Уход и... Инструменты Дизайн ногтей

Регрессионный анализ виды зависимостей. Корреляционно-регрессионный анализ в Excel: инструкция выполнения. Множественное парное уравнение регрессии: оценка важности связи

В статистическом моделировании регрессионный анализ представляет собой исследования, применяемые с целью оценки взаимосвязи между переменными. Этот математический метод включает в себя множество других методов для моделирования и анализа нескольких переменных, когда основное внимание уделяется взаимосвязи между зависимой переменной и одной или несколькими независимыми. Говоря более конкретно, регрессионный анализ помогает понять, как меняется типичное значение зависимой переменной, если одна из независимых переменных изменяется, в то время как другие независимые переменные остаются фиксированными.

Во всех случаях целевая оценка является функцией независимых переменных и называется функцией регрессии. В регрессионном анализе также представляет интерес характеристика изменения зависимой переменной как функции регрессии, которая может быть описана с помощью распределения вероятностей.

Задачи регрессионного анализа

Данный статистический метод исследования широко используется для прогнозирования, где его использование имеет существенное преимущество, но иногда это может приводить к иллюзии или ложным отношениям, поэтому рекомендуется аккуратно его использовать в указанном вопросе, поскольку, например, корреляция не означает причинно-следственной связи.

Разработано большое число методов для проведения регрессионного анализа, такие как линейная и обычная регрессии по методу наименьших квадратов, которые являются параметрическими. Их суть в том, что функция регрессии определяется в терминах конечного числа неизвестных параметров, которые оцениваются из данных. Непараметрическая регрессия позволяет ее функции лежать в определенном наборе функций, которые могут быть бесконечномерными.

Как статистический метод исследования, регрессионный анализ на практике зависит от формы процесса генерации данных и от того, как он относится к регрессионному подходу. Так как истинная форма процесса данных, генерирующих, как правило, неизвестное число, регрессионный анализ данных часто зависит в некоторой степени от предположений об этом процессе. Эти предположения иногда проверяемы, если имеется достаточное количество доступных данных. Регрессионные модели часто бывают полезны даже тогда, когда предположения умеренно нарушены, хотя они не могут работать с максимальной эффективностью.

В более узком смысле регрессия может относиться конкретно к оценке непрерывных переменных отклика, в отличие от дискретных переменных отклика, используемых в классификации. Случай непрерывной выходной переменной также называют метрической регрессией, чтобы отличить его от связанных с этим проблем.

История

Самая ранняя форма регрессии - это всем известный метод наименьших квадратов. Он был опубликован Лежандром в 1805 году и Гауссом в 1809. Лежандр и Гаусс применили метод к задаче определения из астрономических наблюдений орбиты тел вокруг Солнца (в основном кометы, но позже и вновь открытые малые планеты). Гаусс опубликовал дальнейшее развитие теории наименьших квадратов в 1821 году, включая вариант теоремы Гаусса-Маркова.

Термин «регресс» придумал Фрэнсис Гальтон в XIX веке, чтобы описать биологическое явление. Суть была в том, что рост потомков от роста предков, как правило, регрессирует вниз к нормальному среднему. Для Гальтона регрессия имела только этот биологический смысл, но позже его работа была продолжена Удни Йолей и Карлом Пирсоном и выведена к более общему статистическому контексту. В работе Йоля и Пирсона совместное распределение переменных отклика и пояснительных считается гауссовым. Это предположение было отвергнуто Фишером в работах 1922 и 1925 годов. Фишер предположил, что условное распределение переменной отклика является гауссовым, но совместное распределение не должны быть таковым. В связи с этим предположение Фишера ближе к формулировке Гаусса 1821 года. До 1970 года иногда уходило до 24 часов, чтобы получить результат регрессионного анализа.

Методы регрессионного анализа продолжают оставаться областью активных исследований. В последние десятилетия новые методы были разработаны для надежной регрессии; регрессии с участием коррелирующих откликов; методы регрессии, вмещающие различные типы недостающих данных; непараметрической регрессии; байесовские методов регрессии; регрессии, в которых переменные прогнозирующих измеряются с ошибкой; регрессии с большей частью предикторов, чем наблюдений, а также причинно-следственных умозаключений с регрессией.

