Уход и... Инструменты Дизайн ногтей

Энергия заряженных тел. Суть силы взаимодействия зарядов. Энергия электрического поля. Работа при поляризации диэлектрика. Система заряженных тел. Силы при наличии диэлектрика

Пусть одно тело создает в окружающем пространстве поле Е, а другое поле Е2

Результирующее поле Е=Е+Е2 и квадрат этой величины

Полная энергия в данной системе равна сумме трех интегралов

Первые два интеграла представляют собой собственную энергию первого и второго заряженных тел, последний интеграл энергию их взаимодействия W 12 из формулы следует.

1. Собственная энергия каждого заряженного тела величина положительная. Положительной является всегда и полная энергия, Энергия же взаимодействия может быть как положительной, так и отрицательной.

2. При всех возможных перемещениях заряженных тел собственная энергия тел остается поэтому её можно считать аддитивной постоянной в выражении для полной энергии W 1,2 В частности, именно так ведет себя энергия системы двух точечных зарядов при изменении расстояния между ними

3. В отличие от вектора Е энергия электрического поля-величина не аддитивная, т.е.

Энергия поля Е является суммой Е1 и Е2 не равна сумме энергий обоих полит из-за взаимной энергии W1 ,2 При возрастании Е в н раз энергия поля увеличивается в н ра3

Силы при наличии диэлектрика э

Опыт показывает, что на диэлектрик в электрическом поле действуют силы (их, иногда называют пондеромоторными) причиной их возникновения является действия неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Под действием пондеромоторных сил поляризованный диэлектрик деформируется. Это явление называют электрострикцией. Вследствие электрострикции в диэлектрике возникают механическое напряжения. Во многих случаях эти силы можно вычислить с помощью закона сокращения энергии.

Электрический метод определения сил

В Случае когда заряженные проводника отключены от источников напряжения, заряды на проводниках остаются постоянными. Работа А перемещение проводников и диэлектриков совершается целиком за счет убыли электрической энергии W системы или её поля.

Для бесконечно малых перемещений можно записать

Символ –q показывает что убыль энергии системы должна быть вычислена при постоянных зарядов на проводах.

При бесконечно малом поступательном перемещении dx этого тела в направлении работа искомой силы F на перемещении d x

Где Fx – проекция силы F на положительное направление оси Х после подстановки в выратени для SA и делится на dx получили

Если перемещения происходят при постоянном потенциале на проводниках то

Электрическая энергия Из курса механики известно, что тела, взаимодействующие посредством гравитационных сил, обла дают потенциальной энергией. Закон Кулона для взаимодействия электрически заряженных тел имеет такую же математическую форму, что и закон всемирного тяготения. Отсюда можно сделать вывод, что система заряженных тел также обладает потенциальной энергией. Эго означает, что система заряженных тел способна соьершить определенную работу.

Например, такая работа совершается при отталкивании заряженных листочков электроскопа друг от друга.

Потенциальную энергию заряженных тел называют электрической или кулоновской.

Энергия взаимодействия электронов с ядром в атоме и энергия взаимодействия атомов друг с другом в молекулах (химиче ская энергия) это в основном электрическая энергия. Огромная электрическая энергия запасена внутри атомного ядра. Именно за счет этой энергии выделяется теплота при работе ядерного реактора атомной электростанции.

С точки зрения теории близкодействия на заряд непосредственно действуют не другие заряды, а созданное ими электрическое поле При перемещении заряда именно действующая на него со стороны поля сила совершает работу. (В дальнейшем для краткости мы будем говорить о работе поля.) Поэтому можно говорить не только об энергии системы заряженных частиц, но и о потенциальной энергии отдельного заряженного тела в электрическом поле.

Найдем потенциальную энергию заряда в однородном электрическом поле.

Работа при перемещении заряда в однородном поле. Однородное поле создают, например, большие металлические пластины, имеющие заряды противоположного знака. Это поле действует на заряд с постоянной силой подобно тому как Земля действует с постоянной силой на камень вблизи ее поверхности. Пусть пластины расположены вертикально (рис 124), причем левая пластина В заряжена отрицательно, а правая положительно. Вычислим работу, совершаемую полем при перемещении заряда из точки 1, находящейся на расстоянии от пластины В, в точку 2, расположенную на расстоянии от той же пластины. Точки 1 и 2 лежат на одной силовой линии.

