Уход и... Инструменты Дизайн ногтей

Линейные уравнения. Решение, примеры. Особые случаи при решении линейных уравнений. Уравнения сводящиеся к квадратному

Как правило, уравнения появляются в задачах, в которых требуется найти некую величину. Уравнение позволяет сформулировать задачу на языке алгебры. Решив уравнение, мы получим значение нужной величины, которая называется неизвестной. «У Андрея в кошельке несколько рублей. Если умножить это число на 2, а затем вычесть 5, получится 10. Сколько денег у Андрея?» Обозначим неизвестную сумму денег за х и запишем уравнение: 2х-5=10.

Чтобы говорить о способах решения уравнений , сначала нужно определить основные понятия и познакомиться с общепринятыми обозначениями. Для разных типов уравнений существуют различные алгоритмы их решения. Проще всего решаются уравнения первой степени с одной неизвестной. Многим со школы знакома формула для решения квадратных уравнений. Приемы высшей математики помогут решить уравнения более высокого порядка. Множество чисел, на которых определено уравнение, тесно связано с его решениями. Также интересна взаимосвязь между уравнениями и графиками функций, так как представление уравнений в графическом виде великолепно помогает в их .

Описание . Уравнение - это математическое равенство с одной или несколькими неизвестными величинами, например 2х+3у=0.

Выражения по обе стороны знака равенства называются левой и правой частями уравнения . Буквами латинского алфавита обозначаются неизвестные. Хотя число неизвестных может быть любым, далее мы расскажем только об уравнениях с одной неизвестной, которую будем обозначать за х.

Степень уравнения - это максимальная степень, в которую возводится неизвестная. Например,
$3x^4+6x-1=0$ - уравнение четвертой степени, $x-4x^2+6x=8$ - уравнение второй степени.

Числа, на которые умножается неизвестная, называются коэффициентами . В предыдущем примере неизвестная в четвертой степени имеет коэффициент 3. Если при замене х на это число выполняется заданное равенство, то говорят, что это число удовлетворяет уравнению. Оно называется решением уравнения , или его корнем. Например, 3 является корнем, или решением, уравнения 2х+8=14, так как 2*3+8=6+8=14.

Решение уравнений . Допустим, что мы хотим решить уравнение 2х+5=11.

Можно подставить в него какое-нибудь значение х, например х=2. Заменим х на 2 и получим: 2*2+5=4+5=9.

Здесь что-то не так, потому что в правой части уравнения мы должны были получить 11. Попробуем х=3: 2*3+5=6+5=11.

Ответ верный. Получается, что если неизвестная принимает значение 3, то равенство выполняется . Следовательно, мы показали, что число 3 является решением уравнения.

Способ, который мы использовали для решения этого уравнения, называется методом подбора . Очевидно, что он неудобен в использовании. Более того, его даже нельзя назвать методом. Чтобы убедиться в этом, достаточно попробовать применить его к уравнению вида $x^4-5x^2+16=2365$.

Методы решения . При существуют так называемые «правила игры», с которыми будет полезно ознакомиться. Наша цель - определить значение неизвестной, которое удовлетворяет уравнению. Поэтому нужно каким-либо способом выделить неизвестную. Для этого необходимо перенести члены уравнения из одной его части в другую. Первое правило решения уравнений таково…

1. При переносе члена уравнения из одной части в другую его знак меняется на противоположный: плюс меняется на минус и наоборот. Рассмотрим в качестве примера уравнение 2х+5=11. Перенесем 5 из левой части в правую: 2х=11-5. Уравнение примет вид 2х=6.

Перейдем ко второму правилу.
2. Обе части уравнения можно умножать и делить на число, не равное нулю. Применим это правило к нашему уравнению: $x=\frac62=3$. В левой части равенства осталась только неизвестная х, следовательно, мы нашли ее значение и решили уравнение.

Мы только что рассмотрели простейшую задачку - линейное уравнение с одной неизвестной . Уравнения этого типа всегда имеют решение, более того, их всегда можно решить с помощью простейших операций: сложения, вычитания, умножения и деления. Увы, не все уравнения столь же просты. Более того, степень их сложности возрастает очень быстро. Например, уравнения второй степени легко решит любой ученик средней школы, но способы решения систем линейных уравнений или уравнений высших степеней изучаются только в старших классах.

