Уход и... Инструменты Дизайн ногтей

Генеральная совокупность и выборочный метод. Реферат: Выборочный метод в статистике

План:

1. Задачи математической статистики.

2. Виды выборок.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Пример:

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

Присоставлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку , при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку , при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Пример:

В американском журнале «Литературное обозрение» с помощью статистическихметодов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный ; б) простой случайный повторный ).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор ; б) механический отбор ; в) серийный отбор ).

Простым случайным называют такой отбор , при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор , при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор , при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор , при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x 1 –наблюдалось раз, x 2 -n 2 раз,… x k - n k раз. n = n 1 +n 2 +...+n k – объем выборки. Наблюдаемые значения называются вариантами , а последовательность вариант, записанных в возрастающем порядке- вариационным рядом . Числа наблюдений называются частотами (абсолютными частотами) , а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

x i
x 1
x 2

x k
n i
n 1
n 2

n k

Аналогично можно представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в некотором тексте Х оказалось равным 1000. Первой встретиласьбуква «я», второй- буква «и», третьей- буква «а», четвертой- «ю». Затем шли буквы«о», «е», «у», «э», «ы».

Выпишем места, которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6, 21, 31, 29.

После упорядочения этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31, 32, 33.

Частоты появления букв в тексте: «а» - 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3, «ю»- 7, «я»- 22.

Составим точечный вариационный ряд частот:

Пример:

Задано распределение частот выборки объема n = 20.

Составьте точечный вариационный ряд относительных частот.

x i

2

6

12

n i

3

10

7

Решение:

Найдем относительные частоты:


x i

2

6

12

w i

0,15

0,5

0,35

При построении интервального распределения существуют правилавыбора числа интервалов или величины каждого интервала. Критерием здесь служит оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность, но увеличивается объем данных и время на их обработку. Разность x max - x min между наибольшим и наименьшим значениями вариант называют размахом выборки.

Для подсчета числа интервалов k обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до ближайшего удобного целого): k = 1 + 3.322 lg n .

Соответственно, величину каждого интервала h можно вычислить по формуле :

5. Эмпирическая функция распределения

Рассмотрим некоторую выборку из генеральной совокупности. Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: n x – число наблюдений, при которых наблюдалось значение признака, меньшее х; n – общее число наблюдений (объем выборки). Относительная частота события Х<х равна n x /n . Если х изменяется, то изменяется и относительная частота, т.е. относительная частота n x /n - есть функция от х. Т.к. она находится эмпирическим путем, то она называется эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого х относительную частоту события Х<х.


где число вариант, меньших х,

n - объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения .

Различие между эмпирической и теоретической функциями распределения состоит в том, что теоретическая функция F (x ) определяет вероятность события ХF*(x) стремится по вероятности к вероятности F (x ) этого события. Т.е.при большом n F*(x) и F (x ) мало отличаются друг от друга.

Т.о. целесообразно использовать эмпирическую функцию распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

F*(x) обладает всеми свойствами F (x ).

1. ЗначенияF*(x) принадлежат интервалу .

2. F*(x) - неубывающая функция.

3. Если – наименьшая варианта, тоF*(x) = 0, при х< x 1 ; если x k – наибольшая варианта, то F*(x) = 1, при х > x k .

Т.е. F*(x) служит для оценки F (x ).

Если выборка задана вариационным рядом, то эмпирическая функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению выборки.


Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая варианта 2, т.е. при х < 2. Событие X <6, (x 1 = 2) наблюдалось 12 раз, т.е. F*(x)=12/60=0,2 при 2 < x < 6. Событие Х<10, (x 1 =2, x 2 = 6) наблюдалось 12 + 18 = 30 раз, т.е.F*(x)=30/60=0,5 при 6 < x < 10. Т.к. х=10 наибольшая варианта, тоF*(x) = 1 при х>10. Искомая эмпирическая функция имеет вид:

Кумулята:


Кумулята дает возможность понимать графически представленную информацию, например, ответить на вопросы: «Определите число наблюдений, при которых значение признака было меньше 6 или не меньше 6. F*(6) =0,2 » Тогда число наблюдений, при которых значение наблюдаемого признака было меньше 6 равно 0,2* n = 0,2*60 = 12. Число наблюдений, при которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)* n = 0,8*60 = 48.

