Уход и... Инструменты Дизайн ногтей

Что такое случайное событие в теории вероятности. Теория вероятностей. Решение задач (2020). Зависимые и независимые события

Теория вероятностей - это математическая наука, изучающая закономерности случайных событий. Вероятностным экспериментом (испытанием, наблюдением) называется эксперимент, результат которого нельзя предсказать заранее. В данном эксперименте любой его результат (исход) является событием.

Событие может быть достоверным (всегда происходит в результате испытания); невозможным (заведомо не происходит при испытании); случайным (может произойти или не произойти в условиях данного эксперимента).

Событие, которое нельзя разбить на более простые события, называется элементарным. Событие, представленное в виде совокупности нескольких элементарных событий, называется сложным (фирма не понесла убытки – прибыль может быть положительной либо равной нулю).

Два события, которые не могут происходить одновременно (увеличение налогов – рост располагаемого дохода; увеличение объема инвестиций – снижение уровня риска), называются несовместными.

Иными словами, два события несовместны, если появление одного из них исключает появление другого. В противном случае они являются совместными (увеличение объема продаж – увеличение прибыли). События называются противоположными, если одно из них происходит тогда и только тогда, когда не происходит другое (товар реализован – товар не реализован).

Вероятность события – это численная мера, которая вводится для сравнения событий по степени возможности их появления.

Классическое определение вероятности. Вероятностью Р (А ) события А называется отношение числа m равновозможных элементарных событий (исходов), благоприятствующих появлению события А , к общему числу n всех возможных элементарных исходов данного эксперимента:

Из вышеизложенного вытекают следующие основные свойства вероятности:

1. 0 £ Р (А ) £ 1.

2. Вероятность достоверного события А равна 1: Р (А ) = 1.

3. Вероятность невозможного события А равна 0: Р (А ) = 0.

4. Если события А и В несовместны, то Р (А + В ) = Р (А ) + Р (В ); если же события А и В совместны, то Р (А + В ) = Р (А ) + Р (В ) - Р (А . B). (Р (А . B) – вероятность совместного появления этих событий).

5. Если А и противоположные события, то Р () = 1 - Р (А ).

Если вероятность осуществления одного события не изменяет вероятности появления другого, то такие события называются независимыми.

При непосредственном вычислении вероятностей событий, характеризующихся большим числом исходов, следует пользоваться формулами комбинаторики . Для исследования группы событий (гипотез)

применяются формулы полной вероятности, Бейеса и Бернулли (n независимых испытаний – повторение опытов) .

При статистическом определении вероятности события А под n понимается полное число фактически проведенных испытаний, в которых событие А встретилось ровно m раз. В этом случае отношение m /n называется относительной частотой (частостью) W n (A ) появления события А в n произведенных испытаниях.


При определении вероятности по методу экспертных оценок под n понимается количество экспертов (специалистов в данной области), опрашиваемых на предмет возможности осуществления события А . При этом m из них утверждают, что событие А произойдет.

Понятия случайного события недостаточно для описания результатов наблюдений величин, имеющих числовое выражение. Например, при анализе финансового результата предприятия в первую очередь интересуются его размерами. Поэтому понятие случайного события дополняется понятием случайной величины.

Под случайной величиной (СВ) понимается величина, которая в результате наблюдения (испытания) принимает одно из возможного множества своих значений, заранее неизвестное и зависящее от случайных обстоятельств. Для каждого элементарного события СВ имеет единственное значение.

Различают дискретные и непрерывные СВ. Для дискретной СВ множество ее возможных значений конечно или счетно, т. е. СВ принимает отдельные изолированные значения, которые могут быть заранее перечислены, с определенными вероятностями. Для непрерывной СВ множество ее возможных значений бесконечно и несчетно, например, все числа данного интервала, т.е. возможные значения СВ не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.

Примеры случайных величин: Х - ежедневное число покупателей в супермаркете (дискретная СВ); Y - число детей, родившихся в течение суток в определенном административном центре (дискретная СВ); Z - координата точки попадания артиллерийского снаряда (непрерывная СВ).

Многие СВ, рассматриваемые в экономике, имеют настолько большое число возможных значений, что их удобнее представлять в виде непрерывных СВ. Например, курсы валют, доход населения и т. п.

Для описания СВ необходимо установить соотношение между всеми возможными значениями СВ и их вероятностями. Такое соотношение будет называться законом распределения СВ . Для дискретной СВ его можно задать таблично, аналитически (в виде формулы) либо графически. Например, таблично для СВ Х

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей — от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Вероятность. Что это?

