Уход и... Инструменты Дизайн ногтей

Системе другие методы обследования рентгенография. Рентген: методы и виды исследования. Государственное автономное профессиональное

План :

1) Рентгенологические исследования. Сущность рентгенологических методов исследования. Методы рентгеновского исследования: рентгеноскопия , рентгенография, флюорография , рентгенотомография, компьютерная томография . Диагностическое значение рентгенологических исследований. Роль медицинской сестры в подготовке к рентгеновским исследованиям. Правила подготовки пациента к рентгеноскопии и рентгенографии желудка и 12-перстной кишки, бронхографии, холецистографии и холангиографии, ирригоскопии и графии, обзорной рентгенографии почек и экскреторной урографии.

Рентгенологическое исследование почечных лоханок (пиелография) проводится с помощью урографина, вводимого внутривенно. Рентгенографическое исследование бронхов (бронхография) проводится после распыления в бронхах контрастного вещества — йодолипола. Рентгеновское исследование сосудов (ангиография) осуществляется с помощью кардиотраста, вводимого внутривенно. В некоторых случа-ях контрастирование органа производится за счет воздуха, который вводится в окружающую ткань или полость. На-пример, при рентгеновском исследовании почек, когда есть подозрение на опухоль почки, вводится воздух в околопочечную клетчатку (пневморен); для обнаружения прорастания опухолью стенок желудка воздух вводится в брюшнуюполость, т. е. исследование проводится в условиях искус-ственного пневмоперитонеума.

Томография - послойная рентгенография. При томо-графии благодаря движению во время съемки с определен-ной скоростью рентгеновской трубки на пленке получа-ется резким изображение только тех структур, которые расположены на определенной, заранее заданной глуби-не. Тени органов, расположенных на меньшей или боль-шей глубине, получаются смазанными и не накладываются на основное изображение. Томография облегчает выявле-ние опухолей, воспалительных инфильтратов и других па-тологических образований. На томограмме указывается в сантиметрах — на какой глубине, считая от спины, сделан снимок: 2, 4, 6, 7, 8 см.

Одной из наиболее совершенных методик, дающих дос-товерную информацию, является компьютерная томогра-фия , позволяющая благодаря использованию ЭВМ диффе-ренцировать ткани и изменения в них, очень незначительно различающиеся по степени поглощения рентгеновского из-лучения.

Накануне любого инструментального исследования необходимо проинформировать в доступной форме больного о сути предстоящего исследования, необходимости его проведения и получить согласие на проведение этого исследования в письменном виде.

Подготовка больного к рентгенологическому исследованию желудка и двенадцатиперстной кишки. Это метод исследования, основанный на просвечивании рентгеновскими лучами полых органов с применением контрастного вещества (сульфата бария), позволяющий определить форму, величину, положение, подвижность желудка и 12-перстной кишки, локализацию язвы, опухоли, оценить рельеф слизистой оболочки и функциональное состояние желудка (его эвакуаторную способность).

Перед исследованием необходимо:

1. Провести инструктаж больного по следующему плану:

а) за 2-3 дня до исследования необходимо исключить из рациона газообразующие продукты (овощи, фрукты, черный хлеб, молоко);

б) накануне исследования в 18 оо - легкий ужин;

в) предупредить, что исследование проводится натощак, поэтому накануне исследования больной не должен есть и пить, принимать медикаменты и курить.

2. В случае упорных запоров по назначению врача вечером, накануне исследования, ставится очистительная клизма.

5. С целью контрастирования пищевода, желудка и 12-типерстной кишки - в рентгенологическом кабинете больной выпивает водную взвесь сульфата бария.

Выполняется с цельюдиагностики заболеваний желчного пузыря и желчевыводящих путей. Необходимо предупредить больного о возможности появления тошноты и жидкого стула как реакции на прием контрастного вещества. Нужно взвесить больного и рассчитать дозу контрастного вещества.

Проводится инструктаж больного по следующей схеме:

а) накануне исследования в течение трёх дней больной соблюдает диету без высокого содержания клетчатки (исключить капусту, овощи, хлеб грубого помола);

б) за 14 - 17 часов до исследования больной принимает контрастное вещество дробно (по 0,5 грамма) в течение часа каждые 10 минут, запивая сладким чаем;

в) в 18 оо - легкий ужин;

г) вечером за 2 часа до сна, если больной не может освободить кишечник естественным путем, поставить очистительную клизму;

д) утром в день исследования, больной должен натощак явиться в рентгенкабинет (не пить, не есть, не курить, не принимать лекарственные вещества). Взять с собой 2 сырых яйца. В рентгенкабинете делаются обзорные снимки, после чего больной принимает желчегонный завтрак (2 сырых яичных желтка или раствор сорбита (20г на стакан кипяченой воды) для желчегонного эффекта). Спустя 20 минут после приема желчегонного завтрака выполняется серия обзорных снимков через определенные промежутки времени в течение 2-х часов.

Подготовка больного к холеграфии (рентгенологическое исследование желчного пузыря желчевыводящих путей после внутривенного введения контрастного вещества).

1. Выяснить аллергологический анамнез (непереносимость препаратов йода). За 1 - 2 дня до исследования провести пробу на чувствительность к контрастному веществу. Для этого 1 мл контрастного вещества, подогретого до t=37-38 о С, ввести внутривенно, осуществлять наблюдение за состоянием больного. Более простой способ - это прием внутрь йодистого калия по столовой ложке 3 раза в день. При положительной аллергопробе появляется сыпь, зуд и т.д. В случае отсутствия реакции на введенное контрастное вещество продолжить подготовку больного к исследованию

2. Перед исследованием провести инструктаж больного по следующему плану:

2 - 3 дня до исследования - бесшлаковая диета.

В 18 оо - легкий ужин.

За 2 часа до сна - очистительная клизма, если больной не может освободить кишечник естественным путем.

- Исследование проводится натощак.

3. В рентгенкабинете ввести внутривенно медленно в течение 10 минут 20-30 мл контрастного вещества, подогретого до t = 37-38 0 С.

4. Больному выполняется серия обзорных снимков.

5. Обеспечить контроль за состоянием больного в течение суток после выполнения исследования с целью исключения замедленного типа аллергических реакций.

Подготовка больного к бронхографии и бронхоскопии .

Бронхография - исследование дыхательных путей, позволяющее получить рентгенографически изображение трахеи и бронхов после введения в них контрастного вещества с помощью бронхоскопа. Бронхоскопия - инструментальный, эндоскопический метод исследования трахеи и бронхов, позволяющий произвести осмотр слизистой оболочки трахеи, гортани, провести забор содержимого или промывных вод бронхов для бактериологического, цитологического и иммунологического исследований, а также проведение лечения.

1. Для исключения идиосинкразии к йодолиполу назначается однократно 1столовая ложка данного препарата внутрь за 2-3 дня до исследования и в течение этих 2-3-х дней больной принимает 0,1% раствор атропина по 6-8 капель 3 раза в день).

2. Если бронхография назначена женщине - предупредить, чтобы на ногтях не было лака, а на губах - помады.

3. Накануне вечером по назначению врача с седативной целью больному принять 10 мг седуксена (при нарушении сна - снотворное).

4. За 30-40 минут до выполнения манипуляции провести премедикацию по назначению врача: ввести подкожно 1мл - 0,1% раствора атропина и 1мл 2% раствора промедола (оформить запись в истории болезни и журнале учета наркотических средств).

Подготовка больного к рентгенологическому исследованию толстого кишечника (ирригоскопия, ирригография) , которое позволяет получить представление о длине, положении, тонусе, форме толстой кишки, выявить нарушения моторной функции.

1. Провести инструктаж больного по следующей схеме:

а) за три дня до исследования назначается бесшлаковая диета;б)если больного беспокоит вздутие кишечника, то можно порекомендовать в течение трех дней принимать настой ромашки, карболен или ферментные препараты;

в) накануне исследования в 15-16 часов больной получает 30 г касторового масла (при отсутствии поноса);

г) в 19 00 - легкий ужин; д) в 20 00 и 21 00 накануне исследования проводятся очистительные клизмы до эффекта «чистой воды»;

е) утром в день исследования не позднее, чем за 2 часа до ирригоскопии выполняются 2 очистительные клизмы с интервалом в один час;

ж) в день исследования больной не должен пить, есть, курить и принимать медикаменты. С помощью кружки Эсмарха в кабинете медсестрой вводится водная взвесь сульфата бария.

Подготовка больного к рентгенологическому исследованию почек (обзорный снимок, экскреторная урография).

1. Провести инструктаж по подготовке больного к исследованию:

Исключить из питания газообразующие продукты (овощи, фрукты, молочные, дрожжеподобные продукты, черный хлеб, фруктовые соки) в течение 3 дней до исследования.

Принимать при метеоризме по назначению врача активированный уголь.

Исключить прием пищи за 18-20 часов до исследования.

2. Накануне вечером около 22 00 часов и утром за 1,5-2 часа до исследования поставить очистительные клизмы

3. Предложить больному освободить мочевой пузырь непосредственно перед исследованием.

В рентгенологическом кабинете врач-рентгенолог выполняет обзорный снимок брюшной полости. Медицинская сестра осуществляет медленное (в течение 5-8 минут), постоянно контролируя самочувствие больного, введение контрастного вещества. Врачом- рентгенологом выполняется серия снимков.

Государственное автономное профессиональное

Образовательное учреждение Саратовской области

«Саратовский областной базовый медицинский колледж»

Курсовая работа

Роль фельдшера в подготовке пациентов к рентгенологическим методам исследования

Специальность: Лечебное дело

Квалификация: фельдшер

Студентка:

Малкина Регина Владимировна

Руководитель:

Евстифеева Татьяна Николаевна


Введение………………………………………………………………… 3

Глава 1. История развития рентгенологии как науки………………… 6

1.1.Рентгенология в России…………………………………………….. 8

1.2. Рентгенологические методы исследования……………………….. 9

Глава 2.Подготовка пациента к рентгенологическим методам

исследования…………………………………………………………….. 17

Заключение………………………………………………………………. 21

Список используемой литературы……………………………………... 22

Приложения……………………………………………………………… 23


Введение

Сегодня рентгенодиагностика получает новое развитие. Используя вековой опыт традиционных рентгенологических методик и вооружившись новыми цифровыми технологиями, лучевая диагностика по-прежнему лидирует в диагностической медицине.

Рентген представляет собой проверенный временем и при этом вполне современный способ исследования внутренних органов пациента с высокой степенью информативности. Рентгенография может быть главным или одним из методов исследования больного с целью установления правильного диагноза или выявления начальных стадий некоторых заболеваний, протекающих без симптомов.

Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.

Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.

В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.

Рентгенологические методы исследования человеческого организма являются одними из наиболее популярных методов исследования и используются для изучения строения и функции большинства органов и систем нашего тела. Несмотря на то, что доступность современных методов компьютерной томографии с каждым годом увеличивается, традиционная рентгенография по-прежнему широко востребована.

Сегодня трудно себе представить, что медицина использует этот метод чуть более ста лет. Нынешним врачам, «избалованным» КТ (компьютерной томографией) и МРТ (магнито-резонансной томографией) трудно даже предположить, что можно работать с больным без возможности «заглянуть внутрь» живого человеческого тела.

Однако история метода действительно берет свое начало всего лишь в 1895 году, когда Вильгельм Конрад Рентген впервые обнаружил затемнение фотопластинки под действием рентгеновского излучения. В дальнейших экспериментах с различными объектами ему удалось получить на фотопластинке изображение костного скелета кисти.

Этот снимок, а затем и метод стал первым в мире методом медицинской визуализации. Задумайтесь: до этого нельзя было прижизненно, без вскрытия (не инвазивно) получить изображение органов и тканей. Новый метод стал громадным прорывом в медицине и моментально распространился по миру. В России первый рентгеновский снимок был сделан 1896 году.

В настоящее время рентгенография остается основным методом диагностики поражений костно-суставной системы. Кроме того, рентгенография используется при исследованиях легких, желудочно-кишечного тракта, почек и т. д.

