Уход и... Инструменты Дизайн ногтей

Коллоидные системы. Поверхностные явления и дисперсные системы. Коллоидная химия. Сборник примеров и задач

Напишите формулу мицеллы золя сульфата бария, полученного при взаимодействии раствора хлорида бария с небольшим избытком раствора сульфата натрия?

Решение:

В основе получения золя лежит реакция:

BaCl 2 + Na 2 SО 4 изб. = 2 NaCl + Ba SО 4 ¯

Условием получения золя является избыток Na 2 SО 4 , который является стабилизатором золя.

В растворе будут присутствовать ионы натрия и сульфат-ионы, образующиеся при диссоциации сульфата натрия

Na 2 SO 4 = 2Na + + SO²⁻

На поверхности агрегатов будут адсорбироваться сульфат-ионы.

Образуетсяя ядро коллоидной частицы:

[(BaSO 4) m ∙nSO²⁻

Несущее отрицательный заряд ядро притягивает из раствора ионы противоположного знака, называемые противоионами. В нашем случае в роли противоионов выступают катионы натрия.

формула мицеллы полученного золя:

{[(BaSO 4) m ·nSO²⁻]2(n-x)Na + } 2x- 2xNa +

К какому электроду будут перемещаться частицы золя полученного при взаимодействии нитрата серебра с избытком хлорида натрия?

Решение . При смешивании растворов AgNO3 и NaCl изб. протекает реакция

AgNO3+ NaСl (изб.) = AgСl + NaNO3.

Ядро коллоидной частицы золя хлорида серебра состоит из агрегата молекул (mAgСl) и зарядообразующих ионов Cl ⁻, которые находятся в растворе в избытке и обеспечивают коллоидным частицам отрицательный заряд. Противоионами являются гидратированные ионы натрия.

Формула мицеллы хлорида серебра имеет вид:

[m (AgCl) n Cl – (n– x )Na + ] x x Na +

Коллоидная частица имеет отрицательный заряд, значит будет перемещаться к положительно заряженному электроду - катоду.

Напишите формулы мицелл коллоидных растворов для следующих веществ:

а) кремниевый кислоты: агрегат m [Н2SiO3], ионный стабилизатор K2SiO3 ® 2K+ + SiO32–

б) гидрозоля золота: агрегат m [Аu], ионный стабилизатор NaAuO2 ® Na + + AuO2–

в) двуокиси олова: агрегат m , ионный стабилизатор K2SnO3 ® 2K+ + SnO32–

Решение:

а) Образование золя кремневой кислоты происходит по реакции

K 2 SiO 3 изб.+ 2HCl = H 2 SiO 3 + 2KCl.

K 2 SiO 3 2K⁺+ SiO₃²⁻

На электронейтральном агрегате частиц (mH 2 SiO 3) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы HSiO 3 ‾ , которые образуются в результате гидролиза соли K 2 SiO 3:

K 2 SiO 3 + H 2 O KHSiO 3 + KOH или в ионной форме

SiO 3 2− + H 2 O HSiO 3 ‾ + OH ‾ .

Ионы HSiO 3 ‾ , адсорбируясь на поверхности частиц золя кремниевой кислоты, сообщают им отрицательный заряд. Противоионами являются гидратированные ионы водорода H + . Формула мицеллы золя кремневой кислоты:

{[(m H 2 SiO 3) ·n HSiO 3 ‾ ·(n-x )H + ∙y H 2 O] x − + x H + ∙z H 2 O}.

б) Образование гидрозоля золота происходит при действии восстановителя на соль золотой кислоты в слабощелочной среде:

2NaAuО 2 + 3НСНО + Na 2 CO 3 = 2Аu + ЗНСООNa + NaНСО 3 + Н 2 О.

На агрегате частиц (mAu) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы AuO 2 ‾ ,

Формула мицеллы золя:

{m·nAuO²⁻·(n-x) Na⁺} x ⁻ ·xNa⁺

в) Образование золя двуокиси олова происходит следующим образом:

K2SnO3 2K⁺ + SnO3²⁻

На электронейтральном агрегате частиц (mSnO 2) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы SnO 3 2‾:

K 2 SnO 3 SnO 3 2⁻ + 2K⁺

Ионы SnO 3 2‾ , адсорбируясь на поверхности частиц золя, сообщают им отрицательный заряд. Противоионами являются ионы K + . Формула мицеллы золя двуокиси олова:

{[(m SnO 2) n SnO 3 2‾ ·(2n-x )K + ] 2 − + x K + }.