Теория вероятностей , как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов. Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах. Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.

Алгоритм решения типовых задач на нахождение вероятности

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике. А теперь не будем ходить вокруг да около, и сформулируем примерную схему , по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде «вычислить вероятность того, что …» и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения.

    Вероятность

    Ответьте на тестовые вопросы типа:

    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов — число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}^3=\frac{30!}{3!27!}=\frac{28\cdot 29 \cdot 30}{1\cdot 2 \cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших «2». Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}^3=\frac{5!}{3!2!}=\frac{4 \cdot 5}{1\cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=\frac{m}{n}=\frac{10}{4060}=0,002.$$ Задача решена.

Еще примеры: Решенные задачи на классическое определение вероятности.

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний — бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз: $$ P_{n}(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность: $$ P(X)=P_{8}(5)=C_8^5 \cdot 0,5^5 \cdot (1-0,5)^{8-5}=\frac{8!}{5!3!}\cdot 0,5^8=\frac{6\cdot 7 \cdot 8}{1\cdot 2 \cdot 3} \cdot 0,5^8= 0,219.$$ Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли, решебник задач по теории вероятности.

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Спасибо, что читаете и делитесь с другими

Другие полезные статьи по теории вероятностей

Статьи о решении математических задач

Наблюдение явления, опыт, эксперимент, которые можно провести многократно, в теории вероятностей принято называть испытанием . Результат, исход испытания называется событием .

Пример 1 . Сдача экзамена — это испытание; получение определенной отметки — событие. Выстрел — это испытание; попадание в определенную область мишени — событие. Бросание игрального кубика — это испытание; появление того или иного числа очков на брошенной игральной кости — событие.

Виды случайных событий

События называются несовместными , если появление одного из них исключает появления других событий в одном и том же испытании.

Пример 2 :

  • несовместные события : день и ночь, человек читает и человек спит, число иррациональное и четное;
  • совместные события : идет дождь и идет снег, человек ест и человек читает, число целое и четное.

Несколько событий образуют полную группу (пространство исходов) , если в результате испытания появиться хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.

Пример 3 .

Урок алгебры » Случайные события. Вероятность случайного события.»

При сдаче зачета возможны следующие исходы: «зачтено», «не зачтено», «не явился»; при подбрасывании монеты – «орел», «решка».

Пример 4 . Пусть в урне содержится 6 одинаковых шаров, причем 2 из них — красные, 3 — синие и 1 — белый. Какова возможность вынуть наудачу из урны цветной шар? Можно ли охарактеризовать эту возможность числом?

Оказывается можно. Это число и называется вероятностью события А (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события .

Каждый из возможных результатов испытания (в примере 4, испытание состоит в извлечении шара из урны) называется элементарным исходом .

Те элементарные исходы, в которых интересующее нас событие наступает, называются благоприятствующими этому событию. В примере 4 благоприятствуют событию А (появление цветного шара) 5 исходов.

События называются равновозможными , если есть основания считать, что не одно из них не является более возможным, чем другое.

Пример 5 . Появление того или иного числа очков на брошенном игральном кубике – равновозможные события.

Вероятностью P(A) события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Вероятность P(A) события А определяется по формуле

где m – число элементарных исходов, благоприятствующих A ; n – число всех возможных элементарных исходов испытания.

В примере 4 всего элементарных исходов 6 ; из них 5 благоприятствуют событию А . Следовательно, вероятность того что взятый шар окажется цветным, равна P(A) = 5/6 .

Пример 6 . Определить вероятность выпадения нечётного числа очков на кости.

Решение. При бросании кости событие A – «выпало нечётное число очков» можно записать как подмножество {1, 3, 5} пространства исходов {1, 2, 3, 4, 5, 6} (рис. 1).

Число всех равновозможных исходов n = 6, а число благоприятных событию A m = 3. Следовательно,

Пример 7 . В урне находится 7 шаров: 2 белых, 4 черных и 1 красный. Вынимается один шар наугад. Какова вероятность того, что вынутый шар будет чёрным?

Решение. Занумеруем шары. Пусть, например, шары с номерами 1 и 2 – белые, с номерами 3, 4, 5 и 6 – чёрные, а красному шару присвоим номер 7 .