Регрессионные модели

Модели регрессионного анализа включают следующие переменные:

  • Неизвестные параметры, обозначенные как бета, которые могут представлять собой скаляр или вектор.
  • Независимые переменные, X.
  • Зависимые переменные, Y.

В различных областях науки, где осуществляется применение регрессионного анализа, используются различные термины вместо зависимых и независимых переменных, но во всех случаях регрессионная модель относит Y к функции X и β.

Приближение обычно оформляется в виде E (Y | X) = F (X, β). Для проведения регрессионного анализа должен быть определен вид функции f. Реже она основана на знаниях о взаимосвязи между Y и X, которые не полагаются на данные. Если такое знание недоступно, то выбрана гибкая или удобная форма F.

Зависимая переменная Y

Предположим теперь, что вектор неизвестных параметров β имеет длину k. Для выполнения регрессионного анализа пользователь должен предоставить информацию о зависимой переменной Y:

  • Если наблюдаются точки N данных вида (Y, X), где N < k, большинство классических подходов к регрессионному анализу не могут быть выполнены, так как система уравнений, определяющих модель регрессии в качестве недоопределенной, не имеет достаточного количества данных, чтобы восстановить β.
  • Если наблюдаются ровно N = K, а функция F является линейной, то уравнение Y = F (X, β) можно решить точно, а не приблизительно. Это сводится к решению набора N-уравнений с N-неизвестными (элементы β), который имеет единственное решение до тех пор, пока X линейно независим. Если F является нелинейным, решение может не существовать, или может существовать много решений.
  • Наиболее распространенной является ситуация, где наблюдается N > точки к данным. В этом случае имеется достаточно информации в данных, чтобы оценить уникальное значение для β, которое наилучшим образом соответствует данным, и модель регрессии, когда применение к данным можно рассматривать как переопределенную систему в β.

В последнем случае регрессионный анализ предоставляет инструменты для:

  • Поиска решения для неизвестных параметров β, которые будут, например, минимизировать расстояние между измеренным и предсказанным значением Y.
  • При определенных статистических предположениях, регрессионный анализ использует избыток информации для предоставления статистической информации о неизвестных параметрах β и предсказанные значения зависимой переменной Y.

Необходимое количество независимых измерений

Рассмотрим модель регрессии, которая имеет три неизвестных параметра: β 0 , β 1 и β 2 . Предположим, что экспериментатор выполняет 10 измерений в одном и том же значении независимой переменной вектора X. В этом случае регрессионный анализ не дает уникальный набор значений. Лучшее, что можно сделать, оценить среднее значение и стандартное отклонение зависимой переменной Y. Аналогичным образом измеряя два различных значениях X, можно получить достаточно данных для регрессии с двумя неизвестными, но не для трех и более неизвестных.

Если измерения экспериментатора проводились при трех различных значениях независимой переменной вектора X, то регрессионный анализ обеспечит уникальный набор оценок для трех неизвестных параметров в β.

В случае общей линейной регрессии приведенное выше утверждение эквивалентно требованию, что матрица X Т X обратима.

Статистические допущения

Когда число измерений N больше, чем число неизвестных параметров k и погрешности измерений ε i , то, как правило, распространяется затем избыток информации, содержащейся в измерениях, и используется для статистических прогнозов относительно неизвестных параметров. Этот избыток информации называется степенью свободы регрессии.

Основополагающие допущения

Классические предположения для регрессионного анализа включают в себя:

  • Выборка является представителем прогнозирования логического вывода.
  • Ошибка является случайной величиной со средним значением нуля, который является условным на объясняющих переменных.
  • Независимые переменные измеряются без ошибок.
  • В качестве независимых переменных (предикторов) они линейно независимы, то есть не представляется возможным выразить любой предсказатель в виде линейной комбинации остальных.
  • Ошибки являются некоррелированными, то есть ковариационная матрица ошибок диагоналей и каждый ненулевой элемент являются дисперсией ошибки.
  • Дисперсия ошибки постоянна по наблюдениям (гомоскедастичности). Если нет, то можно использовать метод взвешенных наименьших квадратов или другие методы.

