Уход и... Инструменты Дизайн ногтей

Косоугольная фронтальная изометрическая проекция окружности. Косоугольная фронтальная изометрическая проекция

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими .

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).

Рисунок 4.1

Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α , а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.

В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

Рисунок 4.2

Здесь буквами k , m , n обозначены коэффициенты искажения по осям OX , OY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрической , если равны между собой только два коэффициента, то проекция называется диметрической , если же k≠m≠n , то проекция называется триметрической .

Если направление проецирования S перпендикулярно плоскости проекций α , то аксонометрическая проекция носит названия прямоугольной . В противном случае, аксонометрическая проекция называется косоугольной .

ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.

Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1. Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.

Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OX , OY и OZ равны 0,82 . Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений . Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1 . Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22 , а малая – 0,71 диаметра образующей окружности D .

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY , OZ и OX , соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.

Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´ , строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47 . При округлении этих параметров принимается k=n=1 и m=0,5 . В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5 большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.

Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции

Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 30 0 и 60 0 .

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1 .

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D , а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´ , а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.

а б в

Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А 1 В 1 =АВ и С 1 D 1 = 0,5CD . Диаметр А 1 В 1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).

а б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

Косоугольная фронтальная диметрическая проекция.

Положение осей во фронтальной диметрии аналогичны расположению осей во фронтальной изометрии. Её следует строить без сокращения по осям ОХ и OZ и с сокращением в два раза по оси ОY ; коэффициенты искажения по осям ОХ и OZ равны 1, по оси ОY – 0,5.

На рис. 68 изображены: а – аксонометрические оси; б – аксонометри­ческая проекция куба с окружностями, вписанными в три видимые грани.

Рис. 68. Косоугольная фронтальная диметрия

В передней грани, параллельной координатной плоскости XOZ , окруж­ность изображается без искажений, в двух других гранях – одинаковыми эллипсами, большие оси которых равны 1,07 D , а малые – 0,33 D , где D – диаметр вписанной окружности. Направления больших осей эллипсов отклоняются от большей диагонали параллелограмма на 7º. Эти эллипсы можно также вычертить способом, указанным для прямоугольной диметрии (см. рис. 63б), так как различие в размерах осей незначительно.

Пример фронтальной диметрической проекции детали приведён на рис. 69.

Косоугольные фронтальные диметрические и изометрические проекции рекомендуется применять в тех случаях, когда целесообразно сохранить неискажёнными элементы фигуры, расположенные во фронтальных плоскостях. Это значительно упрощает построение аксонометрического изображения.

Рис. 69. Деталь с разрезом в косоугольной фронтальной диметрии

5.5.7. Косоугольная горизонтальная изометрическая проекция.

Расположение аксонометрических осей с нанесением штриховки в раз­резах и аксонометрическая проекция куба с вписанными в грани окруж­ностями представлены на рис. 70. Ось ОY составляет с горизонталью угол 30 0 . ГОСТ 2.317-69 допускает применять и другие углы между горизонталью и осью ОУ , при этом угол 90° между осями ОХ и ОY сохраняется. Коэффициент искажения по осям ОХ, ОY и OZ равен 1. Размеры осей эллипса, расположенного в грани, параллельной координатной плоскости YOZ , равны осям эллипсов прямоугольной изометрии. Вместо эллипса можно построить овал способом, приведённым на рис. 59. Второй эллипс в грани, параллельной плоскости ХОZ , строят по восьми точкам. Оси эллипсов совпадают с диагоналями граней куба.

Рис. 70. Косоугольная горизонтальная изометрия

В горизонтальной изометрии фигуры или их элементы, расположенные в горизонтальных плоскостях, не искажаются. Поэтому этот вид аксонометрии применяют тогда, когда требуется изобразить в натуральную величину фигуры, лежащие в плоскостях, параллельных горизонтальной плоскости проекций.

Пример горизонтальной изометрической проекции приведён на рис. 71.

Рис. 71. Деталь в косоугольной горизонтальной изометрии

Вопросы для самоконтроля

1. Как располагают предмет относительно фронтальной плоскости проекций?

2. Как разделяют изображения на чертеже в зависимости от их содержания?

3. Какое изображение называется видом?

4.Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

5. Какие виды обозначают и как их надписывают?

6. Какие виды называются дополнительными, какие – местными?

7. Какое изображение называется разрезом?

8. Как при разрезах указывают положение секущей плоскости?

9. Какой надписью отмечают разрез?

10. Как разделяются разрезы в зависимости от положения секущей плоскости?

11. Как классифицируются разрезы в зависимости от числа секущих плоскостей?

12. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

13. Какой разрез называется местным и как он выделяется на виде?

14. Что служит разделяющей линией при соединении половины вида и разреза?

15. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

16. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

17. Какое изображение принимают на чертеже в качестве главного?

18. Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

19. Какое изображение называется разрезом?

20.Как при разрезах указывают положение секущей плоскости?

21. Где могут быть расположены горизонтальный, фронтальный и профильный разрезы и когда их не обозначают?

22. Как в сложном разрезе проводят линию сечения?

23. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

24. Какой разрез называется местным и как он выделяется на виде?

25. Что служит разделяющей линией при соединении половины вида и разреза?

26. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

27. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

28. Каковы особенности изометрической прямоугольной проекции?

29. Как построить прямоугольную изометрию окружности, расположен­ную в горизонтальной координатной плоскости (фронтальной, профильной)?

