Уход и... Инструменты Дизайн ногтей

Какие существуют методы регистрации заряженных частиц. Методы регистрации заряженных частиц Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений. Рассмотрим





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала.

Вид урока: комбинированный.

Технология: проблемно-диалогическая.

Цель урока: организовать деятельность учащихся по изучению и первичному закреплению знаний о методах регистрации заряженных частиц.

Оборудование: компьютер и мультимедиа-проектор, Презентация .

Способы регистрации заряженных частиц

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности , открыты нейтрон и протон, предсказано существование нейтрино и т.д. Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света.

Со временем экспериментальные установки становились все сложней. Развивалась техника ускорения и детектирования частиц, ядерная электроника. Успехи в физике ядра и элементарных частиц все в большей степени определяются прогрессом в этих областях. Нобелевские премии по физике часто присуждаются за работы в области техники физического эксперимента.

Детекторы служат как для регистрации самого факта наличия частицы так и для определения её энергии и импульса, траектории движения частицы и др. характеристик. Для регистрации частиц часто используют детекторы которые максимально чувствительны к регистрации определенной частицы и не чувствуют большой фон создаваемый другими частицами.

Обычно в экспериментах по физике ядра и частиц необходимо выделять «нужные» события на гигантском фоне «ненужных» событий, может быть одно из миллиарда. Для этого используют различные комбинации счётчиков и методов регистрации.

Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы.

1. Счётчик Гейгера

Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью. При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

2. Камера Вильсона

Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).

Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа. В камере Вильсона треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей. На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10 –3 -10 –4 см) и фотографирования при хорошем освещении. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта – на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.

3. Пузырьковая камера

Пузырьковая камера – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка пузырьков пара вдоль траектории её движения. Изобретена А. Глэзером в 1952 г. (Нобелевская премия 1960 г.).

Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.

Камера Вильсона и пузырьковая камера имеют огромное преимущество, которое заключается в том, что можно непосредственно наблюдать все заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и поэтому пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.

4. Ядерные эмульсии

Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.
Фотоэмульсии как детекторы частиц в какой-то мере аналогичны камере Вильсона и пузырьковой камере. Впервые их применил английский физик С.Пауэлл для изучения космических лучей. Фотоэмульсия представляет собой слой желатины с диспергированными в ней зернами бромида серебра. Под действием света в зернах бромида серебра образуются центры скрытого изображения, способствующие восстановлению бромида серебра до металлического серебра при проявлении обычным фотографическим проявителем. Физический механизм образования этих центров состоит в образовании атомов металлического серебра за счет фотоэффекта. Ионизация, производимая заряженными частицами, дает такой же результат: возникает след из сенсибилизированных зерен, который после проявления можно видеть под микроскопом.

5. Сцинтиляционный детектор

Сцинтиляционный детектор использует свойство некоторых веществ светиться (сцинтилировать) при прохождении заряженной частицы. Кванты света, образующиеся в сцинтиляторе, затем регистрируются с помощью фотоумножителей.

Современные измерительные установки в физике высоких энергий представляют из себя сложные системы, включающие десятки тысяч счетчиков, сложную электронику и способны одновременно регистрировать десятки частиц, рождающихся в одном столкновении.

Методы регистрации заряженных частиц.

Строение атомного ядра. Массовое число, заряд. Дефект массы и энергия связи. Изотопы.

Существуют различные модели атома, которые используются в различных условиях. Рассмотрим протонно-нейтронную модель ядра атома.
Согласно этой модели:
- ядра всех химических элементов состоят из нуклонов: протонов и нейтронов
- заряд ядра обусловлен только протонами
- число протонов в ядре равно порядковому номеру элемента
- число нейтронов равно разности между атомным числом и числом протонов (N=A-Z)
Условное обозначение ядра атома химического элемента: z A X
X – символ химического элемента
А – массовое число, которое показывает - массу ядра в целых атомных единицах массы (а.е.м.) ,- число нуклонов в ядре
- (A = N + Z) ,
Z – зарядовое число, которое показывает- заряд ядра, число протонов, число электронов в атоме,- порядковый номер в таблице Менделеева

N – число нейтронов в ядре атома(N = A - Z)
Масса ядра всегда меньше суммы масс свободных протонов и нейтронов, его составляющих. Это объясняется тем, что протоны и нейтроны в ядре очень сильно притягиваются друг к другу. Чтобы разъединить их требуется затра-тить большую работу. Поэтому полная энергия покоя ядра не равна энергии покоя составляющих его частиц.
Разность между массой ядра и суммой масс протонов и нейтронов называется дефектом масс.

