Уход и... Инструменты Дизайн ногтей

Распределение вероятностей события. Геометрическое и отрицательное биномиальное. Биномиальное распределение и расчёты в MS Excel

Распределение вероятностей - вероятностная мера на измеримом пространстве.

Пусть W - непустое множество произвольной природы и Ƒ -s- алгебра на W, то есть совокупность подмножеств W, содержащая само W, пустое множество Æ, и замкнутая относительно не более, чем счетного множества теоретико-множественных операций (это означает, что для любого A Î Ƒ множество = W\A вновь принадлежит Ƒ и если A 1 , A 2 ,…Î Ƒ , то Ƒ и Ƒ ). Пара (W,Ƒ ) называется измеримым пространством. Неотрицательная функция P(A ), определенная для всех A Î Ƒ , называется вероятностной мерой, вероятностью, Р. вероятностей или просто Р., если P(W) = 1 и P является счетно-аддитивной, то есть для любой последовательности A 1 , A 2 ,…Î Ƒ такой, что A i A j = Æ для всех i ¹ j , справедливо равенство P() = P(A i ). Тройка (W, Ƒ , P) называется вероятностным пространством. Вероятностное пространство является исходным понятием аксиоматической теории вероятностей , предложенной А.Н. Колмогоровым в начале 1930 гг.

На каждом вероятностном пространстве можно рассматривать (действительные) измеримые функции X = X (w), wÎW, то есть такие функции, что {w: X (w) Î B } Î Ƒ для любого борелевского подмножества B действительной прямой R . Измеримость функции X эквивалентна тому, что {w: X (w) < x } Î Ƒ для любого действительного x . Измеримые функции называются случайными величинами. Каждая случайная величина X , опреде-ленная на вероятностном пространстве (W, Ƒ , P), порождает Р. вероятностей

P X (B ) = P(X ÎB ) = P({w: X (w) Î B }), B ÎƁ ,
на измеримом пространстве (R , Ɓ ), где Ɓ R , и функцию распределения

F X (x ) = P(X < x ) = P({w: X (w) < x }), -¥ < x <¥,
которые называются Р. вероятностей и функцией распределения случайной величины X .

Функция распределения F любой случайной величины обладает свойствами

1. F (x ) неубывает,

2. F (- ¥) = 0, F (¥) = 1,

3. F (x ) непрерывна слева в каждой точке x .

Иногда в определении функции распределения неравенство < заменяется неравенством £; в этом случае функция распределения является непрерывной справа. В содержательных утверждениях теории вероятностей не важно, непрерывна функция распределения слева или справа, важны лишь положения ее точек разрыва x (если они есть) и величины приращений F (x +0) - F (x -0) в этих точках; если F X , то это приращение есть P(X = x ).

Любая функция F , обладающая свойствами 1. - 3. называется функцией распреде-ления. Соответствие между распределениями на (R , Ɓ ) и функциями распределения взаимно однозначно. Для любого Р. P на (R , Ɓ ) его функция распределения определяется равенством F (x ) = P ((-¥, x )), -¥ < x <¥, а для любой функции распределения F соответствующее ей Р. P определяется на алгебре £ множеств, состоящей из объединений конечного числа непересекающихся промежутков функция F 1 (x ) линейно возрастает от 0 до 1. Для построения функции F 2 (x ) отрезок разбиваеся на отрезок , интервал (1/3, 2/3) и отрезок . Функция F 2 (x ) на интервале (1/3, 2/3) равна 1/2 и линейно возрастает от 0 до 1/2 и от 1/2 до 1 на отрезках и соответственно. Этот процесс продолжается и функция F n +1 получается с помощью следующего преобразования функции F n , n ³ 2. На интервалах, где функция F n (x ) постоянна, F n +1 (x ) совпадает с F n (x ). Каждый отрезок , где функция F n (x ) линейно возрастает от a до b , разбивается на отрезок , интервал (a + (a - b)/3, a + 2(b - a)/3) и отрезок . На указанном интервале F n +1 (x ) равна (a + b )/2, а на указанных отрезках F n +1 (x ) линейно возрастает от a до (a + b )/2и от (a + b )/2 до b соответственно. Для каждого 0 £ x £ 1 последовательность F n (x ), n = 1, 2,..., сходится к некоторому числу F (x ). Последо-вательность функций распределения F n , n = 1, 2,..., равностепенно непрерывна, поэтому предельная функция распределения F (x ) является непрерывной. Эта функция постоянна на счетном множестве интервалов (значения функции на разных интервалах различны), на которых нет ее точек роста, а суммарная длина этих интервалов равна 1. Поэтому мера Лебега множества supp F равна нулю, то есть F сингулярна.

