Уход и... Инструменты Дизайн ногтей

Определение точек локальных экстремумов функции многих переменных. Метка: локальный максимум

Приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.

Приравняйте данную производную к нулю (в данном случае x2=0).

Найдите значение переменной данного . Это будут те значения, при данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2x2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1

Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных . На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет знак минус. Если x=0, то значение будет равно 2, а на данном промежутке ставится знак. Если x=1, то производная также будет равна -0,24 и ставится минус.

Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Видео по теме

Полезный совет

Для нахождения производной существуют онлайн-сервисы, которые подсчитывают нужные значения и выводят результат. На таких сайтах можно найти производную до 5 порядка.

Источники:

  • Один из сервисов вычисления производных
  • точку максимума функции

Точки максимума функции наряду с точками минимума называются точками экстремума. В этих точках функция меняет характер поведения. Экстремумы определяются на ограниченных числовых интервалах и всегда являются локальными.

Инструкция

Процесс нахождения локальных экстремумов называется функции и выполняется путем анализа первой и второй производной функции. Перед началом исследования убедитесь, что заданный интервал значений аргумента принадлежит к допустимым значениям. Например, для функции F=1/x значение аргумента х=0 недопустимо. Или для функции Y=tg(x) аргумент не может иметь значение х=90°.

Убедитесь, что функция Y дифференцируема на всем заданном отрезке. Найдите первую производную Y". Очевидно, что до достижения точки локального максимума функция возрастает, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость изменения функции. Пока функция возрастает, скорость этого процесса является величиной положительной. При переходе через локальный максимум функция начинает убывать, и скорость процесса изменения функции становится отрицательной. Переход скорости изменения функции через ноль происходит в точке локального максимума.

Например, функция Y=-x²+x+1 на отрезке от -1 до 1 имеет непрерывную производную Y"=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y"=-2. Постройте по точкам график функции Y=-x²+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции:

Найдём критические точки функции.

ЛОКАЛЬНЫЙ МАКСИМУМ

ЛОКАЛЬНЫЙ МАКСИМУМ

(local maximum) Значение функции, которое больше какого-либо соседнего значения ее аргумента или набора аргументов, dy/dx= 0 является необходимым условием для достижения локального максимума y=f(x); при соблюдении этого условия достаточным условием для достижения локального максимума является d2y/dx2< 0. Локальный максимум может также быть абсолютным максимумом, если не существует значения х, при котором у больше. Однако так может быть не всегда. Рассмотрим функцию у = х3–3х.dy/dx = 0, когда х2= 1; и d2y/dx2=6х. у имеет максимум при х =– 1, но это всего лишь локальный, а не абсолютный максимум, поскольку у может стать бесконечно большой величиной при придании достаточно большого положительного значения х . См. также: рисунок к статье максимум (maximum).


Экономика. Толковый словарь. - М.: "ИНФРА-М", Издательство "Весь Мир". Дж. Блэк. Общая редакция: д.э.н. Осадчая И.М. . 2000 .


Экономический словарь . 2000 .

Смотреть что такое "ЛОКАЛЬНЫЙ МАКСИМУМ" в других словарях:

    локальный максимум - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN local maximum … Справочник технического переводчика

    локальный максимум - lokalusis maksimumas statusas T sritis automatika atitikmenys: angl. local maximum vok. Lokalmaximum, n rus. локальный максимум, m pranc. maximum local, m … Automatikos terminų žodynas

    локальный максимум - vietinė smailė statusas T sritis fizika atitikmenys: angl. local maximum; local peak vok. lokales Maximum, n rus. локальный максимум, m pranc. maximum local, m; pic local, m … Fizikos terminų žodynas

    Локальный максимум, локальный минимум - (local maxi­mum, local minimum) см. Экстремум функции … Экономико-математический словарь

    - (maximum) Наивысшее значение функции, которое она принимает при любом значении ее аргументов. Максимум может быть локальным или абсолютным. Например, функция у=1–х2 имеет абсолютный максимум у=1 при х=0; не существует другого значения х, которое… … Экономический словарь

    - (local minimum) Значение функции, которое меньше какого либо соседнего значения ее аргумента или набора аргументов, dy/dx = 0 является необходимым условием для достижения локального минимума у=f(x); при соблюдении этого условия достаточным… … Экономический словарь

    Экстремум (лат. extremum крайний) в математике максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум точка экстремума… … Википедия

    Алгоритмы локального поиска группа алгоритмов, в которых поиск ведется только на основании текущего состояния, а ранее пройденные состояния не учитываются и не запоминаются. Основной целью поиска является не нахождение оптимального пути к… … Википедия

    - (global maximum) Значение функции, равное или более высокое по сравнению с ее значениями, принимаемыми при любых других значениях аргументов. Достаточное условие максимума функции от одного аргумента, состоящее в том, что ее первая производная в… … Экономический словарь

    - (англ. trend направление, тенденция) направление, тенденция развития политического процесса, явления. Имеет математическое выражение. Наиболее популярным определением тренда (trend) является определение из теории Доу. Восходящим трендом… … Политология. Словарь.