Дефект масс - недостаток массы ядра по сравнению с суммой масс свободных нуклонов

Расчетная формула для дефекта масс: Δm=(z *m p +N * m n)- mя

где m я - масса ядра; (z * m p +N * m n)- сумма масс свободных нуклонов, сливающихся в ядро
Z- число протонов; m p -масса свободного протона; N - число нейтронов; m n - масса свободного нейтрона

ЭНЕРГИЯ СВЯЗИ -- минимальная энергия, необходимая для расщепления ядра на свободные нуклоны; или - энергия, выделяющаяся при слиянии свободных нуклонов в ядро.

Расчетная формула для энергии связи: E= mc 2 (с - скорость света в вакууме)

Счетчик Гейгера - служит для подсчета количества радиоактив-ных частиц (в основном электронов).
Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод).При пролете частицы воз-никает ударная ионизация газа и возникает импульс электри-ческого
тока.

Достоинства:
- компактность
- эффективность
- быстродействие
- высокая точность (10ООО частиц/с).
Где используется:
- регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д.
- на объектах хранения радиоактивных материалов или с работающими ядерными реакторами
- при поиске залежей радиоактивной руды (U, Th)
Камера Вильсона - служит для наблюдения и фотографирования следов от пролета частиц (треков).
Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии:
при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар.
По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.
При помещении камеры в магнитное поле по треку можно определить энергию, скорость, массу и заряд частицы. По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы.
Например, альфа-частица дает сплошной толстый трек, протон - тонкий трек, электрон - пунктирный трек.
Пузырьковая камера - вариант камеры Вильсона
При резком понижении поршня жидкость, находящаяся под высоким давление, переходит в перегретое состояние. При быстром движении частицы по следу образуются пузырьки пара, т.е. жидкость закипает, виден трек.
Преимущества перед камерой Вильсона:
- большая плотность среды, следовательно короткие треки
- частицы застревают в камере и можно проводить дальнейшее наблюдение частиц
- большее быстродействие.
Метод толстослойных фотоэмульсий - служит для регистрации частиц, позволяет регистрировать редкие явления из-за большого время экспозиции.
Фотоэмульсия содержит большое количество микрокристаллов бромида серебра. Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы - трек. По длине и толщине трека можно определить энергию и массу частиц.

В начале XX в. были разработаны методы исследования явлении атомной физики и созданы приборы, позволившие не только выяснить основные вопросы строения атомов, но и наблюдать превращения химических элементов.

Трудность создания таких приборов заключалась в том, что используемые в экспериментах заряженные частицы представляют собой ионизированные атомы каких-либо элементов или, например, электроны, и прибор должен регистрировать попадание в него лишь одной частицы или делать видимой траекторию ее движения.

В качестве одного из первых и простейших приборов для регистрации частиц был использован экран, покрытый люминесцирующим составом. В той точке экрана, куда попадает частица с достаточно большой энергией, возникает вспышка - сцинтилляция (от латинского «сцинтилляцио» - сверкание, вспышка).

Первый основной прибор для регистрации частиц был изобретен в 1908 г. Г. Гейгером. После того, как этот прибор был усовершенствован В. Мюллером, он мог подсчитывать число попадающих в него частиц. Действие счетчика Гейгера - Мюллер, а основано на том, что пролетающие через газ заряженные частицы ионизируют встречающиеся на их пути атомы газа: отрицательно заряженная частица, отталкивая электроны, выбивает их из атомов, а положительно заряженная частица притягивает электроны и вырывает их из атомов.