Каждая функция распределения может быть представлена в виде

F (x ) = p ac F ac (x ) + p d F d (x ) + p s F s (x ),
где F ac , F d и F s абсолютно непрерывная, дискретная и сингулярная функции распреде-ления, а сумма неотрицательных чисел p ac , p d и p s равна единице. Это представление называется разложением Лебега, а функции F ac , F d и F s - компонентами разложения.

Функция распределения называется симметричной, если F (-x ) = 1 - F (x + 0) для
x > 0. Если симметричная функция распределения абсолютно непрерывна, то ее плотность - четная функция. Если случайная величина X имеет симметричное распределение, то случайные величины X и -X одинаково распределены. Если симметричная функция распределения F (x ) непрерывна в нуле, то F (0) = 1/2.

Среди часто используемых в теории вероятностей абсолютно непрерывных Р. - равномерное Р., нормальное Р. (Р. Гаусса), экспоненциальное Р. и Р. Коши.

Р. называется равномерным на интервале (a , b ) (или на отрезке [a , b ], или на промежутках [a , b ) и (a , b ]), если его плотность постоянна (и равна 1/(b - a )) на (a , b ) и равна нулю вне (a , b ). Чаще всего используется равномерное Р. на (0, 1), его функция распределения F (x ) равна нулю при x £ 0, равна единице при x >1 и F (x ) = x при 0 < x £ 1. Равномерное Р. на (0, 1) имеет случайная величина X (w) = w на вероятностном прост-ранстве, состоящем из интервала (0, 1), совокупности борелевских подмножеств этого интервала и меры Лебега. Это вероятностное пространство соответствует эксперименту «бросание точки w наудачу на интервал (0, 1)», где слово «наудачу» означает равноправие («равновозможность») всех точек из (0, 1). Если на вероятностном пространстве (W, Ƒ , P) существует случайная величина X с равномерным Р. на (0, 1), то на нем для любой функ-ции распределения F существует случайная величина Y , для которой функция распределе-ния F Y совпадает с F . Например, функция распределения случайной величины Y = F -1 (X ) совпадает с F . Здесь F -1 (y ) = inf{x : F (x ) > y }, 0 < y < 1; если функция F (x ) непрерывна и строго монотонна на всей действительной прямой, то F -1 - функция, обратная F .

Нормальным Р. с параметрами (a , s 2), -¥ < a < ¥, s 2 > 0, называется Р. с плотностью, -¥ < x < ¥. Чаще всего используется нормальное Р. с параметрами a = 0 и s 2 = 1, которое называется стандартным нормальным Р., его функция распределения F(x ) через суперпозиции элементарные функций не выражается и приходится использовать ее интегральное представление F(x ) =, -¥ < x < ¥. Для фунции распределения F(x ) составлены подробные таблицы, которые были необходимы до того как появилась современная вычислительная техника (значения функции F(x ) можно получать и с помощью таблиц спец. функции erf(x )), значения F(x ) для x > 0 можно получать с помощью суммы ряда

,
а для x < 0 можно воспользоваться симметричностью F(x ). Значения нормальной функции распределения с параметрами a и s 2 можно получать, пользуясь тем, что она совпадает с F((x - a )/s). Если X 1 и X 2 независимые нормально распределенные с параметрами a 1 , s 1 2 и a 2 , s 2 2 случайные величины, то распределение их суммы X 1 + X 2 также нормально с параметрами a = a 1 + a 2 и s 2 = s 1 2 + s 2 2 . Верно и утверждение, в некотором смысле, обратное: если случайная величина X нормально распределена с параметрами a и s 2 , и
Х = X 1 + X 2 , где X 1 и X 2 - независимые случайные величины, отличные от постоянных, то X 1 и X 2 имеют нормальные распределения (теорема Крамера). Параметры a 1 , s 1 2 и a 2 , s 2 2 распределений нормальных случайных величин X 1 и X 2 связаны с a и s 2 равенствами, приведенными выше. Стандартное нормальное распределение является предельным в центральной предельной теореме .