Целью данной работы является показать роль фельдшера в подготовке пациента к рентгенологическим методам исследования.

Задача данной работы: Раскрыть историю рентгенологии, её появления в России, рассказать о самих рентгенологических методах исследования, и особенности подготовки по некоторым из них.

Глава 1.

Рентгенология, без которой невозможно представить себе современную медицину, зародилась благодаря открытию немецким физиком В.К. Рентгеном проникающего излучения. Эта отрасль, как ни какая другая, внесла в развитие медицинской диагностики неоценимый по значимости вклад.

В 1894 г немецкий физик В. К. Рентген (1845 - 1923) приступает к экспериментальным исследованиям электрических разрядов в стеклянных вакуумных трубках. Под действием этих разрядов в условиях сильно разреженного воздуха образуются лучи, известные как катодные.

Занимаясь их изучением, Рентген случайно обнаружил свечение в темноте флюоресцирующего экрана (картона, покрытого платиносинеродистым барием) под действием катодного излучения, исходящего из вакуумной трубки. Чтобы исключить воздействие на кристаллы платиносинеродистого бария видимого света, исходящего от включенной трубки, ученый обернул ее в черную бумагу.

Свечение продолжалось, как и тогда, когда ученый отодвинул экран почти на два метра от трубки, поскольку предполагалось, что катодные лучи проникают слой воздуха только в несколько сантиметров. Рентген сделал заключение, что либо ему удалось получить катодные лучи, обладающие уникальными способностями, либо он открыл действие неизвестных лучей.

Около двух месяцев ученый занимался исследованием новых лучей, которые он назвал Х-лучами. В процессе изучения взаимодействия лучей с разными по плотности предметами, которые Рентген подставлял по ходу излучения, он обнаружил проникающую способность этого излучения. Степень ее зависела от плотности предметов и проявлялась в интенсивности свечения флюоресцирующего экрана. Это свечение то ослабевало, то усиливалось и не наблюдалось вовсе, когда была подставлена свинцовая пластинка.

В конце концов, ученый подставил по ходу лучей собственную кисть и увидел на экране яркое изображение костей кисти на фоне более слабого изображения ее мягких тканей. Для фиксации теневых изображений предметов Рентген заменил экран фотопластинкой. В частности, он получил на фотопластинке изображение собственной кисти, которую облучал в течение 20 минут.

Рентген занимался исследованием Х-лучей с ноября 1895 г по март 1897 г. За это время ученый опубликовал три статьи с исчерпывающим описанием свойств рентгеновского излучения. Первая статья «О новом типе лучей» появилась в журнале Вюрцбургского физико-медицинского общества 28 декабря 1895 г.

Таким образом, было зарегистрировано изменение фотопластинки под воздействием Х-лучей, что положило начало развитию будущей рентгенографии.

Следует отметить, что многие исследователи занимались изучением катодных лучей до В. Рентгена. В 1890 г в одной из американских лабораторий был случайно получен снимок с рентгеновским изображением лабораторных предметов. Есть сведения, что изучением тормозного излучения занимался Никола Тесла и зафиксировал результаты этого исследования в дневниковых записях в 1887 г. В 1892 году Г. Герц и его ученик Ф. Ленард, а так же разработчик катодно-лучевой трубки В. Крукс в своих экспериментах отмечали действие катодного излучения на почернение фотопластинок.

Но все эти исследователи не придавали серьезного значения новым лучам, не занимались их дальнейшим изучением и не публиковали свои наблюдения. Поэтому открытие Х-лучей В. Рентгеном можно считать независимым.

Заслуга Рентгена еще и в том, что он сразу понял важность и значимость открытых им лучей, разработал метод их получения, создал конструкцию рентгеновской трубки с алюминиевым катодом и платиновым анодом для производства интенсивного рентгеновского излучения.

За это открытие в 1901 г В. Рентгену была присуждена Нобелевская премия по физике, первая в этой номинации.

Революционное открытие Рентгена совершило переворот в диагностике. Первые рентгеновские аппараты были созданы в Европе уже в 1896 г. В этом же году компания KODAK открыла производство первых рентгеновских пленок.

С 1912 г начинается период стремительного развития рентгенодиагностики во всем мире, и рентгенология начинает занимать важное место в медицинской практике.

Ренгенология в России.

Первый рентгеновский снимок в России был сделан в 1896 г. В этом же году по инициативе российского ученого А. Ф. Иоффе, ученика В. Рентгена, впервые было введено название «рентгеновские лучи».

В 1918 г в России открылась первая в мире специализированная рентгенологическая клиника, где рентгенография применялась для диагностики все большего числа заболеваний, особенно легочных.

В 1921 г в Петрограде начинает работу первый в России рентгено-стоматологический кабинет. В СССР правительство выделяет необходимые средства на развитие производства рентгеновского оборудования, которое выходит на мировой уровень по качеству. В 1934 г был создан первый отечественный томограф, а в 1935 г - первый флюорограф.

«Без истории предмета нет теории предмета» (Н. Г. Чернышевский). История пишется не только с познавательной целью. Вскрывая законо­мерности развития рентгено-радиологии в прошлом, мы приобретаем возможность лучше, правильнее, увереннее, активнее строить будущее этой науки.

Рентгенологические методы исследования

Все многочисленные методики рентгенологического исследования разделяют на общие и специальные.

К общим относятся методики, предназначенные для изучения любых анатомических областей и выполняемые на рентгеновских аппаратах общего назначения (рентгеноскопия и рентгенография).

К общим следует отнести и ряд методик, при которых также возможно изучение любых анатомических областей, но требуются либо особая аппаратура (флюорография, рентгенография с прямым увеличением изображения), либо дополнительные приспособления к обычным рентгеновским аппаратам (томография, электрорентгенография). Иногда эти методики называют также частными.

К специальным методикам относятся те, которые позволяют получить изображение на специальных установках, предназначенных для исследования определенных органов и областей (маммография, ортопантомография). К специальным методикам относится также большая группа рентгенокон-трастных исследований, при которых изображения получаются с применением искусственного контрастирования (бронхография, ангиография, экскреторная урография и др.).

Общие методики рентгенологического исследования

Рентгеноскопия - методика исследования, при которой изображение объекта получают на светящемся (флюоресцентном) экране в реальном масштабе времени. Некоторые вещества интенсивно флюоресцируют под влиянием рентгеновских лучей. Эту флюоресценцию используют в рентгенодиагностике, применяя картонные экраны, покрытые флюоресцирующим веществом.

Рентгенография - это методика рентгенологического исследования, при которой получается статическое изображение объекта, зафиксированное на каком-либо носителе информации. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др. На рентгенограммах можно получить изображение любой анатомической области. Снимки всей анатомической области (голова, грудь, живот) называют обзорными. Снимки с изображением небольшой части анатомической области, которая наиболее интересует врача, называют прицельными.

Флюорография - фотографирование рентгеновского изображения с флюоресцентного экрана на фотографическую пленку различного формата. Такое изображение всегда уменьшено.

Электрорентгенография - методика, при которой диагностическое изображение получают не на рентгеновской пленке, а на поверхности селеновой пластины с переносом на бумагу. Равномерно заряженная статическим электричеством пластина используется вместо кассеты с пленкой и в зависимости от разного количества ионизирующего излучения, попавшего в различные точки ее поверхности, по-разному разряжается. На поверхность пластины распыляют тонкодисперсный угольный порошок, который по законам электростатического притяжения распределяется по поверхности пластины неравномерно. На пластину накладывают лист писчей бумаги, и изображение переводится на бумагу в результате прилипания угольного порошка. Селеновую пластину в отличие от пленки можно использовать неоднократно. Методика отличается быстротой, экономичностью, не требует затемненного помещения. Кроме того, селеновые пластины в незаряженном состоянии индифферентны к воздействию ионизирующих излучений и могут быть использованы при работе в условиях повышенного радиационного фона (рентгеновская пленка в этих условиях придет в негодность).

Специальные методики рентгенологического исследования.

Маммография - рентгенологическое исследование молочной железы. Оно выполняется для изучения структуры молочной железы при обнаружении в ней уплотнений, а также с профилактической целью.

Методики с применением искусственного контрастирования:

Диагностический пневмоторакс - рентгенологическое исследование органов дыхания после введения газа в плевральную полость. Выполняется с целью уточнения локализации патологических образований, расположенных на границе легкого с соседними органами. С появлением метода КТ применяется редко.

Пневмомедиастинография - рентгенологическое исследование средостения после введения газа в его клетчатку. Выполняется с целью уточнения локализации выявленных на снимках патологических образований (опухолей, кист) и их распространения на соседние органы. С появлением метода КТ практически не применяется.

Диагностический пневмоперитонеум - рентгенологическое исследование диафрагмы и органов полости живота после введения газа в полость брюшины. Выполняется с целью уточнения локализации патологических образований, выявленных на снимках на фоне диафрагмы.

Пневморетроперитонеум - методика рентгенологического исследования органов, расположенных в забрюшинной клетчатке, путем введения в забрюшин-ную клетчатку газа с целью лучшей визуализации их контуров. С внедрением в клиническую практику УЗИ, КТ и МРТ практически не применяется.

Пневморен - рентгенологическое исследование почки и рядом расположенного надпочечника после введения газа в околопочечную клетчатку. В настоящее время выполняется крайне редко.

Пневмопиелография - исследование полостной системы почки после заполнения ее газом через мочеточниковый катетер. В настоящее время используется преимущественно в специализированных стационарах для выявления внутрилоханочных опухолей.

Пневмомиелография - рентгенологическое исследование подпаутинного пространства спинного мозга после его контрастирования газом. Используется для диагностики патологических процессов в области позвоночного канала, вызывающих сужение его просвета (грыжи межпозвоночных дисков, опухоли). Применяется редко.

Пневмоэнцефалография - рентгенологическое исследование ликворных пространств головного мозга после их контрастирования газом. После внедрения в клиническую практику КТ и МРТ выполняется редко.

Пневмоартрография - рентгенологическое исследование крупных суставов после введения в их полость газа. Позволяет изучить суставную полость, выявить в ней внутрисуставные тела, обнаружить признаки повреждения менисков коленного сустава. Иногда ее дополняют введением в полость сустава

водорастворимого РКС. Достаточно широко используется в лечебных учреждениях при невозможности выполнения МРТ.

Бронхография - методика рентгенологического исследования бронхов после их искусственного контрастирования РКС. Позволяет выявить различные патологические изменения бронхов. Широко используется в лечебных учреждениях при недоступности КТ.

Плеврография - рентгенологическое исследование плевральной полости после ее частичного заполнения контрастным препаратом с целью уточнения формы и размеров плевральных осумкований.

Синография - рентгенологическое исследование околоносовых пазух после их заполнения РКС. Применяется тогда, когда возникают затруднения в интерпретации причины затенения пазух на рентгенограммах.

Дакриоцистография - рентгенологическое исследование слезных путей после их заполнения РКС. Применяется с целью изучения морфологического состояния слезного мешка и проходимости слезноносового канала.

Сиалография - рентгенологическое исследование протоков слюнных желез после их заполнения РКС. Применяется для оценки состояния протоков слюнных желез.

Рентгеноскопия пищевода, желудка и двенадцатиперстной кишки - проводится после их постепенного заполнения взвесью бария сульфата, а при необходимости - и воздухом. Обязательно включает в себя полипозиционную рентгеноскопию и выполнение обзорных и прицельных рентгенограмм. Широко применяется в лечебных учреждениях для выявления различных заболеваний пищевода, желудка и двенадцатиперстной кишки (воспалительно-деструктивные изменения, опухоли и др.) (см. рис. 2.14).

Энтерография - рентгенологическое исследование тонкой кишки после заполнения ее петель взвесью бария сульфата. Позволяет получить информацию о морфологическом и функциональном состоянии тонкой кишки (см. рис. 2.15).