Счетчик состоит из полого металлического цилиндра, диаметром около 3 см (рис. 37.1), с окном из тонкого стекла или алюминия. По осп цилиндра проходит изолированная от стенок металлическая нить. Цилиндр (камера) заполняется разреженным газом, например, аргоном. Между стенками цилиндра и нитью создается напряжение порядка 1500 В, недостаточное для образования самостоятельного разряда. Нить заземляется через большое сопротивление R. При попадании в камеру частицы с большой энергией происходит ионизация атомов газа на пути этой частицы, и между стенками и нитью возникает разряд. Разрядный ток создает большое падение напряжения на сопротивлении R, и напряжение между нитью и стенками сильно уменьшается. Поэтому разряд быстро прекращается. После прекращения тока все напряжение вновь сосредоточивается между стенками камеры и нитью, и счетчик подготовлен к регистрации новой частицы. Напряжение с сопротивления R подается на вход усилительной лампы, в анодную цепь которой включается счетный механизм.

Способность частиц большой энергии ионизировать атомы газа используются и в одном из самых замечательных приборов современной физики - в камере Вильсона. В 1911 г. английский ученый Ч. Вильсон построил прибор, с помощью которого можно было видеть и фотографировать траектории заряженных частиц.

Камера Вильсона (рис. 37.2) состоит из цилиндра с поршнем; верхняя часть цилиндра сделана из прозрачного материала. В камеру вводится небольшое количество воды или спирта, и внутри нее образуется смесь паров и воздуха. При быстром опускании поршня смесь адиабатически расширяется и охлаждается, поэтому воздух в камере оказывается пересыщенным парами.

Если воздух очищен от пылинок, то превращение избытка пара в жидкость затруднено из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому, если через камеру пролетает в это время заряженная частица, ионизирующая на своем пути молекулы воздуха, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры получается отмеченной нитью тумана, т. е. становится видимой. Тепловое движение воздуха быстро размывает нити тумана, и траектории частиц видны отчетливо лишь около 0,1 с, что, однако, достаточно для фотографирования.

Вид траектории на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, альфа-частицы оставляют сравнительно толстый сплошной след, протоны - более тонкий, а электроны - пунктирный след. Одна из фотографий альфа-частиц в камере Вильсона показана на рис. 37.3.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Как говорилось выше, в камере Вильсона для получения следов частиц используется конденсация пересыщенного пара, т. е. превращение его в жидкость. Для этой же цели можно использовать обратное явление, т. е. превращение жидкости в пар. Если жидкость заключить в замкнутый сосуд с поршнем и при помощи поршня создать повышенное давление, а затем резким перемещением поршня уменьшить давление в жидкости, то при соответствующей температуре жидкость может оказаться в перегретом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ионы служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т. е. делается видимой. На этом принципе основано действие пузырьковой камеры.

При изучении следов частиц с большой энергией пузырьковая камера удобнее камеры Вильсона, так как при движении в жидкости частица теряет значительно больше энергии, чем в газе. Во многих случаях это позволяет значительно точнее определить направление движения частицы и ее энергию. В настоящее время имеются пузырьковые камеры диаметром около 2 м. Они заполняются жидким водородом. Следы частиц в жидком водороде получаются очень отчетливыми .

Для регистрации частиц и получения их следов служит также метод толстослойных фотопластинок. Он основан на том, что пролетающие сквозь фотоэмульсию частицы действуют на зерна бромистого серебра, поэтому оставленный частицами след после проявления фотопластинки становится видимым (рис. 37.4) и его можно исследовать с помощью микроскопа. Чтобы след был достаточно длинным, используются толстые слои фотоэмульсии.

Цели урока

  • Образовательная: дать представление о методах регистрации заряженных частиц, раскрыть особенности каждого метода, выявить основные закономерности, изучить применение методов.
  • Развивающая: развивать память, мышление, восприятие, внимание, речь через индивидуальную подготовку к уроку; развивать навыки работы с дополнительной литературой и ресурсами Internet .
  • Воспитательная: развивать учебную мотивацию, воспитывать патриотизм через изучение вклада отечественных учёных в мировую науку.

Ход урока

І. Ознакомьтесь с теоретическим материалом.

Теоретические сведения

Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений. Рассмотрим некоторые из них, которые наиболее широко используются.