Так как мы можем вынуть только один из семи шаров, то общее число равновозможных исходов равно семи (n = 7 ). Из них 4 исхода – появление шаров с номерами 3, 4, 5 и 6 – приведут к тому, что вынутый шар будет чёрным (m = 4 ). Тем самым, вероятность события А , состоящего в появлении чёрного шара, равна

Вычислите вероятность того, что вынутый шар будет белым.

Пример 8 .

Вычислить вероятность выпадения в сумме 10 очков при бросании пары костей.

Решение. Рассмотрим все равновозможные исходы в результате бросания двух костей (их число равно 36 — рекомендуем записать в виде таблицы). Выпадение в сумме 10 очков (событие А ) возможно в трёх случаях – 4 очка на первой кости и 6 на второй, 5 очков на первой и 5 на второй, 6 очков на первой и 4 на второй. Поэтому вероятность события А (выпадения в сумме 10 очков) равна

Свойство 1 . Вероятность достоверного события А равна единице: Р(А) = 1 .

Свойство 2 . Вероятность невозможного события А равна нулю: Р(А) = 0 .

Свойство 3 . Вероятность случайного события есть положительное число, заключенное между нулем и единицей :

0 £ P (A) £ 1.

Пример 9 . Так как вероятность выпадения 13 очков при бросании пары костей – невозможное событие, его вероятность равна нулю .

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же часто встречаются испытания, число возможных исходов которых бесконечно. Кроме этого, часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. По этой причине, наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение .

Статистическое определение вероятности

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события А называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний:

где m – число появлений события А , n – общее число испытаний.

Классическая вероятность вычисляется до опыта, а относительная частота – после опыта .

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний велико, то относительная частота обнаруживает свойство устойчивости .

Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Таким образом, при достаточно большом количестве испытаний в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Пример 10 . Естествоиспытатель К. Пирсон терпеливо подбрасывал монету и после каждого бросания не ленился записывать полученный результат. Проделав эту операцию 24 000 раз, он обнаружил, что герб выпадал в 12 012 случаях. Вычисляя относительную частоту выпадения герба, он получил , что практически равно 1/2.

Многих интересует вопрос: возможно ли повлиять на случайные события, выявить какую-либо закономерность событий, получить тот результат, который желателен. Все явления, которые окружают нас, происходят и изменяются с какой-то долей случайности, неопределенности.

Со случайными событиями мы встречаемся чаще, чем это принято считать. Случайные факторы лежат в основе окружающей среды, экономики, политики, социальной и общественной жизни, они определяют течение любого процесса массового обслуживания - торговли, телефонной связи, транспортных услуг и медицинской помощи. Задача управления различного рода процессами, которая наиболее остро стоит перед современным обществом, состоит в том, чтобы научиться ориентироваться в мире случайностей и активно действовать, опираясь на скрытые специфические закономерности.

Все явления окружающей нас действительности можно рассматривать с точки зрения вероятности их наступления. Когда студент идет на экзамен, вероятность получения им хорошей оценки зависит от нескольких причин: подготовленности студента, удачно выбранного билета, самочувствия, настроя.

Экономиста может интересовать вероятность того, что цены на товар не вырастут, если не снизится объем его производства, или вероятность того, что застрахованный автомобиль не попадет в аварию.

Все эти события являются случайными и могут наступить или нет с некоторой долей неопределенности. Количественной мерой такой неопределенности является вероятность наступления случайного события, под которой понимают число, которое выражает степень уверенности в наступлении того или иного случайного события.

Случайными событиями называют возможные результаты единичной операции, или испытания .

Под испытанием следует понимать процесс, включающий в себя определенные условия и приводящий к одному из нескольких возможных исходов .

Например: испытание - бросание монеты, случайное событие - выпадение герба. Испытание - рождение ребенка, случайное событие - пол ребенка - мужской.

Исходом опыта может быть результат наблюдения, измерения, оценки.

Случайное событие может состоять из нескольких элементарных событий.

Единичный, отдельный исход испытания называется элементарным событием.

Событие называется случайным, если в результате испытания (опыта) оно может произойти, а может и не произойти.

Например, стрелок, производящий выстрел, может попасть или не попасть в цель. В этом случае испытание - это выстрел, а возможные элементарные исходы - попадание или непопадание в цель. Футбольная команда может участвовать в матче - это испытание, в результате которого могут наступить исходы, или элементарные события: выигрыш, проигрыш или ничья.

Оценка студента на экзамене - это случайное событие, которое состоит из элементарных событий: получение оценки «отлично», получение оценки «хорошо», получение оценки «удовлетворительно», получение оценки «неудовлетворительно».