Холодный утренний туман, оседающий на землю, столб дыма над костром, взвешенные частицы в воде рек и озер — все это мы видели множество раз.
Нас постоянно окружают дисперсные системы

Понимание коллоидных систем важно для общего понимания образования гидроокиси железа в водоочистке и принципов фильтрации. Этот старый советский обучающий фильм отлично рассказывает о том, что такое коллоиды, как они образуются и взаимодействуют с окружающей средой. СМОТРИМ! Если смотреть не получается — читаем.

Они состоят из вещества в мелкораздробленом состоянии — дисперсной фазы и среды в которой эта фаза распределеа и которую называют дисперсионной средой.

Величина частиц и степень их дисперсности может быть различной. Сравнительно большие размеры частиц имеют грубодисперсные системы — взвеси и эмульсии .

В истинных растворах вещество находится в виде молекул или оинов распределенных равномерно среди молекул растворителя.

Частицы грубодисперсных систем хорошо видны в микроскоп. Например, молоко, представляющее эмульсию капелек жира в сыворотке, дым — это множество твердых частиц, взвешенных в воздухе.

Грубодисперсные системы неустойчивы и со временем дисперсная фаза отделяется от дисперсионной среды (выпадает в осадок).

По размеру частиц промежуточной положение между истинными растворами и взвесями занимают коллоидные растворы — золи.

Коллоидные частицы очень малы. И все же они могут состоять из сотен и тысяч молекул.

Свойства коллоидных растворов

Коллоидные частицы настолько малы, что не видны в обычный микроскоп. По внешнему виду коллоидный раствор нельзя отличить от истинного. Однако, если на освещенный коллоидный раствор посмотреть сбоку, то свет луча будет виден, как светлая дорожка, образовавшаяся от рассеивания света частицами. Это явление используют для распознавания коллоидных растворов.

В истинном растворе свет луча не виден, так как молекулы и ионы истинного раствора слишком малы и не рассеивают его.

В коллоидном — свет хорошо заметен. Он образует так называемый конус Тиндаля . Частицы коллоидных растворов под уадарами молекул растворителя совершают непрерывные хаотические перемещения. Это явление носит название Броуновского движения .

Из-за очень малых размеров коллоидные частицы имеют огромную суммарную поверхность.

Поверхность кубика с длинной ребра в 1 см составляет всего 6 квадратных сантиметров.. Но если 1 кубический сантиметр вещества раздробить на части объемом в 1 кубический микрон, то общая их поверхность увеличится в 10 тысяч раз. Поэтому и поглотительные свойства у коллоидных частиц проявляются значительно сильнее, чем у нераздробленного вещества.

Дисперсные системы в природе и технике

Вещества в коллоидном состоянии являются основой органической жизни на земле. Протоплазма любой живой клетки — это сложная коллоидная система. Мышечные ткани, хрящи, клеточные ткани растений, оболочки эритроцитов — тоже разновидности студней.

Коллоиды почвы играют большую роль в корневом питании растений. Адсорбированные на поверхности частиц почвы ионы калия, кальция и других элементов, в результате ионного обмена переходят в почвенный раствор и всасываются корневой системой.

Вещества в коллоидном состоянии принимают участие в образовании многих минералов:

  • агата
  • малахита
  • мрамора

Некоторые драгоцнные камни, например жемчуг представляют собой колоидную систему, где дисперсионной средой является твердое тело — углекислый кальций, а дисперсной фазой — капельки воды. Окраска драгоценных камней: рубинов, изумрудов, сапфиров зависит от присуствия в них небольших количеств золей тяжелых металлов.

Еще в глубокой древности человек использовал коллоидные процессы. Египтяне забивали в щели скал деревянные клинья. Поливали их водой. Древесина набухала, создавалось огромное давление, которое разрушало самые твердые скальные породы.

Процессы коагуляции коллоидов применяют для очистки природной воды. В бассейн отстойник добавляют электролит и коллоиды осаждаются в виде хлопьев, которые задерживает песчаный фильтр.