Ирригоскопия - рентгенологическое исследование толстой кишки после ретроградного контрастирования ее просвета взвесью бария сульфата и воздухом. Широко применяется для диагностики многих заболеваний толстой кишки (опухоли, хронический колит и т. д.) (см. рис. 2.16).

Холецистография - рентгенологическое исследование желчного пузыря после накопления в нем контрастного вещества, принятого внутрь и выделенного с желчью.

Выделительная холеграфия - рентгенологическое исследование желчных путей, контрастированных с помощью йодсодержащих препаратов, вводимых внутривенно и выделяемых с желчью.

Холангиография - рентгенологическое исследование желчных протоков после введения РКС в их просвет. Широко используется для уточнения морфологического состояния желчных протоков и выявления в них конкрементов. Может выполняться во время оперативного вмешательства (ин-траоперационная холангиография) и в послеоперационном периоде (через дренажную трубку).

Ретроградная холангиопанкреатикография - рентгенологическое исследование желчных протоков и протока поджелудочной железы после введения в их просвет контрастного препарата под рентгеноэндоскопическим ко Экскреторная урография - рентгенологическое исследование мочевых органов после внутривенного введения РКС и выделения его почками. Широко распространенная методика исследования, позволяющая изучать морфологическое и функциональное состояние почек, мочеточников и мочевого пузыря.

Ретроградная уретеропиелография - рентгенологическое исследование мочеточников и полостных систем почек после заполнения их РКС через мочеточниковый катетер. По сравнению с выделительной урографией позволяет получить более полную информацию о состоянии мочевых путей в результате их лучшего заполнения контрастным препаратом, вводимым под небольшим давлением. Широко применяется в специализированных урологических отделениях.

Цистография - рентгенологическое исследование мочевого пузыря, заполненного РКС.

Уретрография - рентгенологическое исследование мочеиспускательного канала после его заполнения РКС. Позволяет получить информацию о проходимости и морфологическом состоянии уретры, выявить ее повреждения, стриктуры и т. д. Применяется в специализированных урологических отделениях.

Гистеросальпингография - рентгенологическое исследование матки и маточных труб после заполнения их просвета РКС. Широко используется в первую очередь для оценки проходимости маточных труб.

Позитивная миелография - рентгенологическое исследование под-паутинных пространств спинного мозга после введения водорастворимых РКС. С появлением МРТ применяется редко.

Аортография - рентгенологическое исследование аорты после введения в ее просвет РКС.

Артериография - рентгенологическое исследование артерий с помощью введенных в их просвет РКС, распространяющихся по току крови. Некоторые частные методики артериографии (коронарография, каротидная ангиография), будучи высокоинформативными, в то же время технически сложны и небезопасны для пациента, в связи с чем применяются только в специализированных отделениях.

Кардиография - рентгенологическое исследование полостей сердца после введения в них РКС. В настоящее время находит ограниченное применение в специализированных кардиохирургических стационарах.

Ангиопульмонография - рентгенологическое исследование легочной артерии и ее ветвей после введения в них РКС. Несмотря на высокую информативность, небезопасна для пациента, в связи с чем в последние годы предпочтение отдается компьютерно-томографической ангиографии.

Флебография - рентгенологическое исследование вен после введения в их просвет РКС.

Лимфография - рентгенологическое исследование лимфатических путей после введения в лимфатическое русло РКС.

Фистулография - рентгенологическое исследование свищевых ходов после их заполнения РКС.

Вульнерография - рентгенологическое исследование раневого канала после заполнения его РКС. Чаще применяется при слепых ранениях живота, когда другие методы исследования не позволяют установить, является ранение проникающим или непроникающим.

Кистография - контрастное рентгенологическое исследование кист различных органов с целью уточнения формы и размеров кисты, ее топографического расположения и состояния внутренней поверхности.

Дуктография - контрастное рентгенологическое исследование млечных протоков. Позволяет оценить морфологическое состояние протоков и выявить небольшие опухоли молочной железы с внутрипротоковым ростом, неразличимые на маммограммах.

Глава 2.

Общие правила подготовки пациента:

1.Психологическая подготовка. Пациент должен понимать важность предстоящего исследования, должен быть уверен в безопасности предстоящего исследования.

2.Перед проведением исследования необходимо позаботится о том, чтобы сделать орган более доступным во время исследования. Перед эндоскопическими исследованиями необходимо освободить исследуемый орган от содержимого. Органы пищеварительной системы исследуются натощак: в день исследования нельзя пить, есть, принимать лекарства, чистить зубы, курить. Накануне предстоящего исследования разрешен легкий ужин, не позднее 19.00. Перед исследованием кишечника назначается бесшлаковая диета (№4) в течение 3-х дней, лекарственные препараты для уменьшения газообразования (активированный уголь) и улучшения пищеварения (ферментные препараты), слабительные средства; клизмы накануне исследования. По особому назначению врача проводится примедикация (введение атропина и обезболивающих препаратов). Очистительные клизмы ставятся не позднее за 2 часа до предстоящего исследования, так как изменяется рельеф слизистой оболочки кишечника.

R-скопия желудка:

1. За 3 дня до исследования из питания пациента исключается продукты вызывающие газообразование (диета 4)

2. Вечером, не позднее 17 часов легкий ужин: творог, яйцо, кисель, манная каша.

3. Исследование проводится строго натощак (не пить, не есть, не курить, не чистить зубы).

Ирригоскопия:

1. За 3 дня до исследования исключить из питания пациента продукты вызывающие газообразовании (бобовые, фрукты, овощи, соки, молоко).

2. Если пациент беспокоит метеоризм, назначают активированный уголь в течение 3-х дней 2-3 раза в день.

3. За сутки до исследования перед обедом дают пациенту 30,0 касторового масла.

4. Накануне вечером легкий ужин не позднее 17 часов.

5. В 21 и 22 часа вечером накануне сделать очистительные клизмы.

6.Утром в день исследования в 6 и 7 часов очистительные клизмы.

7. Разрешается легкий завтрак.

8. За 40мин. – 1 час до исследования ввести газоотводную трубку на 30мин.

Холецистография:

1. В течение 3-х дней исключается продукты, вызывающие метеоризм.

2. Накануне исследования легкий ужин не позднее 17 часов.

3. С 21.00 до 22.00 часов накануне больной применяет контрастный препарат (биллитраст) по инструкции зависимости от веса тела.

4. Исследования проводятся натощак.

5. Больного предупреждают, что может возникнуть жидкий стул, тошнота.

6. В R – кабинет пациент должен принести с собой 2 сырых яйца для желчегонного завтрака.

Внутривенная холеграфия:

1. 3 дня соблюдение диеты с исключением газообразующих продуктов.

2. Выяснить у пациента, нет ли аллергии на йод (насморк, сыпь. зуд кожи, рвота). Сообщить врачу.

3. Провести пробу за 24 часа до исследования, для чего в/в ввести 1-2мл билигноста на 10мл физиологического раствора.

4. За сутки до исследования отменяется желчегонные препараты.

5. Вечером 21 и 22 часа очистительная клизма и утром в день исследования за 2 часа – очистительная клизма.

6. Исследование проводится натощак.

Урография:

1. 3 дня бесшлаковая диета (№ 4)

2. За сутки до исследования проводится проба на чувствительность к контрастному препарату.

3. Вечером накануне в 21.00 и 22.00 очистительные клизмы. Утром в 6.00 и 7.00 очистительные клизмы.

4. Исследование проводится натощак, перед исследованием пациент освобождает мочевой пузырь.

Рентгенография:

1.Необходимо максимально освободить исследуемую область от одежды.

2.Область исследования также должна быть свободна от повязок, пластырей, электродов и других посторонних предметов, которые могут снизить качество получаемого изображения.

3.Убедиться, что отсутствуют различные цепочки, часы, ремень, заколки, если они расположены в области, которая будет подвергаться изучению.

4.Открытой оставляют только интересующую доктора область, остальное тело закрывают специальным защитным фартуком, экранирующим рентгеновские лучи.

Заключение.

Таким образом в настоящие время рентгенологические методы исследования нашли широкое диагностическое применение, и стал неотъемлемой частью клинического обследования больных. Также неотъемлемой частью является и подготовка пациента к рентгенологическим методам исследования, ведь каждое из них имеет свои особенности, при невыполнении которых, может привести к затруднению постановки диагноза.

Одна из главных частей подготовки пациента к рентгенологическим методам исследования является психологическая подготовка. Пациент должен понимать важность предстоящего исследования, должен быть уверен в безопасности предстоящего исследования. Ведь пациент в праве отказаться от данного исследования, что во многом осложнит постановку диагноза.

Литература

Антонович В.Б. "Рентгенодиагностика заболеваний пищевода, желудка, кишечника". – М., 1987.

Медицинская рентгенология. - Линденбратен Л. Д., Наумов Л.Б. - 2014г.;

Медицинская радиология (основы лучевой диагностики и лучевой терапии) - Линденбратен Л. Д., Королюк И.П. - 2012г.;

Основы медицинской рентгенотехники и методики рентгенологического исследования в клинической практике /Коваль Г.Ю., Сизов В.А, Загородская М.М. и др.; Под ред. Г. Ю.Коваль.-- К.: Здоровья, 2016г.

Пытель А.Я., Пытель Ю.А. "Рентгенодиагностика урологических заболеваний" – М., 2012.

Рентгенология: атлас / под ред. А. Ю. Васильева. - М. : ГЭОТАР-Медиа, 2013.

Руцкий А.В., Михайлов А.Н. "Рентгенодиагностический атлас". – Минск. 2016.

Сиваш Э.С., Сальман М.М. «Возможности рентгенологического метода», Москва, Изд. «Наука», 2015г.

Фанарджян В.А. " Рентгенодиагностика заболеваний пищеварительного тракта". – Ереван, 2012.

Щербатенко М.К., Береснева З.А. "Неотложная рентгенодиагностика острых заболеваний и повреждений органов брюшной полости". – М.,2013.

Приложения

Рисунок 1.1.Процедура рентгеноскопии.

Рисунок 1.2. Проведение ренгенографии.

Рисунок 1.3. Рентгенография грудной клетки.

Рисунок 1.4. Проведение флюорографии.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19

Основные методы рентгенологического исследования - рентгеноскопия и рентгенография

Цель занятия. Освоить основные методы рентгенодиагностики - рентгеноскопию и рентгенографию.

Объекты исследования и оборудование. Рентгеновский аппарат, индивидуальные средства защиты, экран для просвечивания или криптоскоп, рентгеновские кассеты, усиливающие экраны, рентгеновская пленка, оборудованная фотокомната с необходимыми растворами и принадлежностями, сушильный шкаф для сушки пленки, негатоскоп, обследуемое животное.

Общая характеристика методов рентгенодиагностики. Любое рентгенологическое исследование заключается в получении рентгеновского изображения объекта и последующем его изучении. В самом общем виде в систему рентгенологического исследования входят: источник излучения, объект исследования, приемник излучения и специалист, выполняющий исследование.

Источником излучения служит рентгеновская трубка; объектом исследования - больное или, в некоторых случаях, здоровое животное. В качестве приемника излучения используют приспособления или приборы, которые преобразуют энергию неоднородного рентгеновского пучка, проходящего сквозь тело животного, в изображение.

Простейшим приемником служит флюороскопический экран для просвечивания (метод рентгеноскопии). Экран покрыт специальным составом (люминофором), который светится под воздействием рентгеновского излучения. В качестве люминофора используют платиносинеродистый барий, активированные сульфиды цинка, кадмия и др.

Приемником может быть также рентгеновская пленка, в покрывающей эмульсии которой содержатся галоидные соединения серебра. Рентгеновское излучение способно разлагать эти соединения, поэтому после проявления и фиксирования экспонированной пленки на ней возникает изображение объекта (на этом основан метод рентгенографии - получения рентгеновского снимка).

Вместо пленки можно использовать селеновую пластину, заряженную электростатическим электричеством. Под действием рентгеновского излучения в разных частях селенового слоя изменяется электрический потенциал и формируется скрытое изображение, которое с помощью специального устройства проявляют и переносят на бумагу. Подобный метод исследования получил название электрорентгенографии (ксерорадиография).