30. Как построить овал по четырём точкам в прямоугольной изометрии?

31. Каков порядок построения аксонометрии детали, заданной её про­екциями?

32. Как располагаются оси в прямоугольной диметрии? Чему равны коэффициенты искажения?

33. Чем руководствуются при выборе вида прямоугольной аксономет­рической проекции?

34. В каких единицах проставляются линейные размеры на чертежах и указывается ли единица измерения?

35. Допускается ли использование линий контура, осевых и центровых линий в качестве размерных?

36. Допускается ли пересекать или разделять размерные числа линиями чертежа?

37. Какие знаки используют для нанесения размеров диаметра и радиуса окружности, квадрата и уклона?

38. В каких случаях допускается проводить размерные линии с обрывом?

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение - аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку - начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название - изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.


Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317-69:
а - прямоугольная изометрическая проекция; б - прямоугольная диметрическая проекция;
в - косоугольная фронтальная изометриче­ская проекция;
г - косоугольная фронтальная диметрическая проекция



Рис. 107. Продолжение: д - косоугольная горизонтальная изометриче­ская проекция

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).


Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.

ГОСТ 2.317-69* (СТ СЭВ 1979-79) устанавливает прямоугольные и косоугольные аксонометрические проекции. Прямоугольные проекции делятся на изометрические и диметрические, косоугольные - на фронтальные изометрические, горизонтальные изометрические и фронтальные диметрические.

Прямоугольные проекции

Прямоугольная изометрическая проекция. Положение аксонометрических осей приведено на рисунке слева вверху. Коэффициент искажения по осям х, у, z равен 0,82; как правило, его округляют до 1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на эти плоскости в эллипсы (смотри на тот же рисунок чуть ниже). Большие оси эллипсов 1, 2, 3 перпендикулярны соответственно к осям у, z, х. Если коэффициент искажения по осям принят равным 1, то большие оси эллипсов равны 1,22, а малые 0,71 диаметра окружности.

Прямоугольная диметрическая проекция. Положение аксонометрических осей приведено на рисунке справа. Коэффициент искажения по оси у равен 0,47, по осям х и z - 0,94; как правило, коэффициент искажения по оси у округляют до 0,5, по осям x и z - до 1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на эти плоскости в эллипсы, большие оси которых перпендикулярны соответственно к осям у, z, х. Если коэффициент искажения по осям х и у принят равным 1, то большие оси эллипсов равны 1,06 диаметра окружности, малая ось эллипса 1 равна 0,95, а эллипсов 2 и 3 - 0,35 диаметра окружности.

Косоугольные проекции

Косоугольная фронтальная изометрическая проекция . Положение аксонометрических осей приведено на рисунке ниже(а). Угол наклона оси у к горизонтальной линии равен 45°, допускается угол 30° или 60°. Коэффициент искажения по осям х, у, 2 равен 1.

Косоугольная горизонтальная изометрическая проекция. Положение аксонометрических осей приведено на рисунке (б). Угол наклона оси у к горизонтальной линии равен 30°, Допускается угол 45° и 60°. Коэффициент искажения по осям х, У, z равен 1.

. Положение аксонометрических осей приведено на рисунке выше (в).Угол наклона оси у к горизонтальной линии равен 45°, допускается угол 30° и 60°. Коэффициент искажения по оси у равен 0,5, по осям х и z - 1. Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекции, проецируются в окружности; в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, - в эллипсы (рис. 5.31). Большая ось эллипса 2 составляете осью х угол 7°14", большая ось эллипса 3 с осью z - угол 7° 14". Большие оси эллипсов 2 и 3 равны 1,07, малые оси - 0,33 диаметра окружности.

Штриховка и нанесение размеров

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рисунок ниже). Ребра жесткости, спицы маховиков и подобные элементы, попадающие в секущую плоскость, штрихуются.

Примеры изображения деталей в аксонометрических проекциях

Линии штриховки в аксонометрических проекциях: а - в прямоугольной изометрической; 6 - в прямоугольной диметрической; в - в косоугольной фронтальной диметрической
Изображение детали в прямоугольной изометрической проекции
Изображение детали в прямоугольной диметрической проекции
Изображение детали в косоугольной фронтальной диметрической проекции
Нанесение размеров в аксонометрических проекциях

При нанесении размеров выносные линии проводят параллельно осям координат, размерные линии - параллельно измеряемому отрезку (рисунок выше).

Для трёхмерных объектов и панорам.

Ограничения аксонометрической проекции

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

Примечания

  1. По ГОСТ 2 .317-69 - Единая система конструкторской документации. Аксонометрические проекции.
  2. Здесь горизонтальной называется плоскость, перпендикулярная оси Z (которая является прообразом оси Z").
  3. Ingrid Carlbom, Joseph Paciorek. Planar Geometric Projections and Viewing Transformations // ACM Computing Surveys (CSUR) : журнал. - ACM , декабрь 1978. - Т. 10. - № 4. - С. 465-502. - ISSN 0360-0300 . - DOI :10.1145/356744.356750
  4. Jeff Green. GameSpot Preview: Arcanum (англ.) . GameSpot (29 февраля 2000).(недоступная ссылка - история ) Проверено 29 сентября 2008.
  5. Steve Butts. SimCity 4: Rush Hour Preview (англ.) . IGN (9 сентября 2003). Архивировано
  6. GDC 2004: The History of Zelda (англ.) . IGN (25 марта 2004). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  7. Dave Greely, Ben Sawyer.