Эти достаточные условия для оценки наименьших квадратов обладают требуемыми свойствами, в частности эти предположения означают, что оценки параметров будут объективными, последовательными и эффективными, в особенности при их учете в классе линейных оценок. Важно отметить, что фактические данные редко удовлетворяют условиям. То есть метод используется, даже если предположения не верны. Вариация из предположений иногда может быть использована в качестве меры, показывающей, насколько эта модель является полезной. Многие из этих допущений могут быть смягчены в более продвинутых методах. Отчеты статистического анализа, как правило, включают в себя анализ тестов по данным выборки и методологии для полезности модели.

Кроме того, переменные в некоторых случаях ссылаются на значения, измеренные в точечных местах. Там могут быть пространственные тенденции и пространственные автокорреляции в переменных, нарушающие статистические предположения. Географическая взвешенная регрессия - единственный метод, который имеет дело с такими данными.

В линейной регрессии особенностью является то, что зависимая переменная, которой является Y i , представляет собой линейную комбинацию параметров. Например, в простой линейной регрессии для моделирования n-точек используется одна независимая переменная, x i , и два параметра, β 0 и β 1 .

При множественной линейной регрессии существует несколько независимых переменных или их функций.

При случайной выборке из популяции ее параметры позволяют получить образец модели линейной регрессии.

В данном аспекте популярнейшим является метод наименьших квадратов. С помощью него получают оценки параметров, которые минимизируют сумму квадратов остатков. Такого рода минимизация (что характерно именно линейной регрессии) этой функции приводит к набору нормальных уравнений и набору линейных уравнений с параметрами, которые решаются с получением оценок параметров.

При дальнейшем предположении, что ошибка популяции обычно распространяется, исследователь может использовать эти оценки стандартных ошибок для создания доверительных интервалов и проведения проверки гипотез о ее параметрах.

Нелинейный регрессионный анализ

Пример, когда функция не является линейной относительно параметров, указывает на то, что сумма квадратов должна быть сведена к минимуму с помощью итерационной процедуры. Это вносит много осложнений, которые определяют различия между линейными и нелинейными методами наименьших квадратов. Следовательно, и результаты регрессионного анализа при использовании нелинейного метода порой непредсказуемы.

Расчет мощности и объема выборки

Здесь, как правило, нет согласованных методов, касающихся числа наблюдений по сравнению с числом независимых переменных в модели. Первое правило было предложено Доброй и Хардином и выглядит как N = t^n, где N является размер выборки, n - число независимых переменных, а t есть числом наблюдений, необходимых для достижения желаемой точности, если модель имела только одну независимую переменную. Например, исследователь строит модель линейной регрессии с использованием набора данных, который содержит 1000 пациентов (N). Если исследователь решает, что необходимо пять наблюдений, чтобы точно определить прямую (м), то максимальное число независимых переменных, которые модель может поддерживать, равно 4.

Другие методы

Несмотря на то что параметры регрессионной модели, как правило, оцениваются с использованием метода наименьших квадратов, существуют и другие методы, которые используются гораздо реже. К примеру, это следующие методы:

  • Байесовские методы (например, байесовский метод линейной регрессии).
  • Процентная регрессия, использующаяся для ситуаций, когда снижение процентных ошибок считается более целесообразным.
  • Наименьшие абсолютные отклонения, что является более устойчивым в присутствии выбросов, приводящих к квантильной регрессии.
  • Непараметрическая регрессия, требующая большого количества наблюдений и вычислений.
  • Расстояние метрики обучения, которая изучается в поисках значимого расстояния метрики в заданном входном пространстве.