На участке пути электрическое поле совершит работу:

Эта работа не зависит от формы траектории.

Соответствующее доказательство для постоянной силы тяжести приведено в учебнике физики для VIII класса и повторять его для постоянной силы нет необходимости. Здесь существен только факт постоянства силы, но не ее происхождение.

Потенциальная энергия. Если работа не зависит от формы траектории движения тела, то она равна изменению потенциальной энергии тела, взятому с противоположным знаком. (Об

этом подробно говорилось в курсе физики VIII класса.) Действительно,

Потенциальная энергия заряда в однородном электрическом поле на расстоянии от пластины.

Формула (8.19) подобна формуле для потенциальной энергии тела над поверхностью Земли. Но заряд в отличие от массы может быть как положительным, так и отрицательным. Если то потенциальная энергия (8.19) отрицательна.

Если поле совершает положительную работу, то потенциальная энергия заряженного тела в поле уменьшается: Одновременно согласно закону сохранения энергии растет его кинетическая энергия. На этом основано ускорение электронов электрическим полем в электронных лампах, телевизионных трубках и т.д. Наоборот, если работа отрицательна (например, при движении положительно заряженной частицы в направлении, противоположном направлению напряженности Е; это движение подобно движению камня, брошенного вверх), то Потенциальная энергия растет, а кинетическая энергия уменьшается: частица тормозится.

На замкнутой траектории, когда заряд возвращается в начальную точку работа поля равна нулю:

Нулевой уровень потенциальной энергии. Потенциальная энергия (8.19) равна нулю на поверхности пластины В. Это означает, что нулевой уровень потенциальной энергии совпадает с пластиной В. Но, как и в случае сил тяготения, нулевой уровень потенциальной энергии выбирают произвольно. Можно считать, что на расстоянии от пластины В. Тогда

Физический смысл имеет не сама потенциальная энергия, а разность ее значений, определяемая работой поля при перемещении заряда из начального положения в конечное.

Вычислим энергию заряженного конденсатора. Пусть первоначально обкладки конденсатора не заряжены. Будем переносить положительный (ил отрицательный) заряд малыми порциями с одной обкладки на другую. Для переноса необходимо совершить работу против электрического поля; , где - мгновенное значение разности потенциалов между обкладками. Эта работа полностью идет на увеличение электрической энергии конденсатора .

Интегрируя, получим
.

Энергия взаимодействия точечных зарядов получается при переносе их из бесконечности в то место, где они расположены. Получается формула , где штрих при потенциале означает, что при его расчете учитываются все заряды, кроме того, на который они действуют. Для непрерывно распределенных зарядов получается интеграл по объему, занимаемому зарядами , где - объемная плотность зарядов.

Так как электрическое поле конденсатора сконцентрировано внутри и однородно, то можно считать, что энергия поля тоже распределена внутри конденсатора. Если разделить вычисленную энергию на объем , где - площадь обкладки, то получится объемная плотность энергии

.

Можно показать, что эта формула верна при любой конфигурации электрического поля.


Электромагнитная индукция

Электромагнитная индукция была открыта Фарадеем в 1831 г. Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушку, концы которой соединены с гальванометром. Если катушку приближать к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется - в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. Магнит можно заменить другой катушкой с током или электромагнитом. Этот ток называется индукционным током, а само явление - электромагнитной индукцией.

Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Рассмотрим простейший случай, когда два параллельных провода и помещены в постоянное однородное магнитное поле, перпендикулярное к плоскости рисунка и направленное на нас. (см. рис.) Слева провода и замкнуты, справа - разомкнуты. Вдоль проводов свободно движется проводящий мостик . Когда мостик движется вправо со скоростью , вместе с ним движутся электроны и положительные ионы. На каждый движущийся заряд в магнитном поле действует сила Лоренца . На положительный ион она действует вниз, на отрицательный электрон - вверх. Электроны начнут перемещаться вверх и там будет скапливаться отрицательный заряд, внизу останется больше положительных ионов. То есть положительные и отрицательные заряды разделяются, возникает электрическое поле вдоль мостика, и потечет ток. Этот ток называется индукционным. Ток потечет и в других частях контура . На рисунке токи изображены сплошными стрелками.