Экспоненциальным Р. называется распределение с плотностью p (x ) = 0 при x < 0 и p (x ) = le - lx при x ³ 0, где l > 0 - параметр, его функция распределения F (x ) = 0 при x £ 0 и F (x ) = 1 - e - lx при x > 0 (иногда используются экспоненциальные Р., отличающиеся от указанного сдвигом по действительной оси). Это Р. обладает свойством, которое называ-ется отсутствием последействия: если X - случайная величина с экспоненциальным Р., то для любых положительных x и t

P(X > x + t | X > x ) = P(X > t ).
Если X - время работы некоторого прибора до отказа, то отсутствие последействия озна-чает, что вероятность того, что прибор, включенный в момент времени 0, не откажет до момента x + t при условии, что он не отказал до момента x , не зависит от x . Это свойство интерпретируется как отсутствие «старения». Отсутствие последействия является харак-теризационным свойством экспоненциального Р.: в классе абсолютно непрерывных распределений указанное выше равенство справедливо только для экспоненциального Р. (с некоторым параметром l > 0). Экспоненциальное Р. появляется как предельное Р. в схеме минимума. Пусть X 1 , X 2 ,… - неотрицательные независимые одинаково распреде-ленные случайны величины и для их общей функция распределения F точка 0 является точкой роста. Тогда при n ®¥ распределения случайных величин Y n = min(X 1 ,…, X n ) слабо сходятся к вырожденному распределению с единственной точкой роста 0 (это - аналог закона больших чисел). Если дополнительно предположить, что для некоторого e > 0 функция распределения F (x ) на интервале (0, e) допускает представление и p (u )®l при u ¯ 0, то функции распределения случайных величин Z n = n min(X 1 ,…, X n ) при n ®¥ равномерно по -¥ < x < ¥ сходятся к экспоненциальной функции распределения с параметром l (это - аналог центральной предельной теоремы).

Р. Коши называется Р. с плотностью p (x ) = 1/(p(1 + x 2)), -¥ < x < ¥, его функция рас-пределения F (x ) = (arctg x + p/2)/p. Это Р. появилось в работе С.Пуассона в 1832 г. в связи с решением следующей задачи: существуют ли независимые одинаково распределенные случайные величины X 1 , X 2 ,… такие, что средние арифметические (X 1 + … + X n )/n при каждом n имеют то же Р., что и каждая из случайных величин X 1 , X 2 ,…? С. Пуассон обна-ружил, что таким свойством обладают случайные величины с указанной плотностью. Для этих случайных величин не выполняется утверждение закона больших чисел, в котором средние арифметические (X 1 +…+ X n )/n при росте n вырождаются. Однако, это не проти-воречит закону больших чисел, поскольку в нем на распределения исходных случайных величин налагаются ограничения, которые для указанного распределения не выполнены (для этого распределения существуют абсолютные моменты всех положительных поряд-ков, меньших единицы, но математическое ожидание не существует). В работах О.Коши Р., носящее его имя, появилось в 1853 г. Р. Коши имеет отношение X /Y независимых случайных величин со стандартным нормальным Р.

Среди часто используемых в теории вероятностей дискретных Р. - Р. Бернулли, биномиальное Р. и Р. Пуассона.

Р. Бернулли называется любое распределение с двумя точками роста. Чаще всего используется Р. случайной величины X , принимающей значения 0 и 1 с вероятностями
q = 1 - p и p соответственно, где 0 < p < 1 - параметр. Первые формы закона больших чисел и центральной предельной теоремы были получены для случайных величин, имею-щих Р. Бернулли. Если на вероятностном пространстве (W, Ƒ , P) существует последова-тельность X 1 , X 2 ,… независимых случайных величин, принимающих значения 0 и 1 с вероятностями 1/2 каждое, то на этом вероятностном пространстве существует слчайная величина с равномерным Р. на (0, 1). В частности, случайная величина имеет равномерное распределение на (0, 1).

Биномиальным Р. с параметрами n и p , n - натуральное, 0 < p < 1, называется Р., с точками роста 0, 1,..., n , в которых сосредоточены вероятности C n k p k q n -k , k = 0, 1,…, n ,
q = 1 - p . Оно является Р. суммы n независимых случайных величин, имеющих Р. Бернулли с точками роста 0 и 1, в которых сосредоточены вероятности q и p . Изучение этого распределения привело Я.Бернулли к открытию закона больших чисел, а А.Муавра - к открытию центральной предельной теоремы.