Линейные уравнения. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Линейные уравнения.

Линейные уравнения - не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

Обычно линейное уравнение определяется, как уравнение вида:

ax + b = 0 где а и b – любые числа.

2х + 7 = 0. Здесь а=2, b=7

0,1х - 2,3 = 0 Здесь а=0,1, b=-2,3

12х + 1/2 = 0 Здесь а=12, b=1/2

Ничего сложного, правда? Особенно, если не замечать слова: "где а и b – любые числа" ... А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

Что напрягает и подрывает доверие к математике, да...) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

Как узнать линейное уравнение по внешнему виду? Это, смотря какой внешний вид.) Фишка в том, что линейными уравнениями называются не только уравнения вида ax + b = 0 , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. А кто ж его знает, сводится оно, или нет?)

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное , это важно! А деление на число, или дробь числовая – это пожалуйста! Например:

Это линейное уравнение. Здесь есть дроби, но нет иксов в квадрате, в кубе и т.д., и нет иксов в знаменателях, т.е. нет деления на икс . А вот уравнение

нельзя назвать линейным. Здесь иксы все в первой степени, но есть деление на выражение с иксом . После упрощений и преобразований может получиться и линейное уравнение, и квадратное, и всё, что угодно.

Получается, что узнать линейное уравнение в каком-нибудь замудрёном примере нельзя, пока его почти не решишь. Это огорчает. Но в заданиях, как правило, не спрашивают о виде уравнения, правда? В заданиях велят уравнения решать. Это радует.)

Решение линейных уравнений. Примеры.

Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом. Имеет смысл по ссылке сходить, правда?) Тем более, там тоже примеры решения линейных уравнений имеются.

Для начала рассмотрим самый простой пример. Безо всяких подводных камней. Пусть нам нужно решить вот такое уравнение.

х - 3 = 2 - 4х

Это линейное уравнение. Иксы все в первой степени, деления на икс нету. Но, собственно, нам без разницы, какое это уравнение. Нам его решать надо. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) - в правой.

Для этого нужно перенести - 4х в левую часть, со сменой знака, разумеется, а - 3 - в правую. Кстати, это и есть первое тождественное преобразование уравнений. Удивлены? Значит, по ссылке не ходили, а зря...) Получим:

х + 4х = 2 + 3

Приводим подобные, считаем:

Что нам не хватает для полного счастья? Да чтобы слева чистый икс был! Пятёрка мешает. Избавляемся от пятёрки с помощью второго тождественного преобразования уравнений. А именно - делим обе части уравнения на 5. Получаем готовый ответ:

Пример элементарный, разумеется. Это для разминки.) Не очень понятно, к чему я тут тождественные преобразования вспоминал? Ну ладно. Берём быка за рога.) Решим что-нибудь посолиднее.

Например, вот это уравнение:

С чего начнём? С иксами - влево, без иксов - вправо? Можно и так. Маленькими шажочками по длинной дороге. А можно сразу, универсальным и мощным способом. Если, конечно, в вашем арсенале имеются тождественные преобразования уравнений.

Задаю вам ключевой вопрос: что вам больше всего не нравится в этом уравнении?

95 человек из 100 ответят: дроби ! Ответ правильный. Вот и давайте от них избавимся. Поэтому начинаем сразу со второго тождественного преобразования . На что нужно умножить дробь слева, чтобы знаменатель сократился напрочь? Верно, на 3. А справа? На 4. Но математика позволяет нам умножать обе части на одно и то же число . Как выкрутимся? А умножим обе части на 12! Т.е. на общий знаменатель. Тогда и тройка сократится, и четвёрка. Не забываем, что умножать надо каждую часть целиком . Вот как выглядит первый шаг:

Раскрываем скобки:

Обратите внимание! Числитель (х+2) я взял в скобки! Это потому, что при умножении дробей, числитель умножается весь, целиком! А теперь дроби и сократить можно:

Раскрываем оставшиеся скобки:

Не пример, а сплошное удовольствие!) Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо! И применяем это преобразование:

Приводим подобные:

И делим обе части на 25, т.е. снова применяем второе преобразование:

Вот и всё. Ответ: х =0,16

Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали два (всего два!) тождественных преобразования – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Совершенно любыми. Именно поэтому я про эти тождественные преобразования всё время занудно повторяю.)

Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью тождественных преобразований до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения.

Но... Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать...) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.

Особые случаи при решении линейных уравнений.

Сюрприз первый.

Предположим, попалось вам элементарнейшее уравнение, что-нибудь, типа:

2х+3=5х+5 - 3х - 2

Слегка скучая, переносим с иксом влево, без икса - вправо... Со сменой знака, всё чин-чинарём... Получаем:

2х-5х+3х=5-2-3

Считаем, и... опаньки!!! Получаем:

Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да...) Тупик?

Спокойствие! В таких сомнительных случаях спасают самые общие правила. Как решать уравнения? Что значит решить уравнение? Это значит, найти все значения икса, которые, при подстановке в исходное уравнение, дадут нам верное равенство.

Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких иксах это получается. Какие значения икса можно подставлять в исходное уравнение, если эти иксы всё равно посокращаются в полный ноль? Ну же?)

Да!!! Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите - можете проверить.) Поподставляйте любые значения икса в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее.

Вот вам и ответ: х - любое число.

Ответ можно записать разными математическими значками, суть не меняется. Это совершенно правильный и полноценный ответ.

Сюрприз второй.

Возьмём то же элементарнейшее линейное уравнение и изменим в нём всего одно число. Вот такое будем решать:

2х+1=5х+5 - 3х - 2

После тех же самых тождественных преобразований мы получим нечто интригующее:

Вот так. Решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред - вполне веское основание для правильного решения уравнения.)

Опять соображаем, исходя из общих правил. Какие иксы, при подстановке в исходное уравнение, дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё посократится, останется бред.)

Вот вам и ответ: решений нет.

Это тоже вполне полноценный ответ. В математике такие ответы частенько встречаются.

Вот так. Сейчас, надеюсь, пропажа иксов в процессе решения любого (не только линейного) уравнения вас нисколько не смутит. Дело уже знакомое.)

Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В курсе школьной математики, ребенок впервые слышит термин "уравнение". Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение - это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с... Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax 2 +bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b 2 -4ac. Есть три варианта исхода решения:

  • дискриминант больше нуля;
  • меньше нуля;
  • равен нулю.

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х 2 =0. В итоге получаем х=0.

Другой случай 16х 2 -9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х 2 =9, теперь каждую часть делим на шестнадцать: х 2 = девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х 2 +80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х 2 =-80, теперь каждую часть делим на пять: х 2 = минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х 1)(х-х 2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х 2 -14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x 2 - 2x) 2 - 2(x 2 - 2x) - 3 = 0. Можем заметить повторяющиеся элементы: (x 2 - 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а 2 -2а-3=0. Наш следующий шаг - это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x 2 - 2x=-1; x 2 - 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х 3 +4х 2 +2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х 2 +4х+2)=0. Все что нам остается сделать - это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: разложить на множетели 3х 4 +2х 3 +8х 2 +2х+5. Самым удобным способом будет следующая группировка: (3х 4 +3х 2)+(2х 3 +2х)+(5х 2 +5). Заметим, что 8х 2 из первого выражения мы представили в виде суммы 3х 2 и 5х 2 . Теперь выносим из каждой скобки общий множитель 3х 2 (х2+1)+2х(х 2 +1)+5(х 2 +1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х 2 +1)(3х 2 +2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin 2 x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.

Министерство общего и профессионального образования РФ

Муниципальное образовательное учреждение

Гимназия № 12

сочинение

на тему: Уравнения и способы их решения

Выполнил: ученик 10 "А" класса

Крутько Евгений

Проверила: учитель математики Исхакова Гульсум Акрамовна

Тюмень 2001

План................................................................................................................................... 1

Введение........................................................................................................................... 2

Основная часть................................................................................................................. 3

Заключение..................................................................................................................... 25

Приложение................................................................................................................... 26

Список использованной литературы.......................................................................... 29

План.