Программное обеспечение

Все основные статистические пакеты программного обеспечения выполняются с помощью наименьших квадратов регрессионного анализа. Простая линейная регрессия и множественный регрессионный анализ могут быть использованы в некоторых приложениях электронных таблиц, а также на некоторых калькуляторах. Хотя многие статистические пакеты программного обеспечения могут выполнять различные типы непараметрической и надежной регрессии, эти методы менее стандартизированы; различные программные пакеты реализуют различные методы. Специализированное регрессионное программное обеспечение было разработано для использования в таких областях как анализ обследования и нейровизуализации.

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

Так, для случая «Республика Адыгея» с долей сель­ского населения 47% предсказанное значение составит 5,63:

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула:

Аактив, = -0,1 х Гор. нас.n+- 0,06 х Рус. нас.n + 75,99.

Можем ли мы сравнивать «объяснительную силу» предикторов, исходя из значения коэффициента 61. В данном случае - да, так как обе независимые переменные имеют одинаковый процентный фор­мат. Однако чаще всего множественная регрессия имеет дело с пере­менными, измеренными в разных шкалах (к примеру, уровень дохода в рублях и возраст в годах). Поэтому в общем случае сравнивать пред­сказательные возможности переменных по регрессионному коэффи­циенту некорректно. В статистике множественной регрессии для этой цели существует специальный бета-коэффициент (В), вычисляемый отдельно для каждой независимой переменной. Он представляет со­бой частный (вычисленный после учета влияния всех других предик­торов) коэффициент корреляции фактора и отклика и показывает не­зависимый вклад фактора в предсказание значений отклика. В парном регрессионном анализе бета-коэффициент по понятным причинам равен коэффициенту парной корреляции между зависимой и незави­симой переменной.

В нашем примере бета (Гор. нас.) = -0,43, бета (Рус. нас.) = -0,28. Та­ким образом, оба фактора отрицательно влияют на уровень электо­ральной активности, при этом значимость фактора урбанизации су­щественно выше значимости национального фактора. Совокупное влияние обоих факторов определяет около 38% вариации переменной «электоральная активность» (см. значение Л-квадрат).

Современная политическая наука исходит из положения о взаимосвязи всех явлений и процессов в обществе. Невозможно понимание событий и процессов, прогнозирование и управление явлениями политической жизни без изучения связей и зависимостей, существующих в политической сфере жизнедеятельности общества. Одна из наиболее распространенных задач политического исследования состоит в изучении связи между некоторыми наблюдаемыми переменными. Помогает решить эту задачу целый класс статистических приемов анализа, объединенных общим названием «регрессионный анализ» (или, как его еще называют, «корреляционно-регрессионный анализ»). Однако если корреляционный анализ позволяет оценить силу связи между двумя переменными, то с помощью регрессионного анализа можно определить вид этой связи, прогнозировать зависимость значения какой-либо переменной от значения другой переменной.

Для начала вспомним, что такое корреляция. Корреляционным называют важнейший частный случай статистической связи, состоящий в том, что равным значениям одной переменной соответствуют различные средние значения другой. С изменением значения признака х закономерным образом изменяется среднее значение признака у, в то время как в каждом отдельном случае значение признака у (с различными вероятностями) может принимать множество различных значений.

Появление в статистике термина «корреляция» (а политология привлекает для решения своих задач достижения статистики, которая, таким образом, является смежной политологии дисциплиной) связано с именем английского биолога и статистика Френсиса Галь- тона, предложившего в XIX в. теоретические основы корреляционно- регрессионного анализа. Термин «корреляция» в науке был известен и ранее. В частности, в палеонтологии еще в XVIII в. его применил французский ученый Жорж Кювье. Он ввел так называемый закон корреляции, при помощи которого по найденным в ходе раскопок останкам животных можно было восстановить их облик.