Мели и наносы в устьях рек образуются под действием морской воды, приводящие к коагуляции коллоидных частиц, находящихся в реке.

Сегодня с коллоидными процессами связаны важнейшие отрасли химической промышленности:

  • производство искусственного волокна
  • раличных клеящих веществ
  • синтетического каучука
  • и многих других химических продуктов

Знакомые уже нам явления электрофареза используют в работе электрофильтров — дымоуловителей.

Адсорбционные свойства коллоидных частиц положены в основу процесса флотационного обогащения руд. Частицы пустой породы гидрофильны, то есть удерживают на своей поверхности молекулы воды, а частицы руды при добавлении некоторых химических веществ приобретают гидрофобные — водоотталкивающие свойства. При продувании через эту смесь воздуха несмачиваемые частички руды поднимаются на поверхность, а пустая порода опускается на дно.

Важные пищевые продукты:

  • простокваша
  • кефир
  • творог
  • джемы
  • и другие

Коллоидные системы по степени дисперсности занимают промежуточное положение между грубодисперсными системами и истинными растворами. Поэтому их можно получать двумя путями:

а) методами диспергирования – дроблением более крупных частиц до коллоидной степени дисперсности – механическим, электрическим, ультразвуком, пептизацией (превращение осадков в коллоидный раствор под влиянием химических веществ – пептизаторов);

б) методами конденсации – укрупнением частиц в агрегаты коллоидной степени дисперсности (получение нерастворимых веществ в результате реакций различных типов);

в) ультрафильтрацией через полупроницаемые мембраны.

Строение коллоидных частиц

Образование нерастворимого вещества в результате химической реакции – это лишь одно из условий получения коллоидного раствора. Другим не менее важным условием является неравенство исходных веществ, взятых в реакцию. Следствием этого неравенства является ограничение роста величины частиц коллоидах растворов, которое при­вело бы к образованию грубодисперсной системы.

Механизм образования коллоидной частицы рассмотрим на приме­ре образования золя иодистого серебра, который получается при взаи­модействии разбавленных растворов азотнокислого серебра и йодисто­го калия.

AgNO 3 +KI = AgI + KNO 3

Ag + + NO 3 ¯ +K + + I ¯ = AgI ↓ + NO 3 ¯ + K +

Нерастворимые нейтральные молекулы йодистого серебра образуют ядро коллоидной частицы.

Сначала эти молекулы соединяются в беспорядке, образуя аморфную, рыхлую структуру, которая постепенно превращается в высокоупо­рядоченную кристаллическую структуру ядра. В рассматриваемом нами примере ядро это кристаллик йодистого серебра, состоящий из боль­шого числа (m) молекул AgI:

m - ядро коллоидной частицы

На поверхности ядра происходит адсорбционный процесс. По правилу Пескова-Фаянса, на поверхности ядер коллоидных частиц адсорбируются ионы, входящие в состав ядра частицы, т.е. адсорбируются ионы серебра (Аg +) или ионы иода (I –). Из этих двух видов ионов адсорбируютcя те, которые находятся в избытке.

Так, если получать коллоидный раствор в избытке йодистого калия, то адсорбироваться на частицах (ядрах) будут ионы иода, которые достраивают кристаллическую ре­шетку ядра, естественно и прочно входя в его структуру. При этом образуется адсорбционный слой, который придает ядру отрицательный заряд:

Ионы, адсорбирующиеся на поверхности яд­ра, придавая ему соответствующий заряд, называются потенциалобразующими ионами.

При этом в растворе находятся и противоположно заряженные ионы, их называют противоионами. В нашем случае это ионы калия (K +), которые электростатически притягиваются к заряженному ядру (величи­на заряда может достигать I в). Часть противоионов К + прочно связы­вается электрическими и адсорбционными силам и и входит в адсорбционный слой. Ядро с образовавшимся на нем двойным адсорбционным слоем ионов называется гранулой.

{m . nI – . (n-x) K + } x – (структура гранулы)

Оставшаяся часть противоионов (обозначим их числом "х К + ") образует диффузный слой ионов.

Ядро с адсорбционным и диффузным слоями называется мицеллой:

{m . nI –. (n-x) K + } x – . х К + (структура мицеллы)

При пропускании постоянного электрического тока через коллоидный раствор гранулы и противоионы двинутся к противоположно заря­женным электродам соответственно.