Р. Пуассона называется Р., носитель которого - последовательность точек 0, 1,..., в которых сосредоточены вероятности l k e - l /k !, k = 0, 1,…, где l > 0 - параметр. Сумма двух независимых случайных величин, имеющих Р. Пуассона с параметрами l и m вновь имеет Р. Пуассона с параметром l + m. Р. Пуассона является предельным для Р. Бернулли с пара-метрами n и p = p (n ) при n ®¥, если n и p связаны соотношением np ®l при n ®¥ (теорема Пуассона). Если последовательность 0 < T 1 < T 2 < T 3 <… есть последовательность моментов времени, в которые происходят некоторые события (так. наз поток событий) и величины T 1 , T 2 -T 1 , T 3 - T 2 ,… являются независимыми одинаково распределенными случайными величинами и их общее Р. - экспоненциальное с параметром l > 0, то случайная величина X t , равная числу событий, наступивших на интервале (0, t ), имеет Р. Пуассона с параметром.lt (такой поток называется пуассоновским).

Понятие Р. имеет многочисленные обобщения, в частности, оно распространяется на многомерный случай и на алгебраические структуры.

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие . Событие бывает:

  1. Достоверное (всегда происходит в результате испытания).
  2. Невозможное (никогда не происходит).
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие - монета станет на ребро, случайное событие - выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием . В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий .

Основные понятия теории

Вероятность - степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным.

Случайная величина - это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство - понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками: , где

Это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
- сигма-алгебра подмножеств , называемых (случайными) событиями;
- вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра-Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и - число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей - функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х - произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание - среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской - . В статистике часто используют обозначение .

Пусть задано вероятностное пространство и определенная на нем случайная величина . То есть, по определению, - измеримая функция. Тогда, если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины - мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть - случайная величина, определенная на некотором вероятностном пространстве. Тогда

где символ обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми , если значение одной из них влияет на вероятность значений другой.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел - совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы - класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Биномиальное распределение - одно из важнейших распределений вероятностей дискретно изменяющейся случайной величины. Биномиальным распределением называется распределение вероятностей числа m наступления события А в n взаимно независимых наблюдениях . Часто событие А называют "успехом" наблюдения, а противоположное ему событие - "неуспехом", но это обозначение весьма условное.

Условия биномиального распределения :

  • в общей сложности проведено n испытаний, в которых событие А может наступить или не наступить;
  • событие А в каждом из испытаний может наступить с одной и той же вероятностью p ;
  • испытания являются взаимно независимыми.

Вероятность того, что в n испытаниях событие А наступит именно m раз, можно вычислить по формуле Бернулли:

,

где p - вероятность наступления события А ;

q = 1 - p - вероятность наступления противоположного события .

Разберёмся, почему биномиальное распределение описанным выше образом связано с формулой Бернулли . Событие - число успехов при n испытаниях распадается на ряд вариантов, в каждом из которых успех достигается в m испытаниях, а неуспех - в n - m испытаниях. Рассмотрим один из таких вариантов - B 1 . По правилу сложения вероятностей умножаем вероятности противоположных событий:

,

а если обозначим q = 1 - p , то

.

Такую же вероятность будет иметь любой другой вариант, в котором m успехов и n - m неуспехов. Число таких вариантов равно - числу способов, которыми можно из n испытаний получить m успехов.

Сумма вероятностей всех m чисел наступления события А (чисел от 0 до n ) равна единице:

где каждое слагаемое представляет собой слагаемое бинома Ньютона. Поэтому рассматриваемое распределение и называется биномиальным распределением.

На практике часто необходимо вычислять вероятности "не более m успехов в n испытаниях" или "не менее m успехов в n испытаниях". Для этого используются следующие формулы.

Интегральную функцию, то есть вероятность F (m ) того, что в n наблюдениях событие А наступит не более m раз , можно вычислить по формуле:

В свою очередь вероятность F (≥m ) того, что в n наблюдениях событие А наступит не менее m раз , вычисляется по формуле:

Иногда бывает удобнее вычислять вероятность того, что в n наблюдениях событие А наступит не более m раз, через вероятность противоположного события:

.

Какой из формул пользоваться, зависит от того, в какой из них сумма содержит меньше слагаемых.

Характеристики биномиального распределения вычисляются по следующим формулам .

Математическое ожидание: .

Дисперсия: .

Среднеквадратичное отклонение: .

Биномиальное распределение и расчёты в MS Excel

Вероятность биномиального распределения P n (m ) и значения интегральной функции F (m ) можно вычислить при помощи функции MS Excel БИНОМ.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).