1) Газоразрядный счётчик Гейгера

Счётчик Гейгера - один из важнейших приборов для автоматического счёта частиц. Счётчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод).

Трубка заполняется газом, обычно аргоном. Действие счётчика основано на ударной ионизации. Заряженная частица (электрон, Υ-частица и т.д.), пролетая в газе, отрывает от атомов электроны и создаёт положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергии, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счётчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подаётся в регистрирующее устройство. Для того чтобы счётчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически.



Счётчик Гейгера применяется в основном для регистрации электронов и Y-квантов (фотонов большой энергии).Однако непосредственно Y-кванты вследствие их малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого Y-кванты выбивают электроны.

Счётчик регистрирует почти все попадающие в него электроны; что же касаетсяY- квантов, то он регистрирует приблизительно только один Y-квант из ста. Регистрация тяжёлых частиц (например, Ј-частиц) затруднена, так как сложно сделать в счётчике достаточно тонкое «окошко», прозрачное для этих частиц.

2) Камера Вильсона

Действие камеры Вильсона основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создаёт вдоль своей траектории движущаяся заряженная частица.



Прибор представляет собой цилиндр с поршнем 1 (рис. 2), накрытый плоской стеклянной крышкой 2. Рабочий объем камеры заполнен газом, который содержит насыщенный пар. При быстром перемещении поршня вниз газ в объеме адиабатически расширяется и охлаждается, при этом становясь перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капельки сконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде полоски тумана (рис.3), который можно наблюдать и фотографировать. Трек существует десятые доли секунды. Вернув поршень в исходное положение и удалив ионы электрическим полем, можно вновь выполнить адиабатное расширение. Таким образом, опыты с камерой можно проводить многократно.



Если камеру поместить между полюсами электромагнита, то возможности камеры по изучению свойств частиц значительно расширяются. В этом случае на движущуюся частицу действует сила Лоренца, что позволяет по искривлению траектории определить значение заряда частицы и ее импульс. На рисунке 4 приведен возможный вариант расшифровки фотографии треков электрона и позитрона. Вектор индукции В магнитного поля направлен перпендикулярно плоскости чертежа за чертеж. Влево отклоняется позитрон, вправо — электрон.



3 ) Пузырьковая камера

Отличается от камеры Вильсона тем, что перенасыщенные пары в рабочем объеме камеры заменяются перегретой жидкостью, т.е. такой жидкостью, которая находится под давлением, меньшим давления ее насыщенных паров.



Пролетая в такой жидкости, частица вызывает возникновение пузырьков пара, образуя тем самым трек (рис.5).

В исходном состоянии поршень сжимает жидкость. При резком понижении давления температура кипения жидкости оказывается меньше температуры окружающей среды.

Жидкость переходит в неустойчивое (перегретое) состояние. Это и обеспечивает появление пузырьков на пути движения частицы. В качестве рабочей смеси применяются водород, ксенон, пропан и некоторые другие вещества.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

4) Метод толстослойных фотоэмульсий

Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующие действие быстрых заряженных частиц на эмульсию фотопластинки. Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра.

Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При появлении в этих кристалликах восстанавливается металлическое серебро и цепочка зёрен серебра образует трек частицы.

По длине и толщине трека можно оценить энергию и массу частицы. Из-за большой плотности фотоэмульсии треки получаются очень короткими, но при фотографировании их можно увеличить. Преимущество фотоэмульсии состоит в том, что время экспозиции может быть сколько угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсии увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

5) Сцинтилляционный метод

Сцинтилляционный счетчик состоит из сцинтиллятора, фотоэлектронного умножителя и электронных устройств для усиления и подсчета импульсов.Сцинтиллятор преобразует энергию ионизирующего излучения в кванты видимого света, величина которых зависит от типа частиц и материала сцинтиллятора. Кванты видимого света, попав на фотокатод, выбивают из него электроны, число которых многократно увеличивается фотоумножителем. В результате этого на выходе фотоумножителя образуется значительный импульс, который затем усиливается и сосчитывается пересчетной установкой. Таким образом, за счет энергии a -или b -частицы, g -кванта или другой ядерной частицы в сцинтилляторе появляется световая вспышка-сцинтилляция, которая затем с помощью фотоэлектронного умножителя (ФЭУ) преобразуется в импульс тока и регистрируется.


