Уход и... Инструменты Дизайн ногтей

Зависимость градиента потенциала от силы разрядного тока. Напряженность как градиент потенциала. Эквипотенциальные поверхности

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на . В воздухе имеется вертикальное электрическое поле величиной . Знак поля отвечает отрицательному заряду земной поверхности. Это означает, что на улице потенциал на уровне вашего носа на выше, чем потенциал на уровне пяток! Можно, конечно, спросить: «Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использовать эти для электрического освещения?» А можно и удивиться: «Если действительно между моим носом и моей пяткой имеется напряжение , то почему же меня не ударяет током, как только я выхожу на улицу?»

Сперва ответим на второй вопрос. Ваше тело - довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эквипотенциальную поверхность. Обычно эквипотенциальные поверхности параллельны земле (фиг. 9.1, а), но когда на земле оказываетесь вы, то они смещаются, и поле начинает выглядеть примерно так, как показано на фиг. 9.1, б. Так что разность потенциалов между вашей макушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.

Фигура 9.1. Распределение потенциала: а - над землей; б - около человека, стоящего на ровном месте.

Как же измерить такое поле, раз оно искажается от всего, что в него попадает? Имеется несколько способов. Один способ - расположить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха. Если подождать довольно долго, то даже при очень малой проводимости воздуха заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ - в качестве проводника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растекаются по поверхности, а капли воды - это уходящие «куски поверхности».) Потенциал ведра можно измерить электрометром.

Имеется еще способ прямого измерения градиента потенциала. Раз существует электрическое поле, то должен быть и поверхностный заряд на земле (). Если мы поместим у поверхности земли плоскую металлическую пластинку и заземлим ее, то на ней появятся отрицательные заряды (фиг. 9.2, а). Если затем прикрыть пластинку другой заземленной проводящей крышкой , то заряды появятся уже на крышке , а на пластинке исчезнут. Если мы измерим заряд, перетекающий с пластинки на землю (скажем, с помощью гальванометра в цепи заземляющего провода) в тот момент, когда закрывают крышкой, то мы найдем плотность поверхностного заряда, бывшего на , а значит, и электрическое поле.

Рассмотрев способы измерения электрического поля в атмосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно поле уже еле-еле заметно, так что большая часть изменения потенциала (интеграла от ) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти .

Фигура. 9.2. Заземленная металлическая пластинка обладает тем же поверхностным зарядом, что и земля (а); если пластинка прикрыта сверху заземленным проводником, на ней заряда нет (б).

Г.М. Казаков

Тепломассообмен

Утверждено редакционно-издательским

советом университета в качестве

учебного пособия

Нижний Новгород - 2016

Казаков Г.М. Тепломассообмен: Учебное пособие. – Н.Новгород: Нижегород. гос. архит.-строит. ун-т, 2016. – 93 с.

ISBN 5-87941-412-4

В пособии дан теоретический подход к решению широкого круга задач тепломассообмена: перенос теплоты через однослойные и многослойные стенки различной геометрической формы, теория подобия процессов и явлений, определение коэффициентов теплоотдачи при конвективном теплообмене. Подробно рассмотрены вопросы тепломассообмена при фазовых превращениях. В пособии показаны особенности лучистого теплообмена между твердыми телами, излучение и поглощение чистых газов и пламени, а также рассмотрены инженерные методы расчета теплообменных аппаратов.

Пособие может быть полезно для преподавателей и студентов теплоэнергетических специальностей.

ISBN 5-87941-412-4

© Казаков Г.М., 2016

© ННГАСУ, 2016

Введение

Теория переноса теплоты и массы вещества является одним из важнейших разделов современной науки. Она имеет большое практическое значение в самых разнообразных областях техники: в станционной и промышленной энергетике, технологических процессах химической и металлургической промышленности, строительной индустрии и коммунальном хозяйстве. Особенно большое значение проблема тепломассообмена имеет для новых областей техники, в частности, для ядерной энергетики и космической техники. Научной основой многих теплоэнергетических, энерготехнологических и химико-технологических процессов является теория тепломассообмена. Она включает в себя комплекс научных знаний из гидродинамики сплошных сред, молекулярной физики, термодинамики, уравнений математической физики, физико-химических поверхностных явлений дисперсных сред. Молекулярно-кинетическая теория явлений тепломассообмена очень сложна и недостаточно разработана. Поэтому современная теория тепломассообмена в основном феноменологическая, базирующаяся на гидродинамике и термодинамике сплошных сред.