MS Excel требует ввести следующие данные:

  • число успехов;
  • число испытаний;
  • вероятность успеха;
  • интегральная - логическое значение: 0 - если нужно вычислить вероятность P n (m ) и 1 - если вероятность F (m ).

Пример 1. Менеджер фирмы обобщил информацию о числе проданных в течение последних 100 дней фотокамер. В таблице обобщена информация и рассчитаны вероятности того, что в день будет продано определённое число фотокамер.

День завершён с прибылью, если продано 13 или более фотокамер. Вероятность, что день будет отработан с прибылью:

Вероятность того, что день будет отработан без прибыли:

Пусть вероятность того, что день отработан с прибылью, является постоянной и равна 0,61, и число проданных в день фотокамер не зависит от дня. Тогда можно использовать биномиальное распределение, где событие А - день будет отработан с прибылью, - без прибыли.

Вероятность того, что из 6 дней все будут отработаны с прибылью:

.

Тот же результат получим, используя функцию MS Excel БИНОМ.РАСП (значение интегральной величины - 0):

P 6 (6 ) = БИНОМ.РАСП(6; 6; 0,61; 0) = 0,052.

Вероятность того, что из 6 дней 4 и больше дней будут отработаны с прибылью:

где ,

,

Используя функцию MS Excel БИНОМ.РАСП, вычислим вероятность того, что из 6 дней не более 3 дней будут завершены с прибылью (значение интегральной величины - 1):

P 6 (≤3 ) = БИНОМ.РАСП(3; 6; 0,61; 1) = 0,435.

Вероятность того, что из 6 дней все будут отработаны с убытками:

,

Тот же показатель вычислим, используя функцию MS Excel БИНОМ.РАСП:

P 6 (0 ) = БИНОМ.РАСП(0; 6; 0,61; 0) = 0,0035.

Решить задачу самостоятельно, а затем посмотреть решение

Пример 2. В урне 2 белых шара и 3 чёрных. Из урны вынимают шар, устанавливают цвет и кладут обратно. Попытку повторяют 5 раз. Число появления белых шаров - дискретная случайная величина X , распределённая по биномиальному закону. Составить закон распределения случайной величины. Определить моду, математическое ожидание и дисперсию.

Продолжаем решать задачи вместе

Пример 3. Из курьерской службы отправились на объекты n = 5 курьеров. Каждый курьер с вероятностью p = 0,3 независимо от других опаздывает на объект. Дискретная случайная величина X - число опоздавших курьеров. Построить ряд распределения это случайной величины. Найти её математическое ожидание, дисперсию, среднее квадратическое отклонение. Найти вероятность того, что на объекты опоздают не менее двух курьеров.

Назначение сервиса . Онлайн-калькулятор используется для построения таблицы распределения случайной величины X – числа произведенных опытов и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Пример 1 . В урне белых и черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается.
Данный тип заданий относится к задаче построения геометрического распределения .

Пример 2 . Два Три стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна , вторым – . Составить закон распределения случайной величины Х – числа попаданий в мишень.

Пример 2a . Стрелок делает по два три четыре выстрела. Вероятность попадания при соответствующем выстреле равна , . При первом промахе стрелок в дальнейших состязаниях не участвует. Составить закон распределения случайной величины Х - число попаданий в мишень.

Пример 3 . В партии из деталей бракованных стандартных. Контролер наудачу достает детали. Составить закон распределения случайной величины Х – числа бракованных годных деталей в выборке.
Аналогичное задание : В корзине m красных и n синих шаров. Наудачу вынимают k шаров. Составить закон распределения ДСВ X – появление синих шаров.
см. другие примеры решений .

Пример 4 . Вероятность появления события в одном испытании равна . Производится испытаний. Составить закон распределения случайной величины Х – числа появлений события.
Аналогичные задания для этого вида распределения :
1. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
2. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Составить таблицу распределения Х – числа появлений герба.