Элементарные события можно классифицировать по мере их неопределенности как достоверные, невозможные и случайные.

Достовернымназывают событие, которое обязательно произойдет при определенном комплексе условий .

Например, если в ящике находятся только стандартные детали, то извлечение из него стандартной детали есть событие достоверное. Достоверным является и то, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Событие, которое не может произойти в результате данного испытания, называется невозможным .

Если в ящике все детали стандартные, то извлечение из него нестандартной детали есть событие невозможное. Квадрат вещественного числа не может быть отрицательным. Достоверные и невозможные события, вообще говоря, не являются случайными.

Случайные события. Вероятность (стр. 1)

Фундаментом для научного подхода к поиску ответов на вопросы подобного рода является теория вероятностей.

Зарождение теории вероятностей и формирование первых понятий этой ветви математики произошло в середине 17 века, когда Паскаль, Ферма, Бернулли попытались осуществить анализ задач связанных с азартными играми новыми методами. Скоро стало ясно, что возникающая теория найдет широкий круг применения для решения многих задач возникающих в различных сферах деятельности человека .

Производя достаточно большое количество опытов или испытаний, можно определить, как часто появляется событие, и вычислить вероятность его наступления. Вероятность, определенную таким образом, называют статистической или послеопытной. В некоторых случаях можно определить доопытную вероятность, которую называют классической.

Вероятностью появления события А называют отношение числа исходов, благоприятствующих появлению этого события, к общему числу всех единственно возможных и несовместных элементарных исходов. Обозначим число благоприятствующих событию А исходов через М, а число всех возможных исходов N. тогда для определения вероятности можно использовать формулу Р (А) = М/N .

Я провела эксперимент: попробовала вытащить из 15 шариков, 2 из которых красные, остальные зеленые, произвольным образом 2 шарика. Пыталась определить вероятность того, что оба шарика окажутся красными; оба шарика будут зелеными; один шарик будет красный, другой зеленый.

Предположенный перед проведением эксперимента результат оправдался: наиболее возможным исходом является вытаскивание 2 зеленых шариков, наименее возможным исходом является вытаскивание 2 красных шариков.

При сравнении практической и теоретической вероятности, обнаружилось довольно большое расхождение, причиной которого является малое количество проведенных испытаний.

Для получения более точного результата желательно проводить как можно больше испытаний, рассматривать всевозможные исходы испытаний и благоприятные исходы. Не забывать, что проверить это всегда можно и теоретически. При этом вероятности до проведения опыта и после проведения должны совпадать.

Проведя исследование по данному вопросу, я пришла к выводу: теория вероятности не влияет на случайные события, она только позволяет выяснить степень его наступления, а вероятность, посчитанная во время эксперимента, тем точнее, чем больше проведено испытаний.

Литература:

  1. Кибзун А. И. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами / А. И. Кибзун. - М.: Физматлит, 2002. - 224 с.
  2. Кочетков Е. С., Смерчинская С. О., Соколов В. В. Теория вероятностей и математическая статистика. - М.: ФОРУМ: ИНФРА-М, 2006. - 240 с.
  3. Письменный Д. Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. - М.: Айрис-пресс, 2007. - 288 с.

Спасибо, что читаете и делитесь с другими

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события $А$, если появление этого события влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8).

Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров…)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей…)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов…)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .. Количество элементарных исходов (количество карт) .

Искомая вероятность
.

Формулы по теории вероятности онлайн

В данном разделе вы найдете формулы по теории вероятностей в онлайн-варианте (скачать можно на странице Таблицы и формулы по теории вероятностей). Если слово подчеркнуто, щелкнув на ссылке, вы перейдете к подробному описанию термина, примерам или вычислению на онлайн-калькуляторе. Используйте эти возможности!

А также для изучения тервера у нас есть:

Спасибо, что читаете и делитесь с другими

I. Случайные события. Основные формулы онлайн

1. Основные формулы комбинаторики

Число перестановок $$P_n = n!

Учебник по теории вероятностей

1\cdot 2 \cdot 3 \cdot … \cdot (n-1) \cdot n$$

Число размещений $$A_m^n = n \cdot (n-1) \cdot … \cdot (n-m+1)$$

Число сочетаний $$C_n^m =\frac{A_n^m}{P_m}=\frac{n!}{m! \cdot (n-m)!}$$

2. Классическое определение вероятности

$$P(A) = \frac{m}{n},$$ где $m$ — число благоприятствующих событию $A$ исходов, $n$ — число всех элементарных равновозможных исходов.