Пособие построено на базе теории переноса любых субстанций. Это позволяет студентам четко понять отличие задач не связанного тепломассообмена от более сложных задач связанного тепломассообмена. Так как математическая формулировка не связанных друг с другом процессов переноса теплоты и массы идентична, то это позволяет ограничиться более подробным изложением задач переноса теплоты.

Пособие «Тепломассообмен» предназначено для заочников дистанционной формы обучения, но может быть рекомендовано и для студентов очной формы обучения по теплоэнергетическим специальностям.

Основные положения учения о процессах переноса тепловой энергии и массы в пространстве

Основные понятия и определения

Перенос любой субстанции (энергии, массы, количества движения, электрического заряда) может происходить как микроскопическим (не види-мым хаотическим тепловым движением микрочастиц), так и макроскопическим (видимым, связанным с движением массы вещества) способами. В первом случае, когда среда неподвижна, перенос массы какого-либо компонента смеси называют диффузией, а перенос тепловой энергии – теплопроводностью. Во втором случае при видимом движении самой среды, которое происходит за счет внешних сил, перенос массы и тепловой энергии называют соответственно конвекцией массы и конвекцией тепла. Различают два вида конвекции: свободную (естественную) и вынужденную. В конвекции первого вида движущая сила обусловлена неоднородностью плотности среды, связанная с неоднородностью температуры, в поле массовой силы (гравитационной, центробежной, электромагнитной). Подогретые объемы среды, имея малую плотность, «всплывают» в охлажденных объемах. При вынужденной конвекции перемещение среды в пространстве осуществляют насосами, вентиляторами и т.д. Совместный перенос массы или тепловой энергии микроскопическим и макроскопическими способами называют соответственно конвективным массо-переносом и конвективным теплопереносом. Движущую среду независимо от агрегатного состояния принято называть жидкостью, которая может быть одно- и многокомпонентной. Конвективный перенос тепла на границе движущейся жидкости и твердой неподвижной стенки называют теплоотдачей. Конвек-тивный перенос массы какого-либо компонента текущей жидкости на границе с твердой неподвижной стенкой называют массоотдачей. Перенос тепла от одной движущейся жидкости к другой движущейся жидкости через разделяющую их твердую неподвижную стенку называют теплопередачей. Таким образом, теплопередача включает в себя теплоотдачу на обеих поверхностях стенки и теплопроводность в самой стенке. Аналогично перенос массы какого-либо компонента движущейся смеси к другой движущейся смеси через разделяющую их твердую неподвижную стенку называют массопередачей. Массопередача включает в себя массоотдачу на обеих поверхностях стенки и диффузию какого-либо компонента в самой стенке.

Перенос тепла может происходить в области глубокого вакуума при исчезающе малом молекулярном содержании вещества. Перенос тепла в этом случае производится фотонами, испускаемыми одними телами и поглощаемыми другими, и называется лучистым теплообменом. При этом по закону эквивалентности массы и энергии переносится и масса. Однако в обычных технических случаях этот перенос массы ничтожно мал по сравнению с лучистым переносом массы, например, при солнечном и звездном излучении.

В общем случае тепло- и массообмен может происходить одновременно. В других случаях их можно рассматривать раздельно либо пренебречь одним из них. Теплообмен может происходить одновременно: и теплопроводностью, и путем переноса тепла движущимся веществом, и излучением. Аналогично массообмен может происходить одновременно: и диффузией какого-либо компонента смеси, и путем переноса этого компонента движущимся веществом. Весьма часто удается выделить и изучить какой-либо частный случай переноса тепла или массы.

Если известны, например, скорость w и температура T в любой точке потока жидкости, а плотность r и удельная массовая теплоемкость с р ее постоянны, то элементарное количество массы, протекающее в единицу времени через элемент dF произвольной поверхности, равно

,

где – единичный вектор, нормальный к элементарной поверхности dF.