Возникает напряженность стороннего поля, равная .Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции и обозначается . В рассматриваемом случае , где - длина мостика. Знак минус поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого вектором по правилу правого винта. Величина есть приращение площади контура в единицу времени. Поэтому равна , т.е. скорости приращения магнитного потока, пронизывающего площадь контура . Таким образом, . К этой формуле необходимо добавить правило, которое позволяет быстро определять направление индукционного тока. Оно носит название правило Ленца и гласит: Индукционный ток всегда имеет такое направление, что его собственное магнитное поле препятствует изменению магнитного потока, его вызывающего.

Возникающий в проводнике ток исчезает потому, что существует сопротивление. Если бы сопротивления не было, то раз возникнув, ток продолжался бесконечно долго. Такие условия встречаются в сверхпроводниках. Кроме этого, закон электромагнитной индукции позволяет объяснить диамагнетизм в атомах и молекулах. Магнитное поле возникшего дополнительного тока направлено в сторону, противоположную внешнему полю. И так как сопротивления в молекулах нет, то оно не исчезает.


Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

где Вn - В cos a - проекция вектора В на направление нормали к площадке dS (а - угол между векторами n и В); dS - вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке.

Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos а (определяется выбором положительного направления нормали n). Поток вектора B связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру связывается с током правилом правого винта. Следовательно, магнитный поток, создаваемый контуром через поверхность ограниченную им самим, всегда положителен.

Вычислим энергию заряженного конденсатора. Пусть первоначально обкладки конденсатора не заряжены. Будем переносить положительный (ил отрицательный) заряд малыми порциями с одной обкладки на другую. Для переноса необходимо совершить работу против электрического поля;

,

где - мгновенное значение разности потенциалов между обкладками. Эта работа полностью идет на увеличение электрической энергии конденсатора

.

Интегрируя, получим

.

Энергия взаимодействия точечных зарядов получается при переносе их из бесконечности в то место, где они расположены. Получается формула

,

где штрих при потенциале означает, что при его расчете учитываются все заряды, кроме того, на который они действуют. Для непрерывно распределенных зарядов получается интеграл по объему, занимаемому зарядами

,

где - объемная плотность зарядов.

Так как электрическое поле конденсатора сконцентрировано внутри и однородно, то можно считать, что энергия поля тоже распределена внутри конденсатора. Если разделить вычисленную энергию на объем , где - площадь обкладки, то получится объемная плотность энергии

.

Можно показать, что эта формула верна при любой конфигурации электрического поля.

Электромагнитная индукция

Электромагнитная индукция была открыта Фарадеем в 1831 г. Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушку, концы которой соединены с гальванометром. Если катушку приближать к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется - в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. Магнит можно заменить другой катушкой с током или электромагнитом. Этот ток называется индукционным током, а само явление - электромагнитной индукцией.

Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Рассмотрим простейший случай, когда два параллельных провода и помещены в постоянное однородное магнитное поле, перпендикулярное к плоскости рисунка и направленное на нас. (см. рис.) Слева провода и замкнуты, справа - разомкнуты. Вдоль проводов свободно движется проводящий мостик . Когда мостик движется вправо со скоростью , вместе с ним движутся электроны и положительные ионы. На каждый движущийся заряд в магнитном поле действует сила Лоренца . На положительный ион она действует вниз, на отрицательный электрон - вверх. Электроны начнут перемещаться вверх и там будет скапливаться отрицательный заряд, внизу останется больше положительных ионов. То есть положительные и отрицательные заряды разделяются, возникает электрическое поле вдоль мостика, и потечет ток. Этот ток называется индукционным. Ток потечет и в других частях контура . На рисунке токи изображены сплошными стрелками.

Возникает напряженность стороннего поля, равная .Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции и обозначается . В рассматриваемом случае , где - длина мостика. Знак минус поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого вектором по правилу правого винта. Величина есть приращение площади контура в единицу времени. Поэтому равна , т.е. скорости приращения магнитного потока, пронизывающего площадь контура . Таким образом,

.