ІІ. Используя теоретический материал и ресурсы Internet, заполните таблицу

Спинтарископ

Счётчик Гейгера

Камера Вильсона

Пузырьковая камера

2. Устройство

3. Информация о частице

4. Тип частиц

5. Преимущества

6. Недостатки

7. Физические законы

8. Принцип работы

9. Открытия, сделанные с использованием прибора

ІІІ. Выполните лабораторную работу

Тема: «Изучение треков заряженных частиц по готовым фотографиям»

Цель: провести идентификацию заряженной частицы по результатам сравнения ее трека с треком протона в камере Вильсона, помещенной в магнитное поле; оценить погрешность эксперимента, систематизировать полученные из анализа треков на фотографиях сведения, сформировать выводы и заключения.

Оборудование: готовая фотография двух треков заряженных частиц. I трек- протон, II - частица, которую необходимо идентифицировать.

Пояснения

При выполнении данной лабораторной работы следует помнить, что:

  • длина трека тем больше, чем больше энергия частицы (и чем меньше плотность среды);
  • толщина трека тем больше, чем больше заряд частицы и чем меньше ее скорость;
  • при движении заряженной частицы в магнитном поле трек ее получается искривленным, причем радиус кривизны трека тем больше, чем больше масса и скорость частицы и чем меньше ее заряд и модуль индукции магнитного поля.
  • частица двигалась от конца трека с большим радиусом кривизны к концу с меньшим радиусом кривизны (радиус кривизны по мере движения уменьшается, так как из-за сопротивления среды уменьшается скорость частицы).
Порядок выполнения работы
  1. Ознакомьтесь с фотографией треков двух заряженных частиц. (Трек I принадлежит протону, трек II - частице, которую надо идентифицировать) (см. рис.1) .
  2. Измерьте радиусы кривизны треков, на их начальных участках (см. рис. 2).

Здесь будет изображение:

Табличная частица



Относительная погрешность,


6. Дополнительное задание.

а) В каком направлении двигались частицы?

б) Длина треков частиц примерно одинакова. О чем это говорит?

в) Как менялась толщина трека по мере движения частиц? Что из этого следует?


Здесь будет файл: /data/edu/files/y1445085758.doc (Лариса Белова: Методы регистрации заряженных частиц)

Методы регистрации и Детекторы частиц

§ Калориметрический (по выделяемой энергии)

§ Фотоэмульсионные

§ Пузырьковые и искровые камеры

§ Сцинтилляционные детекторы

§ Полупроводниковые детекторы

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всœего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности, открыты нейтрон и протон, предсказано существование нейтрино и т.д. Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света. Черенковское излучение впервые наблюдалось визуально. Первая пузырьковая камера, в которой Глезер наблюдал треки -частиц была величиной с наперсток. Источником частиц высоких энергий в то время были космические лучи - частицы, образующиеся в мировом пространстве. В космических лучах впервые наблюдались новые элементарные частицы. 1932 год - открыт позитрон (К. Андерсон), 1937 год - открыт мюон (К. Андерсон, С. Недермейер), 1947 год - открыт -мезон (Пауэл), 1947 год - обнаружены странные частицы (Дж. Рочестер, К. Батлер).

Со временем экспериментальные установки становились всœе сложней. Развивалась техника ускорения и детектирования частиц, ядерная электроника. Успехи в физике ядра и элементарных частиц всœе в большей степени определяются прогрессом в этих областях. Нобелœевские премии по физике часто присуждаются за работы в области техники физического эксперимента.

Детекторы служат как для регистрации самого факта наличия частицы так и для определœения её энергии и импульса, траектории движения частицы и др.
Размещено на реф.рф
характеристик. Для регистрации частиц часто используют детекторы которые максимально чувствительны к регистрации определœенной частицы и не чувствуют большой фон создаваемый другими частицами.