Интегрируя это выражение по всей поверхности, получим поток массы, переносимый конвекцией

, (кг/с). (1.1)

Плотность потока массы равна

, (кг/м 2 с). (1.2)

Элементарное количество тепла, переносимое в единицу времени через элемент произвольной поверхности dF, составляет

Интегрируя по всей поверхности, получим поток тепла, переносимый конвекцией

, (вт). (1.3)

Плотность потока тепла в этом случае равна

, (вт/м 2). (1.4)

Поле потенциала. Градиент потенциала

Под потенциалом понимают любую величину, неоднородность которой в пространстве приводит к микроскопическому переносу соответствующей субстанции. Весьма часто его выбирают, исходя из соображений удобства. Например, в случае теплопроводности неоднородными в пространстве будут температура, удельная внутренняя энергия и удельная энтальпия. Однако в качестве потенциала выбирают температуру, поскольку она как функция координат не претерпевает разрыва непрерывности на границе, например, разнородных материалов. Тогда как удельные внутренняя энергия и энтальпия на этой границе как функции координат имеют разрыв непрерывности.

Под полем потенциала понимают совокупность значений потенциала во всех точках изучаемой области для любого момента времени. Если в качестве потенциала выбирают температуру, концентрацию компонента смеси, скорость течения жидкости и т.д., то соответственно речь идет о поле температур, поле концентраций, поле скоростей и т.д. Геометрическое место точек одинаковых потенциалов в потенциальном поле образует изопотенциальные поверхности. Например, в температурном поле ими являются изотермические поверхности. Изопотенциальные поверхности не могут пересекаться. В противном случае в точках пересечения имело бы место несколько потенциалов, что физически абсурдно. Различают нестационарные и стационарные поля потенциалов. Если поле зависит от времени, оно нестационарное. Например, нестационарные поля температур и скоростей течения жидкости в декартовой системе координат имеют вид

T = T(x,y,z,t),

как видно, одно из полей скалярное, а другое векторное.

Соответственно стационарные поля можно записать в виде

;

Различают трехмерные, двухмерные и одномерные соответственно нестационарные или стационарные поля потенциалов. Выше представлены соответственно нестационарные и стационарные трехмерные поля температур и скоростей, так как под знаком функции присутствуют три координаты. Например, нестационарные одномерные поля температур и скоростей течения жидкости в декартовой системе координат имеют вид