Самым чувствительным приемником излучения служит набор сцинтилляционных детекторов или ионизационных камер. Они регистрируют интенсивность излучения во всех частях рентгеновского пучка; информация поступает в электронное устройство, соединенное с компьютером. На основании математической обработки полученных данных на телевизионном дисплее возникает изображение объекта. Этот метод получил название компьютерной томографии.

С использования одного из указанных методов всегда начинают рентгенологическое исследование.

Рентгеноскопия. При просвечивании изображение объекта получают на флюороскопическом экране. Пучок излучения, выходящий из рентгеновской трубки, проходит через тело животного и попадает на обратную сторону экрана, вызывая при этом слабое свечение его светочувствительного слоя, обращенного к врачу. Изображение можно рассматривать лишь в затемненном помещении после 10-15-минутной адаптации. Ветеринарный врач-рентгенолог обязан использовать средства защиты: экран, покрытый просвинцованным стеклом, предохраняет от облучения глаза; фартук и перчатки из рентгенозащитного материала - туловище и руки; ширма из листового свинца или просвинцованной резины - нижнюю половину тела рентгенолога.

Методика просвечивания проста и экономична. С помощью рентгеноскопии наблюдают за движением органов и перемещением в них контрастного вещества, исследуя животное в различных положениях, пальпируя нужный участок тела. Благодаря перечисленным достоинствам рентгеноскопию применяют очень часто, однако у метода есть и существенные недостатки. Прежде всего не остается документа, который можно анализировать в дальнейшем. Кроме того, на флюороскопическом экране плохо различимы мелкие детали изображения и, наконец, рентгеноскопия сопряжена с гораздо большей лучевой нагрузкой на исследуемое животное и рентгенолога, чем рентгенография.

Для устранения этих недостатков был сконструирован специальный прибор - усилитель рентгеновского изображения (УРИ) с приемным телевизионным устройством (рис. 9.8), который воспринимает слабое свечение рентгеновского экрана, усиливает его в несколько тысяч раз, после чего рентгенолог может рассматривать изображение через монокуляр или же оно проецируется на передающую телевизионную трубку, а затем в приемное телевизионное устройство.

Рентгеноскопия с помощью УРИ и телевизионной техники получила название рентгенотелевизионного просвечивания, или рентгенотел евидения. Ее основные преимущества: животных просвечивают в незатемненном помещении; значительно повышается яркость изображения, что позволяет выявлять мелкие детали объекта; снижается лучевая нагрузка на исследуемое животное и рентгенолога и, что очень важно, появляется возможность фотографировать с эк-

Рис. 9.8. Рентгенотелевизионная приставка: а - схема электронно-оптического усилителя: 1 - рентгеновский излучатель; 2 - объект исследования; 3 - входной флюоресцирующий экран с фотокатодом; 4 - выходной флюоресцирующий экран; 5- анод;

  • 6 - объектив; 7- защитное свинцовое стекло; 8- окуляр;
  • 6 - схема формирования видеомагнитной записи: 1 - рентгеновский излучатель; 2 - объект исследования; 3 - электронно-оптический усилитель; 4 - телекамера; 5- монитор; 6- видеомагнитофон;
  • 7 - видеомонитор

рана, записывать изображение на кино-, видеомагнитную пленку или диски.

Рентгенография. Это способ рентгеновского исследования, при котором изображение объекта получают на рентгеновской пленке путем прямого экспонирования пучком излучения. Рентгеновская

пленка чувствительна не только к рентгеновскому излучению, но и к видимому свету, поэтому ее вкладывают в кассету, предохраняющую от видимого света, но пропускающую рентгеновское излучение (рис. 9.9).

Пучок рентгеновского излучения направляют на исследуемую часть тела. Излучение, прошедшее через тело животного, попадает на пленку. Изображение становится видимым после обработки пленки (проявление, фиксирование). Готовый рентгеновский снимок рассматривают в проходящем свете на специальном приборе - не- гатоскопе (рис. 9.10). Снимок любой части тела устанавливают на негатоскопе таким образом, чтобы проксимальные отделы были обращены вверх; при изучении рентгенограмм, сделанных в боковых проекциях, дорсальная поверхность (или голова) должна быть слева, волярная (плантарная) - справа.

Рис. 9.9.

Рис. 9.10.

У рентгенографии много достоинств. Прежде всего метод прост и легко выполним. Снимать можно как в рентгеновском кабинете, так и непосредственно в операционной, стационаре и в полевых условиях с помощью переносных рентгеновских аппаратов. На снимке получается четкое изображение большинства органов. Некоторые из них, например кости, легкие, сердце, хорошо видны за счет естественной контрастности; другие четко проявляются на снимках после искусственного контрастирования. Снимки можно хранить долгое время, сопоставлять с предыдущими и последующими рентгенограммами, т.е. изучать динамику заболевания. Показания к рентгенографии очень широки - с нее начинают большинство рентгенологических исследований.

При рентгенографии необходимо соблюдать определенные правила: снимать каждый орган в двух взаимно перпендикулярных проекциях (обычно используют прямую и боковую); во время съемки максимально приблизить исследуемую часть тела к кассете с пленкой (тогда изображение получится наиболее четким и его размеры будут мало отличается от истинных размеров изучаемого органа).

Однако существует методика рентгенографии, при которой снимаемый объект, наоборот, помещают сравнительно далеко от пленки. В этих условиях из-за расходящегося рентгеновского пучка получается увеличенное изображение органа. Этот способ съемки - рентгенография с прямым увеличением изображения - сопряжен с использованием особых «острофокусных» рентгеновских трубок; его применяют, чтобы изучать мелкие детали.

Различают обзорные и прицельные рентгенограммы. На обзорных получают изображение всего органа, а на прицельных - только интересующей врача части.

Электрорентгенография (ксерорадиография). В этом случае рентгеновское изображение получают на полупроводниковых пластинах и затем переносят на бумагу.

При ксерорадиографии пучок рентгеновского излучения, прошедший через тело животного, попадает не на кассету с пленкой, а на высокочувствительную селеновую пластинку, заряженную перед съемкой статическим электричеством. Под влиянием излучения электрический потенциал пластины меняется на разных участках не одинаково, а в соответствии с интенсивностью потока рентгеновских квантов. Иначе говоря, на пластине возникает скрытое изображение из электростатических зарядов.

В дальнейшем селеновую пластину обрабатывают специальным проявочным порошком. Отрицательно заряженные частицы последнего притягиваются к тем участкам селенового слоя, на которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли свой заряд под действием рентгеновского излучения. Без всякой фотообработки и в кратчайший срок (за 30-60 с) на пластине можно увидеть рентгеновское изображение объекта. Элек- трорентгенографические приставки снабжены приспособлением, которое в течение 2-3 мин переносят изображение с пластинки на бумагу. После этого мягкой тканью снимают остатки проявочного порошка с пластины и вновь ее заряжают. На одной пластине можно получить более 1000 снимков, после чего она становится непригодной для электрорентгенографии.

Главное достоинство электрорентгенографии заключается в том, что с ее помощью быстро получают большое число снимков, не расходуя дорогостоящую рентгеновскую пленку, при обычном освещении и без «мокрого» фотопроцесса.

В нашей стране наибольшее распространение получили электро- рентгенографические аппараты ЭРГА-МП (ЭРГА-01) и ЭРГА-МТ (ЭРГА-02).

С развитием компьютерных технологий в рентгенографии появилась возможность практически моментально получать изображение, активировать его, хранить, восстанавливать и даже передавать изображение на большие расстояния в цифровом формате. Главные преимущества использования цифровой рентгенографии - доступность изображения сразу после съемки, уменьшение облучения в несколько раз по сравнению с традиционной пленочной технологией, короткая экспозиция (позволяющая избежать динамической нерезкости), полный отказ от расходных материалов и фотолаборатории, большие диагностические возможности, позволяющие выделять структуры тканей, увеличивать интересующий фрагмент и проводить измерения прямо на экране компьютера, а также возможность организовывать компактный архив в виде базы данных с моментальным и удобным поиском. При необходимости изображение может быть напечатано на специальной пленке или на бумаге.

Основный недостаток, ограничивающий использование цифровых рентгеновских систем в ветеринарии, - высокая стоимость оборудования и, возможно, некоторая потеря качества изображения по сравнению с традиционным.

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Уже более 100 лет известны лучи особого рода, занимающие большую часть спектра электромагнитных волн. 8 ноября 1895 г. профессор физики Вюрцбург-ского университета Вильгельм Конрад Рентген (1845-1923) обратил внимание на удивительное явление. Изучая в своей лаборатории работу электровакуумной (катодной) трубки, он заметил, что при подаче тока высокого напряжения на ее электроды находящийся рядом платино-синеродистый барий стал испускать зеленоватое свечение. Такое свечение люминесцирующих веществ под воздействием катодных лучей, исходящих из электровакуумной трубки, было к тому времени уже известно. Однако на столе Рентгена трубка во время опыта была плотно завернута в черную бумагу и хотя платино-синеродистый барий находился на значительном расстоянии от трубки, его свечение возобновлялось при каждой подаче электрического тока в трубку (см. рис. 2.1).

Рис.2.1. Вильгельм Конрад Рис. 2.2. Рентгенограмма кис-

Рентген (1845-1923) ти жены В К Рентгена Берты

Рентген пришел к выводу, что в трубке возникают какие-то не известные науке лучи, способные проникать через твердые тела и распространяться в воздухе на расстояния, измеряемые метрами. Первой рентгенограммой в истории человечества было изображение кисти жены Рентгена (см. рис. 2.2).

Рис. 2.3. Спектр электромагнитных излучений

Первое предварительное сообщение Рентгена «О новом виде лучей» было опубликовано в январе 1896 г. В трех последующих публичных докладах в 1896-1897 гг. он сформулировал все выявленные им свойства неизвестных лучей и указал на технику их появления.

В первые дни после опубликования открытия Рентгена его материалы были переведены на многие иностранные языки, в том числе и на русский. В Петербургском университете и Военно-медицинской академии уже в январе 1896 г. с помощью Х-лучей были выполнены снимки конечностей человека, а позже и других органов. Вскоре изобретатель радио А. С. Попов изготовил первый отечественный рентгеновский аппарат, который функционировал в Кронштадтском госпитале.

Рентген первым среди физиков в 1901 г. за свое открытие был удостоен Нобелевской премии, которая была ему вручена в 1909 г. Решением I Международного съезда по рентгенологии в 1906 г. Х-лучи названы рентгеновскими.

В течение нескольких лет во многих странах появились специалисты, посвятившие себя рентгенологии. В больницах появились рентгеновские отделения и кабинеты, в крупных городах возникли научные общества рентгенологов, на медицинских факультетах университетов организовались соответствующие кафедры.

Рентгеновские лучи являются одним из видов электромагнитных волн, которые в общеволновом спектре занимают место между ультрафиолетовыми лучами и γ-лучами. Они отличаются от радиоволн, инфракрасного излучения, видимого света и ультрафиолетового излучения меньшей длиной волны (см. рис. 2.3).

Скорость распространения рентгеновских лучей равна скорости света - 300 000 км/с.

В настоящее время известны следующие свойства рентгеновских лучей. Рентгеновские лучи обладают проникающей способностью. Рентген сообщал, что способность лучей к проникновению через различные среды обратно

пропорциональна удельному весу этих сред. Вследствие малой длины волны рентгеновские лучи могут проникать сквозь объекты, непроницаемые для видимого света.

Рентгеновские лучи способны поглощаться и рассеиваться. При поглощении часть рентгеновских лучей с наибольшей длиной волны исчезает, полностью передавая свою энергию веществу. При рассеивании часть лучей отклоняется от первоначального направления. Рассеянное рентгеновское излучение не несет полезной информации. Часть лучей полностью проходит через объект с изменением своих характеристик. Таким образом формируется невидимое изображение.

