрозия

Эрозия изображения структурным элементом квадратом.

Эрозия бинарного изображения А структурирующим элементом В обозначается и задается выражением:

.

При выполнении операции эрозии структурный элемент тоже проходит по всем пикселам изображения. Если в некоторой позиции каждый единичный пиксел структурного элемента совпадет с единичным пикселом бинарного изображения, то выполняется логическое сложение центрального пиксела структурного элемента с соответствующим пикселом выходного изображения. В результате применения операции эрозии все объекты, меньшие чем структурный элемент, стираются, объекты, соединённые тонкими линиями становятся разъединёнными и размеры всех объектов уменьшаются.

Эрозия темно синего квадрата дисковым структурным элементом, результирующего на ярко-голубой квадрат.

Производные операции

Замыкание

Замыкание темно синей формы (объединение двух квадратов) дисковым структурным элементом, результирующего на темно синюю форму и светло-голубые площади.

Замыкание бинарного изображения А структурным элементом В обозначается и задается выражением:

.

Операция замыкания «закрывает» небольшие внутренние «дырки» в изображении, и убирает углубления по краям области. Если к изображению применить сначала операцию наращивания, то мы сможем избавиться от малых дыр и щелей, но при этом произойдёт увеличение контура объекта. Избежать этого увеличения позволяет операция эрозия, выполненная сразу после наращивания с тем же структурным элементом.

Размыкание

Размыкание темно-синего квадрата дисковым структурным элементом, результирующего на светло синий квадрат с закругленными углами.

Размыканием бинарного изображения А структурирующим элементом В обозначается и задается выражением:

.

Операция эрозии полезна для удаления малых объектов и различных шумов, но у этой операции есть недостаток – все остающиеся объекты уменьшаются в размере. Этого эффекта можно избежать, если после операции эрозии применить операцию наращивания с тем же структурным элементом. Размыкание отсеивает все объекты, меньшие чем структурный элемент, но при этом помогает избежать сильного уменьшения размера объектов. Также размыкание идеально подходит для удаления линий, толщина которых меньше, чем диаметр структурного элемента. Также важно помнить, что после этой операции контуры объектов становятся более гладкими.

Условное наращивание

Выделение границ

См. также

Ссылки

Литература

  • Л.Шапиро, Дж.Стокман. Компьютерное зрение. изд. - М .: БИНОМ. Лаборатория знаний, 2006. - 752 с.
  • Д.Форсайт, Ж.Понс. Компьютерное зрение. Современный подход. изд. - М .: Вильямс, 2004. - 928 с.

Wikimedia Foundation . 2010 .