Соответственно стационарные одномерные поля можно записать в виде

  • 7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
  • 8.Диполь в электрическом поле. Поле диполя. Момент сил, действующих на диполь. Энергия диполя в роле.
  • 9.Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
  • 10. Классическая теория электропроводности металлов. Пределы её применимости.
  • 11.Электрический ток в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
  • 12. Электрический ток в жидкостях. Законы электролиза Фарадея.
  • 13. Электроёмкость уединённого проводника. Ёмкость проводника, имеющёго форму шара радиусом r. Единица ёмкости
  • 14. Параллельное и последовательное соединение конденсаторов. Ёмкость плоского, цилиндрического и сферического конденсаторов.
  • 15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
  • 16)Диэлектрическая восприимчивость. Свободные и связные заряды.
  • Зависимость от времени
  • 17)Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференциальная форма теоремы.
  • 18) Связь между векторами d и e. Диэлектрическая проницаемость.
  • 19) Граничные условия для векторов e и d. Преломление линий e и d. Поле в однородном диэлектрике.
  • 20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
  • 21) Энергия уединенного проводника. Энергия конденсатора.
  • 22) Плотность энергии электрического поля (на примере плоского конденсатора)
  • 23) Постоянный ток. Единица измерения. Плотность тока. Уравнение непрерывности
  • 24)Диффиринциальная форма ур-я непрывности. Условие стационарности.
  • 25) Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
  • 26) Закон Ома для замкнутой цепи, участка цепи, содержащего эдс.
  • 27) Дифференциальная форма закона Ома.
  • 28) Разветвленные цепи. Правила Кирхгофа
  • 29) Закон Джоуля-Ленца. Дифференциальная форма закона Джоуля-Ленца
  • 30. Магнитное поле. Сила Лоренца. Сила Ампера.
  • 32.Магнитное поле прямолинейного тока,кругового тока.Сила взаимодействия прямолинейных токов.
  • 2. Магнитное поле в центре кругового проводника с током.
  • 33.Дивергенция, циркуляция, ротор и поток магнитной индукции.
  • 34.Графическое представление поля в. Теорема Гаусса для поля в.
  • 35.Закон полного тока. Потенциальные и соленоидные векторные поля
  • 36.Магнитное поле прямого тока, бесконечного соленоида, тороида.
  • 37.Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля b.
  • 38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
  • 39. Работа по перемещению проводника и контура с током в магнитном поле.
  • 40.Движение заряженных частиц в электрическом и магнитном поле.Эффект Холла.
  • 41. Магнитные свойства вещества. Пара-, диа-, ферро-, ферри- и антиферромагнетики.
  • 42. Опыт Эйнштейна – де Гааза. Опыт Барнета. Магнетомеханическое отношение спин электрона.
  • 43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряжённость магнитного поля.
  • 44. Закон электромагнитной индукции Фарадея. Правило Ленца.
  • 45. Природа электромагнитной индукции. Вихревое электрическое поле.
  • 46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.
  • 48. Взаимная индукция. Теорема взаимности.
  • 49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
  • 50. Энергия магнитного поля. Изолированный контур с током.
  • 51. Магнитная энергия тока. Плотность энергии магниного поля. Энергия соленоида.
  • 52. Переменный ток. Конденсатор, индуктивность и сопротивление в цепи переменного тока.
  • 54. Колебательный контур. Свободные и затухающие колебания.
  • 55. Вынужденные колебания. Резонанс.
  • 56. Уравнение Максвелла. Интегральная и дифференциальная форма уравнений. Вектор Пойнтинга. Физический смысл уравнений Максвелла.
  • 57. Ток смещения. Закон сохранения энергии для электромагнитного поля.
  • 58. Электормагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
  • 59. Проводимость полупроводников. Элементы зонной теории кристаллов.
  • 60. Собственные и примесные полупроводники. Дрейфовый и диффузные токи. P-n переходы.
  • 7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.

    Градиент (потенциала) – вектор, показывающий направление наибольшего роста скалярной функции :

    , (9)

    где , – координатные орты.

    Величина этого вектора равна изменению потенциала при перемещении на единицу длины в направлении быстрейшего изменения.

    Длина градиента (потенциала) равна

    . (10)

    Из механики известно, что консервативная сила равна градиенту потенциальной энергии частицы, взятому с обратным знаком, т.е.


    , (11)

    где
    – символический вектор, называемый оператором Гамильтона или оператором набла .

    Для электростатического поля имеем:

    Тогда соотношение (11) принимает вид


    ,

    или

    , (12)

    т.е. напряженность электрического поля равна градиенту потенциала с обратным знаком.

    Знак минус в (12) показывает, что вектор направлен противоположно вектору градиента потенциала , и силовые линии электрического поля являются линиями, вдоль которых потенциал изменяется наиболее быстро.

    Очевидно, что проекция вектора на произвольное направление l равна со знаком минус частной производной потенциала по данному направлению:

    . (13)

    В случае однородного электрического поля (поля плоского конденсатора), в любой точке которого вектор напряженности постоянен как по величине, так и по направлению, имеем простое соотношение:

    , (14)

    где
    – разность потенциалов или напряжение между пластинами конденсатора (или между двумя эквипотенциальными поверхностями);

    – расстояние между пластинами конденсатора (или между двумя эквипотенциальными поверхностями).

    Поверхность, все точки которой имеют одинаковый потенциал, называется поверхностью равного потенциала или эквипотенциальной поверхностью , для которой

    . (15)

    Перенос заряда вдоль эквипотенциальной поверхности не требует работы (разность потенциалов двух любых точек этой поверхности равна нулю). Это означает, что сила, действующая на переносимый заряд, перпендикулярна к перемещению.

    Следовательно, вектор всегда направлен по нормали к эквипотенциальной поверхности, т.е. линии напряженности в каждой точке ортогональны к эквипотенциальной поверхности.

    Итак, можно сделать важный вывод о том, что электрическое поле полностью можно описать векторной величиной – напряженностью . Но во многих случаях оказывается, что для вычисления напряженности электрического поля удобнее сначала определить потенциал φ и затем по формуле


    вычислить напряженность
    .