Известна история, связанная с именем этого ученого и его законом корреляции. Так, в дни университетского праздника студенты, решившие подшутить над известным профессором, натянули на одного студента козлиную шкуру с рогами и копытами. Тот залез в окно спальни Кювье и закричал: «Я тебя съем». Профессор проснулся, посмотрел на силуэт и ответил: «Если у тебя есть рога и копыта, то ты - травоядное животное и съесть меня не можешь. А за незнание закона корреляции получишь двойку». Повернулся на другой бок и уснул. Шутка шуткой, но на этом примере мы наблюдаем частный случай применения множественного корреляционно-регрессионного анализа. Здесь профессор, исходя из знания значений двух наблюдаемых признаков (наличие рогов и копыт), на основании закона корреляции вывел среднее значение третьего признака (класс, к которому относится данное животное - травоядное). В данном случае речь не идет о конкретном значении этой переменной (т.е. данное животное могло принимать различные значения по номинальной шкале - это мог быть и козел, и баран, и бык...).

Теперь перейдем к термину «регрессия». Собственно говоря, он не связан со смыслом тех статистических задач, которые решаются при помощи этого метода. Объяснение термину можно дать только исходя из знания истории развития методов изучения связей между признаками. Одним из первых примеров исследований такого рода была работа статистиков Ф. Гальтона и К. Пирсона, пытавшихся обнаружить закономерность между ростом отцов и их детей по двум наблюдаемым признакам (где X- рост отцов и У- рост детей). В ходе своего исследования они подтвердили начальную гипотезу о том, что в среднем у высоких отцов вырастают в среднем высокие дети. Этот же принцип действует в отношении низких отцов и детей. Однако если бы ученые на этом остановились, то их труды никогда не упоминались бы в учебниках по статистике. Исследователи обнаружили еще одну закономерность в рамках уже упоминавшейся подтвержденной гипотезы. Они доказали, что у очень высоких отцов рождаются в среднем высокие дети, но не сильно отличающиеся ростом от детей, чьи отцы хоть и выше среднего, но не сильно отличаются от средневысокого роста. То же и у отцов с очень маленьким ростом (отклоняющимся от средних показателей низкорослой группы) - их дети в среднем не отличались по росту от сверстников, чьи отцы были просто невысокими. Функцию, описывающую эту закономерность, они и назвали функцией регрессии. После этого исследования все уравнения, описывающие подобные функции и построенные сходным образом, стали именовать уравнениями регрессии.

Регрессионный анализ - один из методов многомерного статистического анализа данных, объединяющий совокупность статистических приемов, предназначенных для изучения или моделирования связей между одной зависимой и несколькими (или одной) независимыми переменными. Зависимая переменная по принятой в статистике традиции называется откликом и обозначается как V Независимые переменные называются предикторами и обозначаются как X. В ходе анализа некоторые переменные окажутся слабо связанными с откликом и будут в конечном счете исключены из анализа. Оставшиеся переменные, связанные с зависимой, могут именоваться еще факторами.

Регрессионный анализ дает возможность предсказать значения одной или нескольких переменных в зависимости от другой переменной (например, склонность к неконвенциональному политическому поведению в зависимости от уровня образования) или нескольких переменных. Рассчитывается он на PC. Для составления регрессионного уравнения, позволяющего измерить степень зависимости контролируемого признака от факторных, необходимо привлечь профессиональных математиков-программистов. Регрессионный анализ может оказать неоценимую услугу при построении прогностических моделей развития политической ситуации, оценке причин социальной напряженности, при проведении теоретических экспериментов. Регрессионный анализ активно используется для изучения влияния на электоральное поведение граждан ряда социально-демографических параметров: пола, возраста, профессии, места проживания, национальности, уровня и характера доходов.

Применительно к регрессионному анализу используют понятия независимой и зависимой переменных. Независимой называют переменную, которая объясняет или служит причиной изменения другой переменной. Зависимой называют переменную, значение которой объясняют воздействием первой переменной. Например, на президентских выборах в 2004 г. определяющими факторами, т.е. независимыми переменными, выступили такие показатели, как стабилизация материального положения населения страны, уровень известности кандидатов и фактор incumbency. В качестве зависимой переменной в данном случае можно считать процент голосов, поданных за кандидатов. Аналогично в паре переменных «возраст избирателя» и «уровень электоральной активности» независимой является первая, зависимой - вторая.