Подробнее о классической вероятности см. в онлайн-учебнике и калькуляторах решений.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

$$ P(A+B) = P(A)+P(B) $$

Теорема сложения вероятностей совместных событий:

$$ P(A+B) = P(A)+P(B)-P(AB) $$

Примеры решений и теория по алгебре событий тут.

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B) $$

Теорема умножения вероятностей зависимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B|A),\\ P(A\cdot B) =P(B)\cdot P(A|B). $$

$P(A|B)$ — условная вероятность события $A$ при условии, что произошло событие $B$,

$P(B|A)$ — условная вероятность события $B$ при условии, что произошло событие $A$.

Подробнее об условной вероятности.

5. Формула полной вероятности

$$ P(A)=\sum_{k=1}^{n} P(H_k)\cdot P(A|H_k), $$

6. Формула Байеса (Бейеса). Вычисление апостериорных вероятностей гипотез

$$ P(H_m|A) =\frac{P(H_m)\cdot P(A|H_m)}{P(A)} = \frac{P(H_m)\cdot P(A|H_m)}{\sum\limits_{k=1}^{n} P(H_k)\cdot P(A|H_k)}, $$

где $H_1, H_2, …, H_n$ — полная группа гипотез.

Примеры и теория на эту тему.

7. Формула Бернулли

$$ P_n(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k} = \frac{n!}{k! \cdot (n-k)!}\cdot p^k \cdot (1-p)^{n-k} $$ вероятность появления события ровно $k$ раз в $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании.

Еще полезное по формуле Бернулли теория и примеры, онлайн-калькуляторы.

8. Наивероятнейшее число наступления события

Наивероятнейшее число $k_0$ появления события при $n$ независимых испытаниях (где $p$ — вероятность появления события при одном испытании):

$$ np-(1-p) \le k_0 \le np+p. $$

Вычислить наивероятнейшее значение онлайн.

9. Локальная формула Лапласа

$$ P_n(k) = \frac{1}{\sqrt{npq}} \varphi\left(\frac{k-np}{\sqrt{npq}} \right) $$

вероятность появления события ровно $k$ раз при $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании, $q=1-p$.

Значения функции $\varphi(x)$ берутся из таблицы.

10. Интегральная формула Лапласа

$$ P_n(m_1, m_2) = \Phi\left(\frac{m_2-np}{\sqrt{npq}} \right)-\Phi\left(\frac{m_1-np}{\sqrt{npq}} \right) $$

вероятность появления события не менее $m_1$ и не более $m_2$ раз при $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании, $q=1-p$.
Значения функции $\Phi(x)$ берутся из таблицы.

Теория и примеры на формулы Муавра-Лапласа.

11. Оценка отклонения относительной частоты от постоянной вероятности $p$

$$ P\left(\left| \frac{m}{n} -p\right| \le \varepsilon\right) = 2 \Phi\left(\varepsilon\cdot \frac{n}{\sqrt{p(1-p)}} \right) $$

$\varepsilon$ — величина отклонения, $p$ — вероятность появления события.

Решенные задачи по теории вероятностей

Нужна готовая задача по терверу? Найдите на сайте-решебнике:

Каталог формул по теории вероятности онлайн

Полный список страниц с формулами:

Спасибо, что читаете и делитесь с другими

Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: "выбранный шар оказался синего цвета"
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Теория вероятности - довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) - здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования - главное, уметь обращаться с простыми числами и дробями.

Теория вероятности - основные термины

Главные термины теории вероятности - испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент - подбросить монету, вытянуть карту, провести жеребьевку - все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события - выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход - это один результат одного испытания. Случайное событие - это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие - благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход - напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

  • Р = А/N, где P - вероятность, A - число благоприятных исходов, N - общее количество исходов.

Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда - не очень.

Как решать задачи на вероятность?

Задача 1

Итак, теперь давайте решим поставленную выше задачу.

Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов - 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

Задача 2

Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

Итак, считаем общие исходы. Как могут выпасть монеты - орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов - 4. Сколько благоприятных исходов? Два - орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

  • P = 2/4=0,5 или 50 процентов.

А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две - номиналом 5 рублей и четыре - номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

Для простоты обозначим монеты цифрами - 1,2 - пятирублевые монеты, 3,4,5,6 - десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

  • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

  • P = 12/20 = 0,6 или 60%.

Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности - это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.