    Силовые линии - направленные линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля. Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии .

    Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определитьмежду двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:

    Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке 3.4.

    При перемещении по этой поверхности на dl потенциал не изменится:

    Отсюда следует, что проекция вектора на dl равнанулю, то есть Следовательно, в каждой точке направлена по нормали к эквипотенциальной поверхности.

    Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине

    Понятие градиента потенциала позволяет рассчитать составляющие E x , E y , E z вектора электрического поля в каждой точке пространства по значениям поля потенциала.

    Как функция координат потенциал U(x,y,z) является полем скалярной величины U . В этом поле имеются поверхности, на которых значения потенциала U не меняются, т.е. являются постоянными величинами. Такие поверхности называют эквипотенциальными. Так как между отдельными точками эквипотенциальной поверхности нет разности потенциалов, то очевидно работа сил поля при перемещении зарядов вдоль такой поверхности будет равна нулю. Это означает, что проекции сил поля на эту поверхность будут равны нулю. Следовательно, в каждой точке эквипотенциальной поверхности силовые линии электростатического поля расположены по отношению к ней перпендикулярно, рис. 3.3.

    а) б)

    Рис. 3.3. Эквипотенциальные поверхности (a), к определению градиента и
    производной по направлению (б)

    Градиентом потенциала в точке А(x,y,z) назовем производную функции U по линии, направленной в точке А вдоль вектора нормали :

    Градиент потенциала – это вектор, направленный в каждой точке перпендикулярно эквипотенциальной поверхности, т.е. в направлении вектора напряженности поля .

    По абсолютной величине градиент потенциала равен скорости изменения потенциала в направлении . Из рис. 3.3 видно, что

    .

    . (3.9)

    Функцию называют производной по направлению.

    Из этого выражения видно, что производная по любому направлению, отличному от направления нормали, меньше по абсолютному значению производной по направлению нормали. Таким образом, градиент – это векторная величина, которая соответствует направлению наиболее быстрого изменению потенциала. Производная в направлении нормали имеет наибольшее значение. Это хорошо видно на рис. 3.3 б, где показана бесконечно малая окрестность точки А. В этой окрестности эквипотенциальные поверхности и практически параллельны и изменения потенциала на интервалах и одинаковы. Следовательно,

    Найдем теперь производные потенциала в точке А по направлению каждой из координатных осей x, y и z :

    , ,

    .

    Видно, что эти производные являются проекциями градиента (как векторной величины) по оси x, y, z , т.е.

    , , .

    По абсолютной величине

    . (3.11)

    На основании формул (3.2 -3.4)

    . (3.12)

    Таким образом, установлен очень важный факт, заключающийся в том, что напряженность электрического поля равна градиенту потенциала с обратным знаком. Расписывая это выражение по координатам, находим, что

    . (3.14)

    На основании (3.2), учитывая, что , получим:



    С учетом (3.12) также получим:

    , (3.16)

    . (3.17)

    Последнее уравнение называют уравнением Пуассона. В развернутом виде

    . (3.18)

    Если в исследуемом объеме отсутствуют заряды, то

    , (3.19)

    . (3.20)

    Это уравнение называют уравнением Лапласа.

    Полученные уравнения позволяют решить следующую очень важную задачу. Как, зная распределение зарядов в некоторой области определить напряженности полей E x , E y , E z в каждой точке пространства с координатами x, y, z . Из анализа выражения (3.15) следует, что решить непосредственно уравнение

    относительно трех неизвестных E x , E y , E z нельзя.

    Однако можно решить дифференциальные уравнения в частных производных Пуассона относительно одной неизвестной – потенциала U , а затем найти составляющие поля из уравнения (3.12). Что касается уравнения Лапласа, то, казалось бы, что при отсутствии зарядов его нет смысла рассматривать. Однако его решения очень важны тогда, когда можно задать граничные условия. В этом случае оно дает единственное решение для свободного пространства, если заданы значения полей на некоторой границе.

    ).
    Рис. 1.16 :
    Работа при перемещении единичного заряда из точки 1 в точку 2 равна E x d x . Та же работа равна ϕ 1 − ϕ 2 = − d ϕ . Приравнивая оба выражения, получим d ϕ = − e x d x . Аналогичное рассуждение применимо для осей Y и Z . В результате находим все три компоненты вектора E → :

    Она явно формула показывает несущественность аддитивной постоянной в определении потенциала: константа просто не влияет на результат дифференцирования.