Наличие одноименного заряда на поверхности частиц золей являет­ся важным фактором его устойчивости. Заряд препятствует слипанию и укрупнению частиц. В устойчивой дисперсной системе частицы удерживаются во взвешенном состоянии, т.е. не происходит выпадения в осадок коллоидного вещества. Это свойство золей называется кинети­ческой устойчивостью.

Строение мицелл золя иодистого серебра, полученного в избытке AgNO 3 , представлено на рис. 1а, в избытке KCI - .

Рис.1.5. Строение мицелл золя иодистоого серебра, полученного в избытке:

а) азотнокислого серебра; б) хлорида калия.

Мицелла – это структурная коллоидная единица. Необходимыми условиями образования мицеллы являются:

а) образование в результате реакции труднорастворимого вещества, m молекул которого образуют агрегат коллоидной частицы.

Например: ;

б) наличие стабилизатора – электролита, предоставляющего ионы, адсорбируемые поверхностью труднорастворимого соединения. Согласно правилу Панетта–Фаянса , лучше всего адсорбируется тот ион, который входит в состав кристаллической решетки адсорбента . Абсорбируемые ионы, достраивающие кристаллическую решетку труднорастроримого соединения, называют потенциал определяющими ионами коллоидной частицы , поскольку заряд частицы совпадает по знаку с зарядом этих ионов. Адсорбция потенциалопределяющих ионов происходит самопроизвольно, сопровождаясь уменьшением свободной энергии поверхности ядра (∆G s).

Стабилизатором, как правило, является исходное вещество, взятое в избытке. Если в рассматриваемой реакции в избытке берется соль , то она будет стабилизатором. И тогда адсорбируемым ионом будет ион .

Рис. 4. Схема строения коллоидной
мицеллы: 1 – адсорбционный слой; 2 – слой потивоионов; 3 – диффузный слой

При избытке соли , стабилизатор предоставляет иодид-ионы, избирательно адсорбируемые поверхностью :

Агрегат с потенциал определяющими ионами образуют ядро мицеллы .

Другие ионы стабилизатора (противоионы ) образуют около твердой поверхности два слоя:адсорбционный (неподвижный), прочно связанный с ядром, и диффузионный (подвижный), расположенный на определенном расстоянии от ядра в дисперсионной среде. Ядро совместно с адсорбционным слоем противоионов называется коллоидной частицей (гранулой) .

Строение мицеллы удобно представлять в виде формулы. Для золя формула мицеллы пишется так, если стабилизатором будет

если стабилизатором будет AgNO 3:

Если стабилизатор , то формула мицеллы запишется так:

Количества потенциалопределяющих ионов и противоионов должны соответствовать их стехиометрии в молекуле стабилизатора. Поскольку поверхностная энергия на ядре коллоидной частицы больше поверхностной энергии на слое потенциалопределяющих ионов, то противоионов адсорбируется на x меньше. Ядро вместе с адсорбционным слоем (слоем потенциалопределяющих ионов и частью противоионов) составляет гранулу. Коллоидная частица (гранула), окруженная противоионами электролита, называется мицеллой. Мицелла – нейтральная частица, а коллоидная частица, как правило имеет заряд, знак и величина которого определяются электрокинетическим потенциалом x, возникающим на границе между адсорбционным и диффузным слоем.


При использовании реакции обмена состав мицелл зависит от того, что к чему приливать!

Основной темой данной статьи будет коллоидная частица. Здесь мы рассмотрим понятие и мицеллы. А также ознакомимся с основным видовым разнообразием частиц, относящихся, к коллоидным. Отдельно остановимся на различных особенностях изучаемого термина, некоторых отдельных понятиях и многом другом.

Введение

Понятие коллоидной частицы тесно связано с различными растворами. В своей совокупности они могут образовывать разнообразные системы микрогетерогенного и дисперсного характера. Частички, образующие такие системы, по размерам обычно лежат в пределах от одного до ста мкм. Помимо наличия поверхности с четко разделенными границами между дисперсной средой и фазой, коллоидные частицы характеризуются свойством малой устойчивости, а сами растворы образоваться самопроизвольно не могут. Наличие большого разнообразия в строении внутренней структуры и размерах вызывает создание большого числа методов получения частиц.