Определение: Точка х0 называется точкой локального максимума (или минимума) функции, если в некоторой окрестности точки х0 функция принимает наибольшее (или наименьшее) значение, т.е. для всех х из некоторой окрестности точки х0 выполняется условие f(x) f(x0) (или f(x) f(x0)).

Точки локального максимума или минимума объединены общим названием - точками локального экстремума функции.

Отметим, что в точках локального экстремума функция достигает своего наибольшего или наименьшего значения лишь в некоторой локальной области. Возможны случаи, когда по значению уmaxуmin .

Необходимый признак существования локального экстремума функции

Теорема . Если непрерывная функция у = f(x) имеет в точке х0 локальный экстремум, то в этой точке первая производная либо равна нулю, либо не существует, т.е. локальный экстремум имеет место в критических точках I рода.

В точках локального экстремума либо касательная параллельна оси 0х, либо имеются две касательные (см. рисунок). Отметим, что критические точки являются необходимым, но недостаточным условием локального экстремума. Локальный экстремум имеет место только в критических точках I рода, но не во всех критических точках имеет место локальный экстремум.

Например: кубическая парабола у = х3, имеет критическую точка х0=0, в которой производная у/(0)=0, но критическая точка х0=0 не является точкой экстремума, а в ней имеет место точка перегиба (см. ниже).

Достаточный признак существования локального экстремума функции

Теорема . Если при переходе аргумента через критическую точку I рода слева направо первая производная у / (x)

меняет знак с “+” на “-”, то непрерывная функция у(х) в этой критической точке имеет локальный максимум;

меняет знак с “-” на “+”, то непрерывная функция у(х) имеет в этой критической точке локальный минимум

не меняет знак, то в этой критической точке нет локального экстремума, здесь имеет место точка перегиба.

Для локального максимума область возрастания функции (у/0) сменяется на область убывания функции (у/0). Для локального минимума область убывания функции (у/0) сменяется на область возрастания функции (у /0).

Пример: Исследовать функцию у = х3 + 9х2 + 15х - 9 на монотонность, экстремум и построить график функции.

Найдем критические точки I рода, определив производную (у/) и приравняв ее нулю: у/ = 3х2 + 18х + 15 =3(х2 + 6х + 5) = 0

Решим квадратный трехчлен с помощью дискриминанта:

х2 + 6х + 5 = 0 (а=1, в=6, с=5) D= , х1к = -5, х2к = -1.

2) Разобьем числовую ось критическими точками на 3 области и определим в них знаки производной (у/). По этим знакам найдем участки монотонности (возрастания и убывания) функций, а по изменению знаков определим точки локального экстремума (максимума и минимума).

Результаты исследования представим в виде таблицы, из которой можно сделать следующие выводы:

  • 1. На интервале у /(-10) 0 функция монотонно возрастает (знак производной у оценивался по контрольной точке х = -10, взятой в данном интервале);
  • 2. На интервале (-5 ; -1) у /(-2) 0 функция монотонно убывает (знак производной у оценивался по контрольной точке х = -2, взятой в данном интервале);
  • 3. На интервале у /(0) 0 функция монотонно возрастает (знак производной у оценивался по контрольной точке х = 0, взятой в данном интервале);
  • 4. При переходе через критическую точку х1к= -5 производная меняет знак с "+" на "-" , следовательно эта точка является точкой локального максимума
  • (ymax(-5) = (-5)3+9(-5)2 +15(-5)-9=-125 + 225 - 75 - 9 =16);
  • 5. При переходе через критическую точку х2к= -1 производная меняет знак с "-" на "+" , следовательно эта точка является точкой локального минимума
  • (ymin(-1) = -1 + 9 - 15 - 9 = - 16).

х -5 (-5 ; -1) -1

3) Построение графика выполним по результатам исследования с привлечением дополнительных расчетов значений функции в контрольных точках:

строим прямоугольную систему координат Оху;

показываем по координатам точки максимума (-5; 16) и минимума (-1;-16);

для уточнения графика рассчитываем значение функции в контрольных точках, выбирая их слева и справа от точек максимума и минимума и внутри среднего интервала, например: у(-6)=(-6)3 +9(-6)2+15(-6)-9=9; у(-3)=(-3)3+9(-3)2+15(-3)-9=0;

у(0)= -9 (-6;9); (-3;0) и (0;-9) - расчетные контрольные точки, которые наносим для построения графика;

показываем график в виде кривой выпуклостью вверх в точке максимума и выпуклостью вниз в точке минимума и проходящей через расчетные контрольные точки.