Введение.

Историческая справка.

Уравнения. Алгебраически уравнения.

а) Основные определения.

б) Линейное уравненение и способ его решения.

в) Квадратные уравнения и способы его решения.

г) Двучленные уравнения способ их решения.

д) Кубические уравнения и способы его решения.

е) Биквадратное уравнение и способ его решения.

ё) Уравнения четвертой степени и способы его решения.

ж) Уравнения высоких степеней и способы из решения.

з) Рациональноное алгебраическое уравнение и способ его

и) Иррациональные уравнения и способы его решения.

к) Уравнения, содержащие неизвестное под знаком.

абсолютной величины и способ его решения.

Трансцендентные уравнения.

а) Показательные уравнения и способ их решения.

б) Логарифмические уравнения и способ их решения.

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположил материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попытался показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стал ограничиваться только действительным решением, но и указал комплексное, так как считаю, что иначе уравнение просто недорешено. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений. К сожалению, из-за нехватки времени я не смог изложить весь имеющийся у меня материал, но даже по тому материалу, который здесь изложен, может возникнуть множество вопросов. Я надеюсь, что моих знаний хватит для того, чтобы дать ответ на большинство вопросов. Итак, я приступаю к изложению материала.

Математика... выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

Аристотель.

Историческая справка

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

уравнения. Алгебраические уравнения

Основные определения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв ). Для записи тождества наряду со знаком

также используется знак .

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:

, , ... – или теми же буквами, снабженными индексами: , , ... или , , ...); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: , , , ... – или теми же буквами, снабженными индексами: , , ... или , , ...).

В общем виде уравнение может быть записано так:

(, , ..., ).

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

Уравнение, представляющее собой квадратный трехчлен, обыкновенно называется квадратным уравнением. С точки зрения алгебры оно описывается формулой a*x^2+b*x+c=0. В данной формуле х - это неизвестное, которое требуется найти (его называют свободной переменной); a, b и c - числовые коэффициенты. В отношении компонентов указанной существует ряд ограничений: так, коэффициент а не должен быть равен 0.

Решение уравнения: понятие дискриминанта

Значение неизвестного х, при котором квадратное уравнение превратится в верное равенство, называют корнем такого уравнения. Для того чтобы решить квадратное уравнение, необходимо сначала найти значение специального коэффициента - дискриминанта, который покажет количество корней у рассматриваемого равенства. Дискриминант вычисляется по формуле D=b^2-4ac. При этом результат вычисления может оказаться положительным, отрицательным или равным нулю.

При этом следует иметь в виду, что понятие требует, чтобы лишь коэффициент а был строго отличающимся от 0. Следовательно, коэффициент b может быть равным 0, а само уравнение в этом случае вид a*x^2+c=0. В такой ситуации следует использовать значение коэффициента, равное 0, и в формулах расчета дискриминанта и корней. Так, дискриминант в этом случае будет рассчитываться как D=-4ac.

Решение уравнения при положительном дискриминанте

В случае, если дискриминант квадратного уравнения оказался положительным, из этого можно сделать вывод, что данное равенство имеет два корня. Указанные корни можно вычислить по следующей формуле: x=(-b±√(b^2-4ac))/2a=(-b±√D)/2a. Таким образом, для расчета значения корней квадратного уравнения при положительном значении дискриминанта используются известные значения коэффициентов, имеющихся в . Благодаря использованию суммы и разности в формуле расчета корней результатом вычислений будут два значения, обращающие рассматриваемое равенство в верное.

Решение уравнения при нулевом и отрицательном дискриминанте

В случае, если дискриминант квадратного уравнения оказался равным 0, можно сделать вывод о том, что указанное уравнение имеет один корень. Строго говоря, в этой ситуации корней у уравнения по-прежнему два, однако вследствие нулевого дискриминанта они будут равны между собой. В этом случае x=-b/2a. Если же в процессе вычислений значение дискриминанта оказывается отрицательным, следует сделать вывод о том, что рассматриваемое квадратное уравнение не имеет корней, то есть таких значений x, при которых оно обращается в верное равенство.