Регрессионный анализ позволяет решать следующие задачи:

  • 1) установить сам факт наличия или отсутствия статистически значимой связи между Ки X;
  • 2) построить наилучшие (в статистическом смысле) оценки функции регрессии;
  • 3) по заданным значениям X построить прогноз для неизвестного У
  • 4) оценить удельный вес влияния каждого фактора X на У и соответственно исключить из модели несущественные признаки;
  • 5) посредством выявления причинных связей между переменными частично управлять значениями Рпутем регулирования величин объясняющих переменных X.

Регрессионный анализ связан с необходимостью выбора взаимно независимых переменных, влияющих на значение исследуемого показателя, определения формы уравнения регрессии, оценки параметров при помощи статистических методов обработки первичных социологических данных. В основе этого вида анализа лежит представление о форме, направлении и тесноте (плотности) взаимосвязи. Различают парную и множественную регрессию в зависимости от количества исследуемых признаков. На практике регрессионный анализ обычно выполняется совместно с корреляционным. Уравнение регрессии описывает числовое соотношение между величинами, выраженное в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой. При этом ра зл и ч а ют л инейную и нелинейную регрессии. При описании политических процессов в равной степени обнаруживаются оба варианта регрессии.

Диаграмма рассеяния для распределения взаимозависимости интереса к статьям на политические темы (У) и образования респондентов (X) представляет собой линейную регрессию (рис. 30).

Рис. 30.

Диаграмма рассеяния для распределения уровня электоральной активности (У) и возраста респондента (А) (условный пример) представляет собой нелинейную регрессию (рис. 31).


Рис. 31.

Для описания взаимосвязи двух признаков (А"и У) в модели парной регрессии используют линейное уравнение

где а, - случайная величина погрешности уравнения при вариации признаков, т.е. отклонение уравнения от «линейности».

Для оценки коэффициентов а и b используют метод наименьших квадратов, предполагающий, что сумма квадратов отклонений каждой точки на диаграмме разброса от линии регрессии должна быть минимальной. Коэффициенты а ч Ь могут быть вычислены при помощи системы уравнений:

Метод оценки наименьших квадратов дает такие оценки коэффициентов а и Ь, при которых прямая проходит через точку с координатами х и у, т.е. имеет место соотношение у = ах + Ь. Графическое изображение уравнения регрессии называется теоретической линией регрессии. При линейной зависимости коэффициент регрессии представляет на графике тангенс угла наклона теоретической линии регрессии к оси абсцисс. Знак при коэффициенте показывает направление связи. Если он больше нуля, то связь прямая, если меньше - обратная.

В приведенном ниже примере из исследования «Политический Петербург-2006» (табл. 56) показана линейная взаимосвязь представлений граждан о степени удовлетворенности своей жизнью в настоящем и ожиданиями изменений качества жизни в будущем. Связь прямая, линейная (стандартизованный коэффициент регрессии равен 0,233, уровень значимости - 0,000). В данном случае коэффициент регрессии невысокий, однако он превышает нижнюю границу статистически значимого показателя (нижнюю границу квадрата статистически значимого показателя коэффициента Пирсона).

Таблица 56

Влияние качества жизни горожан в настоящем на ожидания

(Санкт-Петербург, 2006 г.)

* Зависимая переменная: «Как Вы думаете, как изменится Ваша жизнь в ближайшие 2-3 года?»

В политической жизни значение изучаемой переменной чаше всего одновременно зависит от нескольких признаков. Например, на уровень и характер политической активности одновременно оказывают влияние политический режим государства, политические традиции, особенности политического поведения людей данного района и социальная микрогруппа респондента, его возраст, образование, уровень дохода, политическая ориентация и т.д. В этом случае необходимо воспользоваться уравнением множественной регрессии , которое имеет следующий вид:

где коэффициент Ь. - частный коэффициент регрессии. Он показывает вклад каждой независимой переменной в определение значений независимой (результирующей) переменной. Если частный коэффициент регрессии близок к 0, то можно сделать вывод, что непосредственной связи между независимыми и зависимой переменными нет.