Понятие коллоидной системы

В коллоидных растворах частицы во всей своей совокупности образуют системы дисперсоного типа, которые являются промежуточными между растворами, которые определяют как истинные и грубодисперсные. В данных растворах капли, частички и даже пузырьки, образующие дисперсную фазу, обладают размером от одного до тысячи нм. Они распределяются в толще дисперсной среды, как правило, непрерывной, и отличаются от исходной системы составом и/или агрегатным состоянием. Чтобы лучше понять значение такой терминологической единицы, лучше рассмотреть ее на фоне систем, которые она образует.

Определение свойств

Среди свойств коллоидных растворов основными можно определить:

  • Образующие частички не мешают прохождению света.
  • Прозрачные коллоиды обладают свойством, позволяющим рассеивать световые лучи. Это явление называют эффектом Тиндаля.
  • Заряд коллоидной частицы является одинаковым для дисперсных систем, вследствие чего они не могут встречаться в растворе. В Броуновском движении дисперсные частички не могут выпадать в осадок, что обуславливается их поддержанием в состоянии полета.

Главные типы

Основные классификационные единицы коллоидных растворов:

  • Взвесь частичек твердого типа в газах называют дымом.
  • Взвесь частичек жидкости в газах называют туманом.
  • Из мелких частичек твердого или жидкого типа, взвешенных в среде газа, образуется аэрозоль.
  • Газовую взвесь в жидкостях или твердых телах называют пеной.
  • Эмульсия - это жидкостная взвесь в жидкости.
  • Золь - это дисперсная система ультрамикрогетерогенного типа.
  • Гелем называются взвесь из 2 компонентов. Первый создает каркас трехмерного характера, пустоты которого будут заполнены различными низкомолекулярными растворителями.
  • Взвесь частичек твердого типа в жидкостях называют суспензией.

Во всех этих коллоидных системах размеры частиц могут сильно отличаться в зависимости от своей природы происхождения и агрегатного состояния. Но даже несмотря на такое крайне разнообразное количество систем, обладающих разной структурой, все они относятся к коллоидным.

Видовое разнообразие частиц

Первичные частицы, имеющие коллоидные размеры, по типу внутренней структуры делятся на следующие виды:

  1. Суспензоиды. Их также называют необратимыми коллоидами, что не способны самостоятельно существовать в длинных промежутках времени.
  2. Коллоиды мицеллярного типа, или, как их еще называют, полуколлоиды.
  3. Коллоиды обратимого типа (молекулярные).

Процессы образования данных структур очень различаются между собой, что усложняет процесс понимания их на детальном уровне, на уровне химии и физики. Коллоидные частицы, из которых образуются такие имеют крайне разную форму и условия протекания процесса образования цельной системы.

Определение суспензоидов

Суспензоидами называют растворы с элементами металлов и их вариациями в форме оксида, гидроксида, сульфида и прочих солей.

Все образующие частицы вышеупомянутых веществ обладают молекулярной или ионной кристаллической решеткой. Они формируют фазу дисперсного типа вещества - суспензоида.

Отличительной чертой, позволяющей отличать их от суспензий, является наличие более высокого показателя дисперсности. Но они связаны между собой отсутствием механизма стабилизации для дисперсности.

Необратимость суспензоидов объясняется тем, что осадок процесса их впаривания не дает человеку получить вновь золи посредством создания контакта между самим осадком и дисперсной средой. Все суспензоиды являются лиофобными. В подобных растворах называются коллоидными частицы, относящиеся к металлам и производным солям, которые были измельчены или конденсированы.

Методика получения ничем не отличается от тех двух способов, которыми всегда создают дисперсные системы:

  1. Получение путем диспергирования (измельчения крупных тел).
  2. Методом конденсации ионно- и молекулярнорастворенных веществ.

Определение мицелярных коллоидов

Мицелярные коллоиды также именуют полуколлоидами. Частички, из которых они создаются, возникать могут при наличии достаточного уровня дифильного типа. Такие молекулы могут образовать только низкомолекулярные вещества посредством их ассоциирования в агрегат молекулы - мицеллу.