Обычно в экспериментах по физике ядра и частиц крайне важно выделять "нужные" события на гигантском фоне "ненужных" событий, должна быть одно из миллиарда. Для этого используют различные комбинации счётчиков и методов регистрации, используют схемы совпадений или антисовпадений между событиями, зарегистрированными различными детекторами, отбор событий по амплитуде и форме сигналов и т.п. Часто используется селœекция частиц по их времени пролёта определённого расстояния между детекторами, магнитный анализ и другие методы, которые позволяют надёжно выделить различные частицы.

Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, ĸᴏᴛᴏᴩᴏᴇ они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы. Незаряженные частицы (-кванты, нейтроны, нейтрино) детектируются по вторичным заряженным частицам, возникающим в результате их взаимодействия с веществом детектора.

Нейтрино непосредственно не регистрируются детектором. Οʜᴎ уносят с собой определённую энергию и импульс. Недостачу энергии и импульса можно обнаружить, применяя закон сохранения энергии и импульса к другим зарегистрированным в результате реакции частицам.

Быстрораспадающиеся частицы регистрируются по их продуктам распада. Большое применение нашли детекторы, позволяющие непосредственно наблюдать траектории частиц. Так с помощью камеры Вильсона, помещенной в магнитное поле были открыты позитрон, мюон и -мезоны, с помощью пузырьковой камеры - многие странные частицы, с помощью искровой камеры регистрировались нейтринные события и т.д.

1. Счётчик Гейгера . Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью.

При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

2. Пропорциональный счетчик. Пропорциональный счетчик имеет такую же конструкцию, как и счётчик Гейгера. При этом за счёт подбора напряжения питания и состава газовой смеси в пропорциональном счетчике при ионизации газа пролетевшей заряженной частицей не происходит коронного разряда. Под действием электрического поля создаваемого вблизи положительного электрода первичные частицы производят вторичную ионизацию и создают электрические лавины, что приводит к усилению первичной ионизации созданной пролетевшей через счётчик частицы в 10 3 - 10 6 раз. Пропорциональный счетчик позволяет регистрировать энергию частиц.

3. Ионизационная камера. Так же как в счетчике Гейгера и пропорциональном счетчике в ионизационной камере используется газовая смесь. При этом, по сравнению с пропорциональным счетчиком напряжение питания в ионизационной камере меньше и усиления ионизации в ней не происходит. Учитывая зависимость оттребований эксперимента для измерения энергии частиц используется либо только электронная компонента токового импульса, либо электронная и ионная.

4. Полупроводниковый детектор . Устройство полупроводникового детектора, которые обычно изготовляются из кремния или германия, аналогично устройству ионизационной камеры. Роль газа в полупроводниковом детекторе играет определœенным образом созданная чувствительная область, в которой в обычном состоянии нет свободных носителœей заряда. Попав в эту область заряженная частица вызывает ионизацию, соответственно в зоне проводимости появляются электроны, а в валентной зоне - дырки. Под действием приложенного к напыленным на поверхность чувствительной зоны электродам напряжения, возникает движение электронов и дырок, формируется импульс тока. Заряд импульса тока несет информацию об количестве электронов и дырок и соответственно об энергии, которую заряженная частица потеряла в чувствительной области. И, в случае если частица полностью потеряла энергию в чувствительной области, проинтегрировав токовый импульс получают информацию об энергии частицы. Полупроводниковые детекторы обладают высоким энергетическим разрешением.

Число пар ионов nион в полупроводниковом счётчике определяется формулой N ион = E/W,

где E - кинœетическая энергия частицы, W - энергия, необходимая для образования одной пары ионов. Для германия и кремния W ~ 3-4 эВ и равна энергии крайне важно й для перехода электрона из валентной зоны в зону проводимости. Малая величина W определяет высокое разрешение полупроводниковых детекторов, по сравнению с другими детекторами, в которых энергия первичной частицы тратится на ионизацию (Еион >> W).

5. Камера Вильсона. Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Важно заметить, что для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа

6. Пузырьковая камера. Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.

Камера Вильсона и пузырьковая камера имеют огромное преимущество, ĸᴏᴛᴏᴩᴏᴇ состоит по сути в том, что можно непосредственно наблюдать всœе заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и в связи с этим пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.