Рентгеновские лучи, проходя через некоторые вещества, вызывают их флюоресценцию (свечение). Вещества, обладающие этим свойством, называются люминофорами и широко применяются в рентгенологии (рентгеноскопия, флюорография).

Рентгеновские лучи оказывают фотохимическое действие. Как и видимый свет, попадая на фотографическую эмульсию, они воздействуют на галоге-ниды серебра, вызывая химическую реакцию восстановления серебра. На этом основана регистрация изображения на фоточувствительных материалах.

Рентгеновские лучи вызывают ионизацию вещества.

Рентгеновские лучи оказывают биологическое действие, связанное с их ионизирующей способностью.

Рентгеновские лучи распространяются прямолинейно, поэтому рентгеновское изображение всегда повторяет форму исследуемого объекта.

Рентгеновским лучам свойственна поляризация - распространение в определенной плоскости.

Дифракция и интерференция присущи рентгеновским лучам, как и остальным электромагнитным волнам. На этих свойствах основаны рентгеноспек-троскопия и рентгеновский структурный анализ.

Рентгеновские лучи невидимы.

В состав любой рентгенодиагностической системы входят 3 основных компонента: рентгеновская трубка, объект исследования (пациент) и приемник рентгеновского изображения.

Рентгеновская трубка состоит из двух электродов (анода и катода) и стеклянной колбы (рис. 2.4).

При подаче тока накала на катод его спиральная нить сильно разогревается (накаляется). Вокруг нее возникает облачко свободных электронов (явление термоэлектронной эмиссии). Как только между катодом и анодом возникает разность потенциалов, свободные электроны устремляются к аноду. Скорость движения электронов прямо пропорциональна величине напряжения. При торможении электронов в веществе анода часть их кинетической энергии идет на образование рентгеновских лучей. Эти лучи свободно выходят за пределы рентгеновской трубки и распространяются в разных направлениях.

Рентгеновские лучи в зависимости от способа возникновения делятся на первичные (лучи торможения) и вторичные (лучи характеристические).

Рис. 2.4. Принципиальная схема рентгеновской трубки: 1 - катод; 2 - анод; 3 - стеклянная колба; 4 - поток электронов; 5 - пучок рентгеновских лучей

Первичные лучи. Электроны в зависимости от направления главного трансформатора могут перемещаться в рентгеновских трубках с различными скоростями, приближающимися при наибольшем напряжении к скорости света. При ударе об анод, или, как говорят, при торможении, кинетическая энергия полета электронов преобразуется большей частью в тепловую энергию, которая нагревает анод. Меньшая часть кинетической энергии преобразуется в рентгеновские лучи торможения. Длина волны лучей торможения зависит от скорости полета электронов: чем она больше, тем длина волны меньше. Проникающая способность лучей зависит от длины волны (чем волна короче, тем больше ее проникающая способность).

Меняя напряжение трансформатора, можно регулировать скорость электронов и получать либо сильно проникающие (так называемые жесткие), либо слабо проникающие (так называемые мягкие) рентгеновские лучи.

Вторичные (характеристические) лучи. Они возникают в процессе торможения электронов, но длина их волн зависит исключительно от структуры атомов вещества анода.

Дело в том, что энергия полета электронов в трубке может достигнуть таких величин, что при ударах электронов об анод будет выделяться энергия, достаточная, чтобы заставить электроны внутренних орбит атомов вещества анода «перескакивать» на внешние орбиты. В таких случаях атом возвращается к своему состоянию, потому что с внешних его орбит будет происходить переход электронов на свободные внутренние орбиты с выделением энергии. Возбужденный атом вещества анода возвращается к состоянию покоя. Характеристическое излучение возникает в результате изменений во внутренних электронных слоях атомов. Слои электронов в атоме строго определены

для каждого элемента и зависят от его места в периодической системе Менделеева. Следовательно, получаемые от данного атома вторичные лучи будут иметь волны строго определенной длины, поэтому эти лучи и называют характеристическими.

Формирование электронного облака на спирали катода, полет электронов к аноду и получение рентгеновских лучей возможны только в условиях вакуума. Для его создания и служит колба рентгеновской трубки из прочного стекла, способного пропускать рентгеновские лучи.

В качестве приемников рентгеновского изображения могут выступать: рентгенографическая пленка, селеновая пластина, флюоресцентный экран, а также специальные детекторы (при цифровых способах получения изображения).

МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Все многочисленные методики рентгенологического исследования разделяют на общие и специальные.

К общим относятся методики, предназначенные для изучения любых анатомических областей и выполняемые на рентгеновских аппаратах общего назначения (рентгеноскопия и рентгенография).

К общим следует отнести и ряд методик, при которых также возможно изучение любых анатомических областей, но требуются либо особая аппаратура (флюорография, рентгенография с прямым увеличением изображения), либо дополнительные приспособления к обычным рентгеновским аппаратам (томография, электрорентгенография). Иногда эти методики называют также частными.

К специальным методикам относятся те, которые позволяют получить изображение на специальных установках, предназначенных для исследования определенных органов и областей (маммография, ортопантомография). К специальным методикам относится также большая группа рентгенокон-трастных исследований, при которых изображения получаются с применением искусственного контрастирования (бронхография, ангиография, экскреторная урография и др.).

ОБЩИЕ МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Рентгеноскопия - методика исследования, при которой изображение объекта получают на светящемся (флюоресцентном) экране в реальном масштабе времени. Некоторые вещества интенсивно флюоресцируют под влиянием рентгеновских лучей. Эту флюоресценцию используют в рентгенодиагностике, применяя картонные экраны, покрытые флюоресцирующим веществом.

Больного устанавливают (укладывают) на специальном штативе. Рентгеновские лучи, пройдя сквозь тело больного (интересующую исследователя область), попадают на экран и вызывают его свечение - флюоресценцию. Флюоресценция экрана неодинаково интенсивна - она тем ярче, чем больше попадает рентгеновских лучей в ту или иную точку экрана. На экран

попадает тем меньше лучей, чем более плотные препятствия будут на их пути от трубки до экрана (например, костная ткань), а также чем толще ткани, через которые лучи проходят.

Свечение флюоресцентного экрана очень слабое, поэтому рентгеноскопия проводилась в темноте. Изображение на экране было плохо различимо, мелкие детали не дифференцировались, а лучевая нагрузка при таком исследовании была довольно высокой.

В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание с помощью усилителя рентгеновского изображения - электронно-оптического преобразователя (ЭОП) и замкнутой телевизионной системы. В ЭОП видимое изображение на флюоресцирующем экране усиливается, преобразуется в электрический сигнал и отображается на экране дисплея.

Рентгеновское изображение на дисплее, как и обычное телевизионное изображение, можно изучать в освещенном помещении. Лучевая нагрузка на пациента и персонал при применении ЭОП значительно меньше. Телесистема позволяет записать все этапы исследования, в том числе движение органов. Кроме того, по телеканалу изображение можно передать на мониторы, находящиеся в других помещениях.

При рентгеноскопическом исследовании формируется позитивное плоскостное черно-белое суммационное изображение в реальном масштабе времени. При перемещении больного относительно рентгеновского излучателя говорят о полипозиционном, а при перемещении рентгеновского излучателя относительно больного - о полипроекционном исследовании; и то и другое позволяет получить более полную информацию о патологическом процессе.

Однако рентгеноскопии, как с ЭОП, так и без него, свойствен ряд недостатков, сужающих сферу применения метода. Во-первых, лучевая нагрузка при рентгеноскопии остается относительно высокой (намного выше, чем при рентгенографии). Во-вторых, у методики низкое пространственное разрешение (возможность рассмотреть и оценить мелкие детали ниже, чем при рентгенографии). В связи с этим рентгеноскопию целесообразно дополнять производством снимков. Это необходимо также для объективизации результатов исследования и возможности их сравнения при динамическом наблюдении за больным.

Рентгенография - это методика рентгенологического исследования, при которой получается статическое изображение объекта, зафиксированное на каком-либо носителе информации. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др. На рентгенограммах можно получить изображение любой анатомической области. Снимки всей анатомической области (голова, грудь, живот) называют обзорными (рис. 2.5). Снимки с изображением небольшой части анатомической области, которая наиболее интересует врача, называют прицельными (рис. 2.6).

Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (легкие, кости) (см. рис. 2.7); другие (желудок, кишечник) отчетливо отображаются на рентгенограммах только после искусственного контрастирования (см. рис. 2.8).

Рис. 2.5. Обзорная рентгенограмма поясничного отдела позвоночника в боковой проекции. Компрессион но-ос-кольчатый перелом тела L1 позвонка

Рис. 2.6.

Прицельная рентгенограмма L1 позвонка в боковой проекции

Проходя через объект исследования, рентгеновское излучение в большей или меньшей степени задерживается. Там, где излучение задерживается больше, формируются участки затенения; где меньше - просветления.

Рентгеновское изображение может быть негативным или позитивным. Так, например, в негативном изображении кости выглядят светлыми, воздух - темным, в позитивном изображении - наоборот.

Рентгеновское изображение черно-белое и плоскостное (сум-мационное).

Преимущества рентгенографии перед рентгеноскопией:

Большая разрешающая способность;

Возможность оценки многими исследователями и ретроспективного изучения изображения;

Возможность длительного хранения и сравнения изображения с повторными снимками в процессе динамического наблюдения за больным;

Уменьшение лучевой нагрузки на пациента.

К недостаткам рентгенографии следует отнести увеличение материальных затрат при ее применении (рентгенографическая пленка, фотореактивы и др.) и получение желаемого изображения не сразу, а через определенное время.

Методика рентгенографии доступна для всех лечебных учреждений и применяется повсеместно. Рентгеновские аппараты различных типов позволяют выполнять рентгенографию не только в условиях рентгеновского кабинета, но и за его пределами (в палате, в операционной и т. д.), а также в нестационарных условиях.

Развитие компьютерной техники позволило разработать цифровой (дигитальный) способ получения рентгеновского изображения (от англ. digit - «цифра»). В цифровых аппаратах рентгеновское изображение с ЭОП поступает в специальное устройство - аналого-цифровой преобразователь (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, кодируется в цифровую форму. Поступая затем в компьютер, цифровая информация обрабатывается в нем по заранее составленным программам, выбор которых зависит от задач исследования. Превращение цифрового образа в аналоговый, видимый происходит в цифро-аналоговом преобразователе (ЦАП), функция которого противоположна АЦП.

Основные преимущества цифровой рентгенографии перед традиционной: быстрота получения изображения, широкие возможности его постпроцессорной обработки (коррекция яркости и контрастности, подавление шума, электронное увеличение изображения зоны интереса, преимущественное выделение костных либо мяг-котканных структур и т. д.), отсутствие фотолабораторного процесса и электронное архивирование изображений.

Кроме того, компьютеризация рентгеновского оборудования позволяет быстро передавать изображения на значительные расстояния без потери качества, в том числе в другие лечебные учреждения.

Рис. 2.7. Рентгенограммы голеностопного сустава в прямой и боковой проекциях

Рис. 2.8. Рентгенограмма толстой кишки, контрастированной взвесью бария сульфата (ирригограмма). Норма

Флюорография - фотографирование рентгеновского изображения с флюоресцентного экрана на фотографическую пленку различного формата. Такое изображение всегда уменьшено.

По информативности флюорография уступает рентгенографии, но при использовании крупнокадровых флюорограмм различие между этими методиками становится менее существенным. В связи с этим в лечебных учреждениях у ряда пациентов с заболеваниями органов дыхания флюорография может заменять рентгенографию, особенно при повторных исследованиях. Такую флюорографию называют диагностической.

Основным назначением флюорографии, связанным с быстротой ее выполнения (на выполнение флюорограммы тратится примерно в 3 раза меньше времени, чем на выполнение рентгенограммы), являются массовые обследования для выявления скрыто протекающих заболеваний легких (профилактическая, или проверочная, флюорография).