Молекулы дифильной природы - это структуры, состоящие из углеводородного радикала, параметрами и свойствами сходного с неполярным растворителем и гидрофильной группой, которую также называют полярной.

Мицеллы - это особые скопления правильно расставленных молекул, которые удерживаются преимущественно посредством использования дисперсных сил. Мицеллы образуются, например, в водных растворах моющих средств.

Определение молекулярных коллоидов

Молекулярными коллоидами называют высокомолекулярные соединения как природного, так и синтетического происхождения. Молекулярный вес может колебаться от 10.000 до нескольких миллионов. Молекулярные фрагменты подобных веществ обладают размером коллоидной частицы. Сами молекулы именуют макромолекулами.

Соединения высокомолекулярного типа, подверженные разбавлению, называют истинными, гомогенными. Они, в случае предельного разведения, начинают подчиняться общему ряду законов для разбавленных составов.

Получение коллоидных растворов молекулярного типа является довольно простым заданием. Достаточно заставить контактировать и соответствующий растворитель.

Неполярная форма макромолекул растворяться может в углеводородах, а полярная - в полярных растворителях. Примером последнего может послужить растворение различных белков в растворе воды и соли.

Обратимыми эти вещества называют в связи с тем, что подвергание их выпариванию с добавлением новых порций заставляет молекулярные коллоидные частицы принимать форму раствора. Процесс их растворения должен проходить через стадию, на которой он набухает. Она является характерной чертой, выделяющей молекулярные коллоиды, на фоне других систем, которые были рассмотрены выше.

В процессе набухания молекулы, образующие растворитель, проникают в твердую толщу полимера и тем самым расталкивают макромолекулы. Последние в связи со своими большими размерами начинают медленно диффундировать в растворы. Внешне это можно наблюдать при увеличении объемной величины полимеров.

Устройство мицеллы

Мицеллы коллоидной системы и их строение будет проще изучить, если рассмотреть образующий процесс. Возьмем для AgI. В данном случае частицы коллоидного типа будут образоваться в ходе следующей реакции:

AgNO 3 +KI à AgI↓+KNO 3

Молекулы иодида серебра (AgI) образуют практически нерастворимые частички, внутри которых кристаллическая решетка будет образована катионами серебра и анионами иода.

Образующиеся частицы поначалу имеют строение аморфного типа, однако далее, по мере протекания их постепенной кристаллизации, приобретают постоянное устройство внешнего вида.

Если взять AgNO 3 и KI в соответственных эквивалентах, то кристаллические частицы будут расти и достигать значительных размеров, превосходящих даже величину самой коллоидной частицы, а далее быстро выпадать в осадок.

Если взять одно из веществ с избытком, то можно искусственно сделать из него стабилизатор, который будет сообщать об устойчивости коллоидных частиц иодида серебра. В случае чрезмерного количества AgNO 3 раствор будет содержать в себе больше положительных ионов серебра и NO 3 - . Важно знать о том, что процесс формирования кристаллических решеток AgI подчиняется правилу Панета-Фаянса. Следовательно, он способен протекать только в случае наличия ионов, входящих в состав данного вещества, которые в данном растворе представлены катионами серебра (Ag +).

Положительные ионы аргентума будут продолжать достраиваться на уровне формирования кристаллической решетки ядра, прочно входящего в структуру мицеллы и сообщающего об электрическом потенциале. Именно по этой причине ионы, которые используются для достройки ядерной решетки, называют потенциалопределяющими ионами. В ходе образования коллоидной частицы - мицеллы - есть и другие особенности, обуславливающие то или иное течение процесса. Однако здесь было рассмотрено все на примере с упоминанием важнейших элементов.

Некоторые понятия

Термин коллоидной частички тесно связан с адсорбционным слоем, который образуется одновременно с ионами потенциалопределяющего типа, в ходе адсорбции общего количества противоионов.

Гранула - это структура, образованная ядром и адсорбционным слоем. Она обладает электрическим потенциалом такого же знака, которым наделен Е-потенциал, однако его величина будет меньшей и зависит от исходной величины противоионов в слое адсорбции.

Слипание коллоидных частиц является процессом, который именуют коагуляцией. В дисперсных системах она приводит к образованию из мелких частичек более крупных. Процесс характеризуется сцеплением между маленькими структурными компонентами с образованием коагуляционных структур.