    Можно дать инвариантное определение градиента, которое будет верно в произвольной криволинейной системе координат. Градиент функции ϕ (r →) есть вектор, направленный в сторону максимального возрастания функции, а его длина равна производной функции в том же направлении. Чтобы пояснить смысл такого определения, проведем из произвольной точки r → в каком-либо направлении единичный вектор s → . Проекция вектора A → ≡ grad ϕ на это направление есть A s = s → ⋅ A → = s → ⋅ grad ϕ . Но та же величина равна производной A s = ∂ ϕ ∕ ∂ s функции ϕ по направлению s → . В этом легко убедиться, проведя координатную ось в направлении вектора s → и повторив рассуждения начала параграфа. Таким образом,

    ∂ ϕ ∂ s = s → ⋅ grad ϕ .

    Производная функции в каком-либо направлении равна проекции градиента этой функции на то же направление. Ясно, что эта производная максимальна, когда это направление совпадает с направлением градиента.

    ▸ Задача 8.1

    Вычислить ковариантные и контравариантные компоненты толя точечного заряда в произвольной криволинейной системе координат. Выразить физические компоненты толя точечного заряда в произвольной ортогональной системе координат через коэффициенты Ламэ.

    Решение: Пусть x j — контравариантные координаты. Ковариантые компоненты E j = − ∂ ϕ ∕ ∂ x j вектора E → в этой системе координат находим по формуле

    E j = − ∂ ∂ x j q r = q r 2 ∂ r ∂ x j .

    Контравариантные компоненты E j находим по формуле

    E j = g j k E k ,

    гдепо паре повторяющихся индексов подразумевается суммирование. Напомним, что

    G j k = ∂ r → ∂ x j ⋅ ∂ r → ∂ x k

    есть метрический тензор, через который выражается элемент длины:

    (d r →) 2 = g j k d x j d x k .

    Тензор g j k является обратным к нему:

    G j k g k l = δ l j .

    В ортогональной системе координат элемент длины выражается через коэффициенты Ламэ:

    (d r →) 2 = (h 1 d x 1) 2 + (h 2 d x 2) 2 + (h 3 d x 3) 2 ,

    а метрический тензор диагонален:

    G j k = h 1 2 0 0 0 h 2 2 0 0 0 h 3 2 .

    Обратный ему тензор также диагонален:

    G j k = (g j k) − 1 = 1 ∕ h 1 2 0 0 0 1 ∕ h 2 2 0 0 0 1 ∕ h 3 2 .

    Физические компоненты векторов определены в ортогональной системе координат, как среднее геометрическое произведения ковариантных и контравариантных компонент:

    E h 1 = E 1 E 1 = E 1 ∕ h 1 , E h 2 = E 2 E 2 = E 2 ∕ h 2 , E h 3 = E 3 E 3 = E 3 ∕ h 3 . ▸ Задача 8.2

    Записать толе точечного заряда в сферической и цилиндрической системах координат.

    Решение: В сферической системе координат (r , θ , α) с центром в месте нахождения заряда отлична от нуля только первая ковариантная компонента вектора поля: E 1 = q ∕ r 2 , так как ϕ = q ∕ r не зависит от θ и α . Из всех коэффициентов Ламэ ( h 1 = 1 , h 2 = r , h 3 = r sin θ ) именно h 1 равен 1, поэтому ковариантная, контравариантная и физическая компоненты все равны друг другу: E 1 = E 1 = E r = q ∕ r 2 .

    В цилиндрической системе координат (ρ , α , z) также с центром в месте нахождения заряда имеем: h 1 = 1 , h 2 = ρ , h 3 = 1 , r = ρ 2 + z 2 . Дифференцируя ϕ = q ∕ r , вычисляем ковариантные компоненты поля, и затем вновь приходим к выводу, что соответствующие ковариантная, контравариантная и физическая компоненты все равны: E ρ = (q ∕ r 2) (ρ ∕ r) , E α = 0 , E z = (q ∕ r 2) (z ∕ r) .