К этой формуле необходимо добавить правило, которое позволяет быстро определять направление индукционного тока. Оно носит название правило Ленца и гласит: Индукционный ток всегда имеет такое направление, что его собственное магнитное поле препятствует изменению магнитного потока, его вызывающего.

Возникающий в проводнике ток исчезает потому, что существует сопротивление. Если бы сопротивления не было, то раз возникнув, ток продолжался бесконечно долго. Такие условия встречаются в сверхпроводниках. Кроме этого, закон электромагнитной индукции позволяет объяснить диамагнетизм в атомах и молекулах. Магнитное поле возникшего дополнительного тока направлено в сторону, противоположную внешнему полю. И так как сопротивления в молекулах нет, то оно не исчезает.

Магнитный поток

После предварительного рассмотрения сформулируем закон в общем виде. Как и в случае электрического поля можно ввести поток индукции магнитного поля:

.

Здесь - площадь контура, через который проходит магнитное поле, - нормаль к площадке, ограниченной контуром. Скалярное произведение может быть заменено на , где - угол между направлениями вектора индукции и нормалью. Если магнитная индукция меняется по величине и направлению, то формула для потока переходит в следующую

Энергия заряженных тел, в конечном счете, представляет собой силу взаимодействия между двумя телами. Выходит, что одно заряженное тело не обладает энергией? На самом деле это не так энергией оно обладает, но определить наличие этой энергии, не возможно не имея второго тела обладающего зарядом.

Скажем, к примеру, если мы имеем материальную точку имеющую заряд +q. Эта точка находится в вакууме, и поблизости её нет никаких других зарядов. В такой системе, не будет наблюдаться не каких изменений энергии. Ничего никуда не будет двигаться.

Рисунок 1 — точечный заряд

Но как только мы поместим по близости другую материальную точку с зарядом -q тут же возникнут силы взаимодействия между ними. Заряды, так как они разноименные будут стремиться друг к другу. И если им не чего не помешает, в итоге они скомпенсируют друг друга. В результате в системе произойдут некоторые изменения энергии.

Допустим внеся, заря -q мы также введем некую противодействующую силу, которая не даст нашим зарядам скомпенсировать друг друга. То в этом случае наша система будет обладать энергией в явном виде. В виде силы притяжения между зарядами.

Рисунок 2 — взаимодействие двух точечных зарядов

Если отойти от абстракции с “некоторыми” зарядами и силами, то у нас получится совершенно обычный плоский конденсатор. У которого имеются разноименно заряженные обкладки, а силу противодействия представляет диэлектрик между ними, не дающий нашему конденсатору разрядится.

Рисунок 3 — заряженный конденсатор

Энергия же заряженного конденсатора общеизвестна и имеет вид:

Формула 1 — энергия заряженного конденсатора

Величина силы в таком случае будет зависеть от величины зарядов и от расстояния, на котором они находятся. Ну, с величиной заряда как бы все понятно. Чем больше заряд, тем больше сила. По аналогии с механикой, чем больше сковородка, тем больнее будет, когда она упадет на ногу.

А вот с расстоянием не совсем все понятно. Используя все туже механику для упрощения понимания. Представьте, что Вы поднимаете стул, на котором вы сейчас сидите. Не забудьте при этом с него встать. При этом Вы находитесь на поверхности земли и прилагаете некоторые усилия в зависимости от массы этого самого стула. Масса в данном случае аналог заряда. Строго говоря, все это не обязательно представлять Вы можете все это проделать, преодолев свою природную лень.

Далее находясь на орбите земли, скажем на МКС МИР. Вы проделываете те же действия, то есть встаете со стула и поднимете его. Усилие потребуется значительно меньше, так как Вы находитесь далеко от земли и ее притяжение значительно слабее. То есть сила взаимодействия между землей и стулом зависит от расстояния между ними. А вот здесь Вам потребуется Ваше воображение и не только потому что упомянутая МКС затоплена в океане но и потому что побывать на орбите только для того чтобы проверить правдивость данной статьи событие весьма мало вероятное. Также и в конденсаторе сила взаимодействия зависит от расстояния, на котором находятся заряды.