Флюорографические аппараты компактны, их можно монтировать их в кузове автомобиля. Это делает возможным проведение массовых обследований в тех местностях, где рентгенодиагностическая аппаратура отсутствует.

В настоящее время пленочная флюорография все больше вытесняется цифровой. Термин «цифровые флюорографы» является в известной мере условным, поскольку в этих аппаратах не происходит фотографирования рентгеновского изображения на фотопленку, т. е. не выполняются флюо-рограммы в привычном смысле этого слова. По сути дела эти флюорографы представляют собой цифровые рентгенографические аппараты, предназначенные преимущественно (но не исключительно) для исследования органов грудной полости. Цифровая флюорография обладает всеми достоинствами, присущими цифровой рентгенографии вообще.

Рентгенография с прямым увеличением изображения может использоваться только при наличии специальных рентгеновских трубок, в которых фокусное пятно (площадь, с которой рентгеновские лучи исходят от излучателя) имеет очень малые размеры (0,1-0,3 мм 2). Увеличенное изображение получают, приближая исследуемый объект к рентгеновской трубке без изменения фокусного расстояния. В результате на рентгенограммах видны более мелкие детали, неразличимые на обычных снимках. Методика находит применение при исследовании периферических костных структур (кисти, стопы и др.).

Электрорентгенография - методика, при которой диагностическое изображение получают не на рентгеновской пленке, а на поверхности селеновой пластины с переносом на бумагу. Равномерно заряженная статическим электричеством пластина используется вместо кассеты с пленкой и в зависимости от разного количества ионизирующего излучения, попавшего в различные точки ее поверхности, по-разному разряжается. На поверхность пластины распыляют тонкодисперсный угольный порошок, который по законам электростатического притяжения распределяется по поверхности пластины неравномерно. На пластину накладывают лист писчей бумаги, и изображение переводится на бумагу в результате прилипания угольного

порошка. Селеновую пластину в отличие от пленки можно использовать неоднократно. Методика отличается быстротой, экономичностью, не требует затемненного помещения. Кроме того, селеновые пластины в незаряженном состоянии индифферентны к воздействию ионизирующих излучений и могут быть использованы при работе в условиях повышенного радиационного фона (рентгеновская пленка в этих условиях придет в негодность).

В целом электрорентгенография по своей информативности лишь ненамного уступает пленочной рентгенографии, превосходя ее при исследовании костей (рис. 2.9).

Линейная томография - методика послойного рентгенологического исследования.

Рис. 2.9. Электрорентгенограмма голеностопного сустава в прямой проекции. Перелом малоберцовой кости

Как уже упоминалось, на рентгенограмме видно суммационное изображение всей толщи исследуемой части тела. Томография служит для получения изолированного изображения структур, расположенных в одной плоскости, как бы расчленяя сумма-ционное изображение на отдельные слои.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух или трех компонентов рентгеновской системы: рентгеновская трубка (излучатель) - пациент - приемник изображения. Чаще всего перемещаются излучатель и приемник изображения, а пациент неподвижен. Излучатель и приемник изображения движутся по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на томограмме оказывается размазанным, расплывчатым, нечетким, а образования, находящиеся на уровне центра вращения системы излучатель - приемник, отображаются наиболее четко (рис. 2.10).

Особое преимущество перед рентгенографией линейная томография приобретает

тогда, когда исследуются органы со сформированными в них плотными патологическими зонами, полностью затеняющими те или иные участки изображения. В ряде случаев она помогает определить характер патологического процесса, уточнить его локализацию и распространенность, выявить мелкие патологические очаги и полости (см. рис. 2.11).

Конструктивно томографы выполняют в виде дополнительного штатива, который может автоматически передвигать рентгеновскую трубку по дуге. При изменении уровня центра вращения излучатель - приемник изменится глубина получаемого среза. Толщина изучаемого слоя тем меньше, чем больше амплитуда движения упомянутой выше системы. Если же выбирают очень

малый угол перемещения (3-5°), то получают изображение толстого слоя. Эта разновидность линейной томографии получила название - зонография.

Линейная томография применяется достаточно широко, особенно в лечебных учреждениях, не имеющих компьютерных томографов. Наиболее часто показанием к выполнению томографии служат заболевания легких и средостения.

СПЕЦИАЛЬНЫЕ МЕТОДИКИ

РЕНТГЕНОЛОГИЧЕСКОГО

ИССЛЕДОВАНИЯ

Ортопантомография - это вариант зо-нографии, позволяющий получитьразвер-нутое плоскостное изображение челюстей (см. рис. 2.12). Отдельное изображение каждого зуба при этом достигается путем их последовательной съемки узким пуч-

Рис. 2.10. Схема получения томографического изображения: а - исследуемый объект; б - томографический слой; 1-3 - последовательные положения рентгеновской трубки и приемника излучения в процессе исследованиям

ком рентгеновских лучей на отдельные участки пленки. Условия для этого создаются синхронным круговым движением вокруг головы пациента рентгеновской трубки и приемника изображения, установленных на противоположных концах поворотного штатива аппарата. Методика позволяет исследовать и другие отделы лицевого скелета (околоносовые пазухи, глазницы).

Маммография - рентгенологическое исследование молочной железы. Оно выполняется для изучения структуры молочной железы при обнаружении в ней уплотнений, а также с профилактической целью. Молочная желе-

за является мягкотканным органом, поэтому для изучения ее структуры необходимо использовать очень небольшие величины анодного напряжения. Существуют специальные рентгеновские аппараты - маммографы, где устанавливаются рентгеновские трубки с фокусным пятном размером в доли миллиметра. Они оборудованы специальными штативами для укладки молочной железы с устройством для ее компрессии. Это позволяет уменьшить толщину тканей железы во время исследования, повышая тем самым качество маммограмм (см. рис. 2.13).

Методики с применением искусственного контрастирования

Для того чтобы невидимые на обычных снимках органы были отображены на рентгенограммах, прибегают к методике искусственного контрастирования. Методика заключается во введении в организм веществ,

Рис. 2.11. Линейная томограмма правого легкого. В верхушке легкого определяется крупная воздушная полость с толстыми стенками

которые поглощают (или, наоборот, пропускают) излучение гораздо сильнее (или слабее), чем исследуемый орган.

Рис. 2.12. Ортопантомограмма

В качестве контрастных веществ используют вещества либо с низкой относительной плотностью (воздух, кислород, углекислый газ, закись азота), либо с большой атомной массой (взвеси или растворы солей тяжелых металлов и галогениды). Первые поглощают рентгеновское излучение в меньшей степени, чем анатомические структуры (негативные), вторые - в большей (позитивные). Если, например, ввести воздух в брюшную полость (искусственный пневмоперитонеум), то на его фоне отчетливо выделяются очертания печени, селезенки, желчного пузыря, желудка.

Рис. 2.13. Рентгенограммы молочной железы в краниокаудальной (а) и косой (б) проекциях

Для исследования полостей органов обычно применяют высокоатомные контрастные вещества, наиболее часто - водную взвесь бария сульфата и соединения йода. Эти вещества, в значительной мере задерживая рентгеновское излучение, дают на снимках интенсивную тень, по которой можно судить о положении органа, форме и величине его полости, очертаниях его внутренней поверхности.

Различают два способа искусственного контрастирования с помощью высокоатомных веществ. Первый заключается в непосредственном введении контрастного вещества в полость органа - пищевода, желудка, кишечника, бронхов, кровеносных или лимфатических сосудов, мочевыводящих путей, полостных систем почек, матки, слюнных протоков, свищевых ходов, лик-ворных пространств головного и спинного мозга и т. д.

Второй способ основан на специфической способности отдельных органов концентрировать те или иные контрастные вещества. Например, печень, желчный пузырь и почки концентрируют и выделяют некоторые введенные в организм соединения йода. После введения пациенту таких веществ на снимках через определенное время различаются желчные протоки, желчный пузырь, полостные системы почек, мочеточники, мочевой пузырь.

Методика искусственного контрастирования в настоящее время является ведущей при рентгенологическом исследовании большинства внутренних органов.

В рентгенологической практике используют 3 вида рентгеноконтрастных средств (РКС): йодсодержащие растворимые, газообразные, водную взвесь сульфата бария. Основным средством для исследования желудочно-кишечного тракта является водная взвесь сульфата бария. Для исследования кровеносных сосудов, полостей сердца, мочевыводящих путей применяют водорастворимые йодсодержащие вещества, которые вводят либо внутрисо-судисто, либо в полость органов. Газы в качестве контрастных веществ в настоящее время почти не применяются.

При выборе контрастных веществ для проведения исследований РКС необходимо оценивать с позиций выраженности контрастирующего эффекта и безвредности.

Безвредность РКС помимо обязательной биологической и химической инертности зависит от их физических характеристик, из которых наиболее существенными являются осмолярность и электрическая активность. Ос-молярность определяется числом ионов или молекул РКС в растворе. Относительно плазмы крови, осмолярность которой равна 280 мОсм /кг Н 2 О, контрастные вещества могут быть высокоосмолярными (более 1200 мОсм/кг Н 2 О), низкоосмолярными (менее 1200 мОсм/кг Н 2 О) или изоосмолярными (по осмолярности равными крови).

Высокая осмолярность отрицательно воздействует на эндотелий, эритроциты, клеточные мембраны, протеины, поэтому следует отдавать предпочтение низкоосмолярным РКС. Оптимальны РКС, изоосмолярные с кровью. Следует помнить, что осмолярность РКС как ниже, так и выше осмолярности крови делает эти средства неблагоприятно воздействующими на клетки крови.

По показателям электрической активности рентгеноконтрастные препараты подразделяются на: ионные, распадающиеся в воде на электрически заряженные частицы, и неионные, электрически нейтральные. Осмолярность ионных растворов в силу большего содержания в них частиц вдвое больше, чем неионные.

Неионные контрастные вещества по сравнению с ионными обладают рядом преимуществ: значительно меньшей (в 3-5 раз) общей токсичностью, дают значительно менее выраженный вазодилатационный эффект, обусловливают

меньшую деформацию эритроцитов и гораздо меньше высвобождают гис-тамин, активизируют систему комплемента, ингибируют активность холи-нэстеразы, что снижает риск негативных побочных действий.

Таким образом, неионные РКС дают наибольшие гарантии в отношении как безопасности, так и качества контрастирования.

Широкое внедрение контрастирования различных органов указанными препаратами обусловило появление многочисленных методик рентгенологического исследования, значительно повышающих диагностические возможности рентгенологического метода.

Диагностический пневмоторакс - рентгенологическое исследование органов дыхания после введения газа в плевральную полость. Выполняется с целью уточнения локализации патологических образований, расположенных на границе легкого с соседними органами. С появлением метода КТ применяется редко.

Пневмомедиастинография - рентгенологическое исследование средостения после введения газа в его клетчатку. Выполняется с целью уточнения локализации выявленных на снимках патологических образований (опухолей, кист) и их распространения на соседние органы. С появлением метода КТ практически не применяется.

Диагностический пневмоперитонеум - рентгенологическое исследование диафрагмы и органов полости живота после введения газа в полость брюшины. Выполняется с целью уточнения локализации патологических образований, выявленных на снимках на фоне диафрагмы.

Пневморетроперитонеум - методика рентгенологического исследования органов, расположенных в забрюшинной клетчатке, путем введения в забрюшин-ную клетчатку газа с целью лучшей визуализации их контуров. С внедрением в клиническую практику УЗИ, КТ и МРТ практически не применяется.

Пневморен - рентгенологическое исследование почки и рядом расположенного надпочечника после введения газа в околопочечную клетчатку. В настоящее время выполняется крайне редко.

Пневмопиелография - исследование полостной системы почки после заполнения ее газом через мочеточниковый катетер. В настоящее время используется преимущественно в специализированных стационарах для выявления внутрилоханочных опухолей.

Пневмомиелография - рентгенологическое исследование подпаутинного пространства спинного мозга после его контрастирования газом. Используется для диагностики патологических процессов в области позвоночного канала, вызывающих сужение его просвета (грыжи межпозвоночных дисков, опухоли). Применяется редко.