7. Ядерные эмульсии. Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.

8. Искровая камера. Искровая камера состоит нескольких плоских искровых промежутков, объединённых в одном объёме. После прохождения заряженной частицы через искровую камеру на её электроды подаётся короткий высоковольтный импульс напряжения. В результате вдоль трека образуется видимый искровой канал. Искровая камера, помещённая в магнитное поле, позволяет не только детектировать направление движения частицы, но и по искривлению траектории определять тип частицы и её импульс. Размеры электродов искровых камер могут доходить до нескольких метров.

9. Стриммерная камера. Это аналог искровой камеры, с большим межэлектродным расстоянием ~0.5 м. Длительность высоковольтного разряда подаваемого на искровые промежутки составляет ~10 -8 с. По этой причине образуется не искровой пробой, а отдельные короткие светящиеся световые каналы - стриммеры. В стриммерной камере можно регистрировать одновременно несколько заряженных частиц.

10. Пропорциональная камера. Пропорциональная камера обычно имеет плоскую или цилиндрическую форму и в каком-то смысле является аналогом многоэлектродного пропорционального счетчика. Высоковольтные проволочные электроды отстоят друг от друга на расстоянии нескольких мм. Заряженные частицы, проходя через систему электродов, создают на проволочках импульс тока длительностью ~10 -7 с. Регистрируя эти импульсы с отдельных проволочек можно с точностью до нескольких микрон восстановить траекторию частиц. Разрешающее время пропорциональной камеры составляет несколько микросœекунд. Энергетическое разрешение пропорциональной камеры ~5-10%.

11. Дрейфовая камера. Это аналог пропорциональной камеры, позволяющий с ещё большей точностью восстановить траекторию частиц.

Искровая, стриммерная, пропорциональная и дрейфовая камеры обладая многими преимуществами пузырьковых камер, позволяют запускать их от интересующего события, используя их на совпадения со сцинтилляционными детекторами.

12. Сцинтилляционный детектор.
Размещено на реф.рф
Сцинтилляционный детектор использует свойство некоторых веществ светиться при прохождении заряженной частицы. Кванты света͵ образующиеся в сцинтилляторе, затем регистрируются с помощью фотоумножителœей. Используются как кристаллические сцинтилляторы, к примеру, NaI, BGO, так и пластиковые и жидкие. Кристаллические сцинтилляторы в основном используются для регистрации гамма-квантов и рентгеновского излучения, пластиковые и жидкие - для регистрации нейтронов и временных измерений. Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.

13. Калориметры. Калориметры представляют из себячередующиеся слои вещества, в котором тормозятся частицы высоких энергий (обычно это слои желœеза и свинца) и детекторы, в качестве которых используют искровые и пропорциональные камеры или слои сцинтиляторов. Ионизирующая частица высокой энергии (E > 1010 эВ), проходя через калориметр, создаёт большое число вторичных частиц, которые, взаимодействуя с веществом калориметра, в свою очередь создают вторичные частицы - образуют ливень частиц в направлении движения первичной частицы. Измеряя ионизацию в искровых или пропорциональных камерах или световой выход сцинтиляторов, можно определить энергию и тип частицы.

14. Черенковский счётчик. Работа черенковского счётчика основана на регистрации излучения Черенкова - Вавилова, возникающего при движении частицы в среде со скоростью v превышающей скорость распространения света в среде (v > c/n). Свет черенковского излучения направлен вперёд под углом по направлению движения частицы.

Световое излучение регистрируется с помощью фотоумножителя. При помощи черенковского счётчика можно определить скорость частицы и отобрать частицы по скоростям.

Самым большим водяным детектором, в котором частицы детектируются с помощью черенковского излучения, является детектор Суперкамиоканде (Япония). Детектор имеет цилиндрическую форму. Диаметр рабочего объёма детектора 39.3 м., высота 41.4 м. Масса детектора составляет 50 ктонн, рабочий объём для регистрации солнечных нейтрино 22 ктонн. Детектор Суперкамиоканде имеет 11000 фотоумножителœей, которые просматривают ~40% поверхности детектора.