Расчет подобной модели можно выполнить на PC, прибегнув к помоши матричной алгебры. Множественная регрессия позволяет отразить многофакторность социальных связей и уточнить меру воздействия каждого фактора в отдельности и всех вместе на результирующий признак.

Коэффициент, обозначаемый Ь, называется коэффициентом линейной регрессии и показывает силу связи между вариацией факторного признака X и вариацией результативного признака Y Данный коэффициент измеряет силу связи в абсолютных единицах измерения признаков. Однако теснота корреляционной связи признаков может быть выражена и в долях среднего квадратического отклонения результативного признака (такой коэффициент называется коэффициентом корреляции). В отличие от коэффициента регрессии b коэффициент корреляции не зависит от принятых единиц измерения признаков, а стало быть, он сравним для любых признаков. Обычно считают связь сильной, если / > 0,7, средней тесноты - при 0,5 г 0,5.

Как известно, максимально тесная связь - это связь функциональная, когда каждое индивидуальное значение Y может быть однозначно поставлено в соответствие значению X. Таким образом, чем ближе коэффициент корреляции к 1, тем ближе связь к функциональной. Уровень значимости для регрессионного анализа не должен превышать 0,001.

Коэффициент корреляции долгое время рассматривался как основной показатель тесноты связи признаков. Однако позднее таким показателем стал коэффициент детерминации. Смысл этого коэффициента в следующем - он отражает долю общей дисперсии результирующего признака У , объясняемую дисперсией признака X. Находится он простым возведением в квадрат коэффициента корреляции (изменяющегося от 0 до 1) и в свою очередь для линейной связи отражает долю от 0 (0%) до 1 (100%) значений признака Y, определяемую значениями признака X. Записывается он как I 2 , а в результирующих таблицах регрессионного анализа в пакете SPSS - без квадрата.

Обозначим основные проблемы построения уравнения множественной регрессии.

  • 1. Выбор факторов, включаемых в уравнение регрессии. На этой стадии исследователь сначала составляет общий список основных причин, которые согласно теории обусловливают изучаемое явление. Затем он должен отобрать признаки в уравнение регрессии. Основное правило отбора: факторы, включаемые в анализ, должны как можно меньше коррелировать друг с другом; только в этом случае можно приписать количественную меру воздействия определенному фактору-признаку.
  • 2. Выбор формы уравнения множественной регрессии (на практике чаще пользуются линейной или линейно-логарифмической). Итак, для использования множественной регрессии исследователь сначала должен построить гипотетическую модель влияния нескольких независимых переменных на результирующую. Чтобы полученные результаты были достоверны, необходимо, чтобы модель точно соответствовала реальному процессу, т.е. связь между переменными должна быть линейной, нельзя проигнорировать ни одну значимую независимую переменную, точно так же нельзя включать в анализ ни одну переменную, не имеющую прямого отношения к изучаемому процессу. Кроме того, все измерения переменных должны быть предельно точными.

Из приведенного описания вытекает ряд условий применения этого метода, без соблюдения которых нельзя приступить к самой процедуре множественого регрессионного анализа (МРА). Только соблюдение всех из нижеперечисленных пунктов позволяет корректно осуществлять регрессионный анализ.

Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной . Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка : сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения . Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины . Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты , называемые анализом остатков . При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза , анализа временных рядов , тестирования гипотез и выявления скрытых взаимосвязей в данных.

Определение регрессионного анализа

Выборка может быть не функцией, а отношением. Например, данные для построения регрессии могут быть такими: . В такой выборке одному значению переменной соответствует несколько значений переменной .

Линейная регрессия

Линейная регрессия предполагает, что функция зависит от параметров линейно. При этом линейная зависимость от свободной переменной необязательна,

В случае, когда функция линейная регрессия имеет вид

здесь — компоненты вектора .

Значения параметров в случае линейной регрессии находят с помощью метода наименьших квадратов . Использование этого метода обосновано предположением о гауссовском распределении случайной переменной.