Пример №1 . Бросаются три монеты. Вероятность выпадения герба при одном бросании равна 0.5. Составьте закон распределения случайной величины X - числа выпавших гербов.
Решение.
Вероятность того, что не выпало ни одного герба: P(0) = 0,5*0,5*0,5= 0,125
P(1) = 0,5 *0,5*0,5 + 0,5*0,5 *0,5 + 0,5*0,5*0,5 = 3*0,125=0,375
P(2) = 0,5 *0,5 *0,5 + 0,5 *0,5*0,5 + 0,5*0,5 *0,5 = 3*0,125=0,375
Вероятность того, что выпало три герба: P(3) = 0,5*0,5*0,5 = 0,125

Закон распределения случайной величины X:

X 0 1 2 3
P 0,125 0,375 0,375 0,125
Проверка: P = P(0) + P(1) + P(2) + P(3) = 0,125 + 0,375 + 0,375 + 0,125 = 1

Пример №2 . Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

  1. Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p 1 *(1-p 2)=0.8*(1-0.85)=0.12
  2. Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p 1)*p 2 =(1-0.8)*0.85=0.17
  3. Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p 1 *p 2 =0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Случайное событие – это любой факт, который в результате испытания может произойти или не произойти. Случайное событие – это результат испытания. Испытание – это эксперимент, выполнение определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.

События обозначаются заглавными буквами латинского алфавита А,В,С.

Численная мера степени объективности возможности наступления события называется вероятностью случайного события.

Классическое определение вероятности события А:

Вероятность события А равна отношению числа случаев, благоприятствующих событию A(m), к общему числу случаев (n).

Статистическое определение вероятности

Относительная частота событий – это доля тех фактически проведенных испытаний, в которых событие А появилось W=P*(A)= m/n. Это опытная экспериментальная характеристика, где m – число опытов, в которых появилось событие А; n – число всех проведенных опытов.

Вероятностью события называется число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний P(A)=.

События называются несовместными , если наступление одного из них исключает появление другого. В противном случае события – совместные .

Сумма двух событий – это такое событие, при котором появляется хотя бы одно из этих событий (А или В).

Если А и В совместные события, то их сумма А+В обозначает наступление события А или события В, или обоих событий вместе.

Если А и В несовместные события, то сумма А+В означает наступление или события А или события В.

2. Понятие о зависимых и независимых событиях. Условная вероятность, закон (теорема) умножения вероятностей. Формула Байеса.

Событие В называется независимым от события А, если появление события А не изменяет вероятности появления события В. Вероятностью появления нескольких независимых событий равна произведению вероятностей этих:

P(AB) = P(A)*P(B)

Для зависимых событий:

P(AB) = P(A)*Р(B/A).

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло.

Условная вероятность события В - это вероятность события В, найденная при условии, что событие А произошло. Обозначается Р(В/А)

Произведение двух событий – это событие, состоящее в совместном появлении этих событий (А и В)

Формула Байеса служит для переоценки случайных событий

P(H/A) = (P(H)*P(A/H))/P(A)

P(H) – априорная вероятность события Н

P(H/A) – апостериорная вероятность гипотезы H при условии, что событие А уже произошло

P(A/H) – экспертная оценка

P(A) – полня вероятность события А

3. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение. Нормальный закон распределения непрерывных случайных величин.

Случайная величина – это величина, которая в результате испытания в зависимости от случая принимает одно из возможного множества своих значений.

Дискретная случайная величина это случайная величина, когда принимает отдельное изолированное, счетное множество значений.

Непрерывная случайная величина – это случайная величина, принимающая любые значения из некоторого интервала. Понятие непрерывной случайной величины возникает при измерениях.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы , аналитически (в виде формулы) и графически .

Таблица это простейшая форма задания закона распределения

Требования:

для дискретных случайных величин

Аналитический:

1)F(x)=P(X

Функция распределения = интегральная функция распределения. Для дискретный и непрерывных случайных величин.

2)f(x) = F’(x)

Плотность распределения вероятностей = дифференциальная функция распределения только для непрерывной случайной велечины.

Графический:

С-ва: 1) 0≤F(x)≤1

2) неубывающая для дискретных случайных величин

С-ва: 1) f(x)≥0 P(x)=

2) площадь S=1

для непрерывных случайных величин

Характеристики:

1.математическое ожидание – среднее наиболее вероятное событие

Для дискретных случайных величин.

Для непрерывных случайных величин.

2)Дисперсия – рассеяние вокруг математического ожидания

Для дискретных случайных величин:

D(x)=x i -M(x)) 2 *p i

Для непрерывных случайных величин:

D(x)=x-M(x)) 2 *f(x)dx

3)Среднее квадратическое отклонение :

σ(х)=√(D(x))

σ – стандартное отклонение или стандарт

х – арифметическое значение корня квадратного из ее дисперсии

Нормальный закон распределения (НЗР) – закон Гаусса

НЗР – это распад вероятностей непрерывной случайной величины, который описывается дифференциальной функцией