Пневмоэнцефалография - рентгенологическое исследование ликворных пространств головного мозга после их контрастирования газом. После внедрения в клиническую практику КТ и МРТ выполняется редко.

Пневмоартрография - рентгенологическое исследование крупных суставов после введения в их полость газа. Позволяет изучить суставную полость, выявить в ней внутрисуставные тела, обнаружить признаки повреждения менисков коленного сустава. Иногда ее дополняют введением в полость сустава

водорастворимого РКС. Достаточно широко используется в лечебных учреждениях при невозможности выполнения МРТ.

Бронхография - методика рентгенологического исследования бронхов после их искусственного контрастирования РКС. Позволяет выявить различные патологические изменения бронхов. Широко используется в лечебных учреждениях при недоступности КТ.

Плеврография - рентгенологическое исследование плевральной полости после ее частичного заполнения контрастным препаратом с целью уточнения формы и размеров плевральных осумкований.

Синография - рентгенологическое исследование околоносовых пазух после их заполнения РКС. Применяется тогда, когда возникают затруднения в интерпретации причины затенения пазух на рентгенограммах.

Дакриоцистография - рентгенологическое исследование слезных путей после их заполнения РКС. Применяется с целью изучения морфологического состояния слезного мешка и проходимости слезноносового канала.

Сиалография - рентгенологическое исследование протоков слюнных желез после их заполнения РКС. Применяется для оценки состояния протоков слюнных желез.

Рентгеноскопия пищевода, желудка и двенадцатиперстной кишки - проводится после их постепенного заполнения взвесью бария сульфата, а при необходимости - и воздухом. Обязательно включает в себя полипозиционную рентгеноскопию и выполнение обзорных и прицельных рентгенограмм. Широко применяется в лечебных учреждениях для выявления различных заболеваний пищевода, желудка и двенадцатиперстной кишки (воспалительно-деструктивные изменения, опухоли и др.) (см. рис. 2.14).

Энтерография - рентгенологическое исследование тонкой кишки после заполнения ее петель взвесью бария сульфата. Позволяет получить информацию о морфологическом и функциональном состоянии тонкой кишки (см. рис. 2.15).

Ирригоскопия - рентгенологическое исследование толстой кишки после ретроградного контрастирования ее просвета взвесью бария сульфата и воздухом. Широко применяется для диагностики многих заболеваний толстой кишки (опухоли, хронический колит и т. д.) (см. рис. 2.16).

Холецистография - рентгенологическое исследование желчного пузыря после накопления в нем контрастного вещества, принятого внутрь и выделенного с желчью.

Выделительная холеграфия - рентгенологическое исследование желчных путей, контрастированных с помощью йодсодержащих препаратов, вводимых внутривенно и выделяемых с желчью.

Холангиография - рентгенологическое исследование желчных протоков после введения РКС в их просвет. Широко используется для уточнения морфологического состояния желчных протоков и выявления в них конкрементов. Может выполняться во время оперативного вмешательства (ин-траоперационная холангиография) и в послеоперационном периоде (через дренажную трубку) (см. рис. 2.17).

Ретроградная холангиопанкреатикография - рентгенологическое исследование желчных протоков и протока поджелудочной железы после введения

в их просвет контрастного препарата под рентгеноэндоскопическим контролем (см. рис. 2.18).

Рис. 2.14. Рентгенограмма желудка, контрастированного взвесью бария сульфата. Норма

Рис. 2.16. Ирригограмма. Рак слепой кишки. Просвет слепой кишки резко сужен, контуры пораженного участка неровные (на снимке указано стрелками)

Рис. 2.15. Рентгенограмма тонкой кишки, контрастированной взвесью бария сульфата (энтерограмма). Норма

Рис. 2.17. Антеградная холангиограм-ма. Норма

Экскреторная урография - рентгенологическое исследование мочевых органов после внутривенного введения РКС и выделения его почками. Широко распространенная методика исследования, позволяющая изучать морфологическое и функциональное состояние почек, мочеточников и мочевого пузыря (см. рис. 2.19).

Ретроградная уретеропиелография - рентгенологическое исследование мочеточников и полостных систем почек после заполнения их РКС через мочеточниковый катетер. По сравнению с выделительной урографией позволяет получить более полную информацию о состоянии мочевых путей

в результате их лучшего заполнения контрастным препаратом, вводимым под небольшим давлением. Широко применяется в специализированных урологических отделениях.

Рис. 2.18. Ретроградная холангиопан-креатикограмма. Норма

Рис. 2.19. Экскреторная урограмма. Норма

Цистография - рентгенологическое исследование мочевого пузыря, заполненного РКС (см. рис. 2.20).

Уретрография - рентгенологическое исследование мочеиспускательного канала после его заполнения РКС. Позволяет получить информацию о проходимости и морфологическом состоянии уретры, выявить ее повреждения, стриктуры и т. д. Применяется в специализированных урологических отделениях.

Гистеросальпингография - рентгенологическое исследование матки и маточных труб после заполнения их просвета РКС. Широко используется в первую очередь для оценки проходимости маточных труб.

Позитивная миелография - рентгенологическое исследование под-паутинных пространств спинного

Рис. 2.20. Нисходящая цистограмма. Норма

мозга после введения водорастворимых РКС. С появлением МРТ применяется редко.

Аортография - рентгенологическое исследование аорты после введения в ее просвет РКС.

Артериография - рентгенологическое исследование артерий с помощью введенных в их просвет РКС, распространяющихся по току крови. Некоторые частные методики артериографии (коронарография, каротидная ангиография), будучи высокоинформативными, в то же время технически сложны и небезопасны для пациента, в связи с чем применяются только в специализированных отделениях (рис. 2.21).

Рис. 2.21. Каротидные ангиограммы в прямой (а) и боковой (б) проекциях. Норма

Кардиография - рентгенологическое исследование полостей сердца после введения в них РКС. В настоящее время находит ограниченное применение в специализированных кардиохирургических стационарах.

Ангиопульмонография - рентгенологическое исследование легочной артерии и ее ветвей после введения в них РКС. Несмотря на высокую информативность, небезопасна для пациента, в связи с чем в последние годы предпочтение отдается компьютерно-томографической ангиографии.

Флебография - рентгенологическое исследование вен после введения в их просвет РКС.

Лимфография - рентгенологическое исследование лимфатических путей после введения в лимфатическое русло РКС.

Фистулография - рентгенологическое исследование свищевых ходов после их заполнения РКС.

Вульнерография - рентгенологическое исследование раневого канала после заполнения его РКС. Чаще применяется при слепых ранениях живота, когда другие методы исследования не позволяют установить, является ранение проникающим или непроникающим.

Кистография - контрастное рентгенологическое исследование кист различных органов с целью уточнения формы и размеров кисты, ее топографического расположения и состояния внутренней поверхности.

Дуктография - контрастное рентгенологическое исследование млечных протоков. Позволяет оценить морфологическое состояние протоков и выявить небольшие опухоли молочной железы с внутрипротоковым ростом, неразличимые на маммограммах.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ РЕНТГЕНОЛОГИЧЕСКОГО МЕТОДА

Голова

1. Аномалии и пороки развития костных структур головы.

2. Травма головы:

Диагностика переломов костей мозгового и лицевого отделов черепа;

Выявление инородных тел головы.

3. Опухоли головного мозга:

Диагностика патологических обызвествлений, характерных для опухолей;

Выявление сосудистой сети опухоли;

Диагностика вторичных гипертензионно-гидроцефальных изменений.

4. Заболевания сосудов головного мозга:

Диагностика аневризм и сосудистых мальформаций (артериальные аневризмы, артерио-венозные мальформации, артерио-синусные соустья и др.);

Диагностика стенозирующих и окклюзирующих заболеваний сосудов головного мозга и шеи (стенозы, тромбозы и др.).

5. Заболевания ЛОР-органов и органа зрения:

Диагностика опухолевых и неопухолевых заболеваний.

6. Заболевания височной кости:

Диагностика острых и хронических мастоидитов.

Грудь

1. Травма груди:

Диагностика повреждений грудной клетки;

Выявление жидкости, воздуха или крови в плевральной полости (пнев-мо-, гемоторакс);

Выявление ушибов легких;

Выявление инородных тел.

2. Опухоли легких и средостения:

Диагностика и дифференциальная диагностика доброкачественных и злокачественных опухолей;

Оценка состояния регионарных лимфатических узлов.

3. Туберкулез:

Диагностика различных форм туберкулеза;

Оценка состояния внутригрудных лимфатических узлов;

Дифференциальная диагностика с другими заболеваниями;

Оценка эффективности лечения.

4. Заболевания плевры, легких и средостения:

Диагностика всех форм пневмоний;

Диагностика плевритов, медиастинитов;

Диагностика тромбоэмболии легочной артерии;

Диагностика отека легких;

5. Исследование сердца и аорты:

Диагностика приобретенных и врожденных пороков сердца и аорты;

Диагностика повреждений сердца при травме груди и аорты;

Диагностика различных форм перикардитов;

Оценка состояния коронарного кровотока (коронарография);

Диагностика аневризм аорты.

Живот

1. Травма живота:

Выявление свободного газа и жидкости в полости живота;

Выявление инородных тел;

Установление проникающего характера ранения живота.

2. Исследование пищевода:

Диагностика опухолей;

Выявление инородных тел.

3. Исследование желудка:

Диагностика воспалительных заболеваний;

Диагностика язвенной болезни;

Диагностика опухолей;

Выявление инородных тел.

4. Исследование кишечника:

Диагностика кишечной непроходимости;

Диагностика опухолей;

Диагностика воспалительных заболеваний.

5. Исследование мочевых органов:

Определение аномалий и вариантов развития;

Мочекаменная болезнь;

Выявление стенотических и окклюзионных заболеваний почечных артерий (ангиография);

Диагностика стенотических заболеваний мочеточников, уретры;

Диагностика опухолей;

Выявление инородных тел;

Оценка экскреторной функции почек;

Контроль эффективности проводимого лечения.

Таз

1. Травма:

Диагностика переломов костей таза;

Диагностика разрывов мочевого пузыря, задней уретры и прямой кишки.

2. Врожденные и приобретенные деформации костей таза.

3. Первичные и вторичные опухоли костей таза и тазовых органов.

4. Сакроилеит.

5. Заболевания женских половых органов:

Оценка проходимости маточных труб.

Позвоночник

1. Аномалии и пороки развития позвоночника.

2. Травма позвоночника и спинного мозга:

Диагностика различных видов переломов и вывихов позвонков.

3. Врожденные и приобретенные деформации позвоночника.

4. Опухоли позвоночника и спинного мозга:

Диагностика первичных и метастатических опухолей костных структур позвоночника;

Диагностика экстрамедуллярных опухолей спинного мозга.

5. Дегенеративно-дистрофические изменения:

Диагностика спондилеза, спондилоартроза и остеохондроза и их осложнений;

Диагностика грыж межпозвоночных дисков;

Диагностика функциональной нестабильности и функционального блока позвонков.

6. Воспалительные заболевания позвоночника (специфические и неспецифические спондилиты).

7. Остеохондропатии, фиброзные остеодистрофии.

8. Денситометрия при системном остеопорозе.

Конечности

1. Травмы:

Диагностика переломов и вывихов конечностей;

Контроль эффективности проводимого лечения.

2. Врожденные и приобретенные деформации конечностей.

3. Остеохондропатии, фиброзные остеодистрофии; врожденные системные заболевания скелета.

4. Диагностика опухолей костей и мягких тканей конечностей.

5. Воспалительные заболевания костей и суставов.

6. Дегенеративно-дистрофические заболевания суставов.

7. Хронические заболевания суставов.

8. Стенозирующие и окклюзирующие заболевания сосудов конечностей.

Рентгенологические методы исследования

1. Понятие рентгеновского излучения

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10~ 5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым Y-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор. Подогревной катод испускает электроны. Анод, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская, трубка с вращающимся анодом. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют также и сплошным.