Разности между фактическими значениями зависимой переменной и восстановленными называются регрессионными остатками (residuals). В литературе используются также синонимы: невязки и ошибки . Одной из важных оценок критерия качества полученной зависимости является сумма квадратов остатков:

Здесь — Sum of Squared Errors.

Дисперсия остатков вычисляется по формуле

Здесь — Mean Square Error, среднеквадратичная ошибка.

На графиках представлены выборки, обозначенные синими точками, и регрессионные зависимости, обозначенные сплошными линиями. По оси абсцисс отложена свободная переменная, а по оси ординат — зависимая. Все три зависимости линейны относительно параметров.

Нелинейная регрессия

Нелинейные регрессионные модели - модели вида

которые не могут быть представлены в виде скалярного произведения

где - параметры регрессионной модели, - свободная переменная из пространства , - зависимая переменная, - случайная величина и - функция из некоторого заданного множества.

Значения параметров в случае нелинейной регрессии находят с помощью одного из методов градиентного спуска, например алгоритма Левенберга-Марквардта .

О терминах

Термин "регрессия" был введён Фрэнсисом Гальтоном в конце 19-го века. Гальтон обнаружил, что дети родителей с высоким или низким ростом обычно не наследуют выдающийся рост и назвал этот феномен "регрессия к посредственности". Сначала этот термин использовался исключительно в биологическом смысле. После работ Карла Пирсона этот термин стали использовать и в статистике.

В статистической литературе различают регрессию с участием одной свободной переменной и с несколькими свободными переменными — одномерную и многомерную регрессию. Предполагается, что мы используем несколько свободных переменных, то есть, свободная переменная — вектор . В частных случаях, когда свободная переменная является скаляром, она будет обозначаться . Различают линейную и нелинейную регрессию. Если регрессионную модель не является линейной комбинацией функций от параметров, то говорят о нелинейной регрессии. При этом модель может быть произвольной суперпозицией функций из некоторого набора. Нелинейными моделями являются, экспоненциальные, тригонометрические и другие (например, радиальные базисные функции или персептрон Розенблатта), полагающие зависимость между параметрами и зависимой переменной нелинейной.

Различают параметрическую и непараметрическую регрессию. Строгую границу между этими двумя типами регрессий провести сложно. Сейчас не существует общепринятого критерия отличия одного типа моделей от другого. Например, считается, что линейные модели являются параметрическими, а модели, включающие усреднение зависимой переменной по пространству свободной переменной —непараметрическими. Пример параметрической регресионной модели: линейный предиктор, многослойный персептрон. Примеры смешанной регрессионной модели: функции радиального базиса. Непараметрическая модель — скользящее усреднение в окне некоторой ширины. В целом, непараметрическая регрессия отличается от параметрической тем, что зависимая переменная зависит не от одного значения свободной переменной, а от некоторой заданной окрестности этого значения.

Есть различие между терминами: "приближение функций", "аппроксимация", "интерполяция", и "регрессия". Оно заключается в следующем.

Приближение функций. Дана функция дискретного или непрерывного аргумента. Требуется найти функцию из некоторого параметрическую семейства, например, среди алгебраических полиномов заданной степени. Параметры функции должны доставлять минимум некоторому функционалу, например,

Термин аппроксимация — синоним термина "приближение функций". Чаще используется тогда, когда речь идет о заданной функции, как о функции дискретного аргумента. Здесь также требуется отыскать такую функцию , которая проходит наиболее близко ко всем точкам заданной функции. При этом вводится понятие невязки — расстояния между точками непрерывной функции и соответствующими точками функции дискретного аргумента.

Интерполяция функций — частный случай задачи приближения, когда требуется, чтобы в определенных точках, называемых узлами интерполяции совпадали значения функции и приближающей ее функции . В более общем случае накладываются ограничения на значения некоторых производных производных. То есть, дана функция дискретного аргумента. Требуется отыскать такую функцию , которая проходит через все точки . При этом метрика обычно не используется, однако часто вводится понятие "гладкости" искомой функции.