В каждом из спектров наиболее коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона.

Коротковолновое рентгеновское излучение, обычно, обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли.

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием и для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии фотона и энергии ионизации имеют место три главных процесса

Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает если энергия фотона меньше энергии ионизации. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгенструктурного анализа.

Некогерентное рассеяние (эффект Комптона). В 1922 г А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона расходуется на образование нового рассеянного фотона рентгеновского излучения, на отрыв электрона от атома (энергия ионизации А) и сообщение электрону кинетической энергии.

Существенно, что в этом явлении наряду с вторичным рентгеновским излучением (энергия hv" фотона) появляются электроны отдачи (кинетическая энергия £ к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Перечислим некоторые процессы, наблюдаемые при действии рентгеновского излучения на вещество.

Рентгенолюминесценция – свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X 3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.

Рентгенодиагностические аппараты принято делить на универсальные, позволяющие производить рентгеновское просвечивание и рентгеновские снимки всех частей тела, и аппараты специального назначения. Последние предназначены для выполнения рентгенологических исследований в неврологии, челюстно-лицевой хирургии и стоматологии, маммологии, урологии, ангиологии. Созданы также специальные аппараты для исследования детей, для массовых проверочных исследований (флюорографы), для исследований в операционных. Для рентгеноскопии и рентгенографии больных в палатах и реанимационном отделении применяют передвижные рентгеновские установки.

В состав типового рентгенодиагностического аппарата входят питающее устройство, пульт управления, штатив и рентгеновская трубка. Она-то, собственно, и является источником излучения. Установка получает питание из сети в виде переменного тока низкого напряжения. В высоковольтном трансформаторе сетевой ток преобразуется в переменный ток высокого напряжения. Чем сильнее поглощает исследуемый орган излучение, тем интенсивнее тень, которую он отбрасывает на рентгеновский флюоресцентный экран. И, наоборот, чем больше лучей пройдет через орган, тем слабее его тень на экране.

Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. Вещества, задерживающие излучение сильнее, чем мягкие ткани, называют рентгенопозитивными. Они созданы на основе тяжелых элементов - бария или йода. В качестве же рентгенонегативных веществ используют газы: закись азота, углекислый газ, кислород, воздух. Основные требования к рентгеноконтрастным веществам очевидны: их максимальная безвредность (низкая токсичность), быстрое выведение из организма.

Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа - в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды. В других случаях контрастное вещество вводят в полость или клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.

Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип - концентрации и элиминации - используют при рентгенологическом контрастировании выделительной системы и желчных путей.

В некоторых случаях рентгенологическое исследование проводят одновременно с двумя рентгеноконтрастными средствами. Наиболее часто таким приемом пользуются в гастроэнтерологии, производя так называемое двойное контрастирование желудка или кишки: в исследуемую часть пищеварительного канала вводят водную взвесь сульфата бария и воздух.

Можно выделить 5 типов приемников рентгеновского излучения: рентгеновскую пленку, полупроводниковую фоточувствительную пластину, флюоресцирующий экран, рентгеновский электронно-оптический преобразователь, дозиметрический счетчик. На них соответственно построены 5 общих методов рентгенологического исследования: рентгенография, электрорентгенография, рентгеноскопия, рентгенотелевизионная рентгеноскопия и дигитальная рентгенография (в том числе компьютерная томография).

2. Рентгенография (рентгеновская съемка)

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм 2 . Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

3. Электрорентгенография

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

4. Рентгенотелевизионное просвечивание

Рентгенотелевизионное просвечивание - современный вид рентгеноскопии. Оно выполняется с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система.

РЭОП представляет собой вакуумную колбу, внутри которой, с одной стороны, имеется рентгеновский флюоресцентный экран, а с противоположной - катодолюминесцентный экран. Между ними приложено электрическое ускоряющее поле с разницей потенциалов около 25 кВ. Возникающий при просвечивании световой образ на флюоресцентном экране превращается на фотокатоде в поток электронов. Под действием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно возрастает - в несколько тысяч раз. Попадая на катодолюминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение.

Это изображение через систему зеркал и линз передается на передающую телевизионную трубку - видикон. Возникающие в ней электрические сигналы поступают для обработки в блок телевизионного канала, а затем - на экран видеоконтрольного устройства или, проще говоря, на экран телевизора. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

Таким образом, в УРИ осуществляется такая цепочка преобразования образа исследуемого объекта: рентгеновский - световой - электронный (на этом этапе происходит усиление сигнала) - вновь световой - электронный (здесь возможно исправление некоторых характеристик образа) - вновь световой.

Рентгеновское изображение на телевизионном экране, как и обычное телевизионное изображение, можно рассматривать при видимом свете. Благодаря УРИ рентгенологи совершили скачок из царства темноты в царство света. Как остроумно заметил один ученый, «темное прошлое рентгенологии позади». А ведь в течение многих десятилетий рентгенологи могли считать своим лозунгом слова, начертанные на гербе Дон-Кихота: «Posttenebrassperolucem» («После тьмы надеюсь на свет»).

Рентгенотелевизионное просвечивание не требует темновой адаптации врача. Лучевая нагрузка на персонал и пациента при нем значительно меньше, чем при обычной рентгеноскопии. На экране телевизора заметны детали, которые при рентгеноскопии не улавливаются. По телевизионному тракту рентгеновское изображение может быть передано на другие мониторы (в комнату управления, в учебную аудиторию, в кабинет консультанта и т. д.). Телевизионная техника обеспечивает возможность видеозаписи всех этапов исследования.

С помощью зеркал и линз рентгеновское изображение из рентгеновского электронно-оптического преобразователя может быть введено в кинокамеру. Такое рентгенологическое исследование носит название рентгенокинематографии. Это изображение может быть направлено также в фотокамеру. Получающиеся при этом снимки, имеющие небольшие - 70X70 или 100Х 100 мм - размеры и выполненные на рентгеновской пленке, носят название фоторентгенограмм (УРИ-флюорограмм). Они более экономичны, чем обычные рентгенограммы. Кроме того, при их выполнении меньше лучевая нагрузка на больного. Еще одно преимущество состоит в возможности скоростной съемки - до 6 кадров в секунду.

5. Флюорография

Флюорография - метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана или экрана электронно-оптического преобразователя на фотопленку небольшого формата.

При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки - флюорограммы получают на специальном рентгеновском аппарате - флюорографе. В этом аппарате имеется флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется посредством фотокамеры на эту рулонную пленку с размером кадра 70X70 или 100Х 100 мм.

При другом способе флюорографии, уже упомянутом в предыдущем параграфе, фотосъемку производят на пленки того же формата прямо с экрана электронно-оптического преобразователя. Этот способ исследования называют УРИ-флюорографией. Методика особенно выгодна при исследовании пищевода, желудка и кишечника, так как обеспечивает быстрый переход от просвечивания к съемке.

На флюорограммах детали изображения фиксируются лучше, чем при рентгеноскопии или рентгенотелевизионном просвечивании, но несколько хуже (на 4-5%) по сравнению с обычными рентгенограммами. В поликлиниках и стационарах более дорогую рентгенографию, особенно при повторных контрольных исследованиях. Такое рентгенологическое исследование называют диагностической флюорографией. Основным назначением флюорографии в нашей стране является проведение массовых проверочных рентгенологических исследований, главным образом для выявления скрыто протекающих поражений легких. Такую флюорографию называют проверочной или профилактической. Она является способом отбора из популяции лиц с подозрением на заболевание, а также способом диспансерного наблюдения за людьми с неактивными и остаточными туберкулезными изменениями в легких, пневмосклерозами и т. д.

Для проверочных исследований применяют флюорографы стационарного и передвижного типа. Первые размещают в поликлиниках, медико-санитарных частях, диспансерах, больницах. Передвижные флюорографы монтируют на автомобильных шасси или в железнодорожных вагонах. Съемку и в тех и в других флюорографах производят на рулонную пленку, которую затем проявляют в специальных бачках. Ввиду малого формата кадра флюорография значительно дешевле рентгенографии. Ее повсеместное использование означает существенную экономию средств медицинской службы. Для исследования пищевода, желудка и двенадцатиперстной кишки созданы специальные гастрофлюорографы.

Готовые флюорограммы рассматривают на специальном фонаре - флюороскопе, который увеличивает изображение. Из общего контингента обследованных отбирают лиц, у которых по флюорограммам заподозрены патологические изменения. Их направляют для дополнительного обследования, которое проводят на рентгенодиагностических установках с применением всех необходимых рентгенологических методов исследования.

Важные достоинства флюорографии - это возможность обследования большого числа лиц в течение короткого времени (высокая пропускная способность), экономичность, удобство хранения флюорограмм. Сопоставление флюорограмм, произведенных при очередном проверочном обследовании, с флюорограммами предыдущих лет позволяет рано выявлять минимальные патологические изменения в органах. Этот прием получил название ретроспективного анализа флюорограмм.

Наиболее эффективным оказалось применение флюорографии для выявления скрыто протекающих заболеваний легких, в первую очередь туберкулеза и рака. Периодичность проверочных обследований определяют с учетом возраста людей, характера их трудовой деятельности, местных эпидемиологических условий.

6. Дигитальная (цифровая) рентгенография

Описанные выше системы получения рентгеновского изображения относятся к так называемой обычной, или конвенциональной, рентгенологии. Но в семействе этих систем быстро растет и развивается новый ребенок. Это - дигитальные (цифровые) способы получения изображений (от англ. digit - цифра). Во всех дигитальных устройствах изображение строится в принципе одинаково. Каждая «дигитальная» картинка состоит из множества отдельных точек. Каждой точке изображения приписывается число, которое соответствует интенсивности ее свечения (ее «серости»). Степень яркости точки определяют в специальном приборе - аналого-цифровом преобразователе (АЦП). Как правило, число пикселей в одном ряду равно 32, 64, 128, 256, 512 или 1024, причем по ширине и высоте матрицы количество их равно. При величине матрицы 512 X 512 дигитальная картинка состоит из 262 144 отдельных точек.

Рентгеновское изображение, полученное в телевизионной камере, поступает после преобразования в усилителе на АЦП. В нем электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр. Таким образом, создается цифровой образ - цифровое кодирование сигналов. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. При переводе аналогового изображения в цифровое происходит, конечно, некоторая потеря информации. Но она компенсируется возможностями компьютерной обработки. С помощью компьютера можно улучшить качество изображения: повысить его контрастность, очистить его от помех, выделить в нем интересующие врача детали или контуры. Например, созданное фирмой Сименс устройство «Политрон» с матрицей 1024 X 1024 позволяет добиться отношения «сигнал - шум», равного 6000:1. Это обеспечивает выполнение не только рентгенографии, но и рентгеноскопии с высоким качеством изображения. В компьютере можно сложить изображения или вычесть одно из другого.

Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходим цифро-аналоговый преобразователь (ЦАП). Его функция противоположна АЦП. Цифровой образ, «упрятанный» в компьютере, он трансформирует в аналоговое, видимое (осуществляет декодирование).

У дигитальной рентгенографии большое будущее. Есть основания полагать, что она постепенно будет вытеснять обычную рентгенографию. Она не требует дорогостоящей рентгеновской пленки и фотопроцесса, отличается быстродействием. Она позволяет после окончания исследования производить дальнейшую (апостериорную) обработку изображения и передачу его на расстояние. Весьма удобно хранение информации на магнитных носителях (диски, ленты).

Большой интерес вызывает люминесцентная дигитальная рентгенография, основанная на использовании запоминающего изображения люминесцентного экрана. Во время рентгеновской экспозиции изображение записывается на такой пластине, а затем считывается с нее с помощью гелий-неонового лазера и записывается в цифровой форме. Лучевая нагрузка по сравнению с обычной рентгенографией уменьшается в 10 и более раз. Разрабатываются и другие способы дигитальной рентгенографии (например, снятие электрических сигналов с экспонированной селеновой пластины без обработки ее в электрорентгенографе).