Если задан интервальный вариационный ряд, то для составления эмпирической функции распределения находят середины интервалов и по ним получают эмпирическую функцию распределения аналогично точечному вариационному ряду.

6. Полигон и гистограмма

Для наглядности строят различные графики статистического распределения: полином и гистограммы

Полигон частот- это ломаная, отрезки которой соединяют точки ( x 1 ;n 1 ), ( x 2 ;n 2 ),…, ( x k ; n k ), где – варианты, – соответствующие им частоты.

Полигон относительных частот- это ломаная, отрезки которой соединяют точки ( x 1 ;w 1 ), (x 2 ;w 2 ),…, ( x k ;w k ), гдеx i –варианты, w i – соответствующие им относительные частоты.

Пример:

Постройте полином относительных частот по данному распределению выборки:

Решение:

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для кажд ого частичного интервала n i – сумму частот вариант, попавших в i -ый интервал. (Например, при измерении роста человека или веса, мы имеем дело с непрерывным признаком).

Гистограмма частот- это ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною h , а высоты равны отношению (плотность частот).

Площадь i -го частичного прямоугольника равна- сумме частот вариант i - го интервала, т.е. площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения (в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232, 223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, x min =212, x max =232 .

Применим формулу Стреджесса для подсчета числа интервалов.

Интервальный вариационный ряд частот имеет вид:


Плотность частот

212-21 6

0,75

21 6-22 0

0,75

220-224

1,75

224-228

228-232

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины интервалов:


Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которыхслужат частичные интервалы длиною h , а высоты равны отношению w i /h (плотность относительной частоты).

Площадь i -го частичного прямоугольника равна- относительной частоте вариант, попавших в i - ый интервал. Т.е. площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

7. Числовые характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной совокупностей.

Генеральным средним называется среднее арифметическое значений признака генеральной совокупности.

Для различных значений x 1 , x 2 , x 3 , …, x n . признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то


Выборочным средним называется среднее арифметическое значений признака выборочной совокупности.

Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Пример:

Вычислите выборочное среднее для выборки: x 1 = 51,12; x 2 = 51,07;x 3 = 52,95; x 4 =52,93;x 5 = 51,1;x 6 = 52,98; x 7 = 52,29; x 8 = 51,23; x 9 = 51,07; x 10 = 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака Х генеральной совокупности от генерального среднего.

Для различных значений x 1 , x 2 , x 3 , …, x N признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то

Генеральным среднеквадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от среднего значения.

Для различных значений x 1 , x 2 , x 3 , …, x n признака выборочной совокупности объема n имеем:


Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Выборочным среднеквадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии.


Пример:

Выборочная совокупность задана таблицей распределения. Найдите выборочную дисперсию.


Решение:

Теорема: Дисперсия равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.



Решение:

8. Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой выборке. При этом можно получить лишь приближенное значение неизвестного параметра Q , который служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к другой.

Статистической оценкой Q * неизвестного параметра теоретического распределения называется функция f , зависящая от наблюдаемых значений выборки. Задачей статистического оценивания неизвестных параметров по выборке заключается в построении такой функции от имеющихся данных статистических наблюдений, которая давала бы наиболее точные приближенные значения реальных, не известных исследователю, значений этих параметров.

Статистические оценки делятся на точечные и интервальные, в зависимости от способа их предоставления (числом или интервалом).

Точечной называют статистическую оценку параметра Q теоретического распределения определяемую одним значением параметра Q *=f (x 1 , x 2 , ..., x n), где x 1 , x 2 , ..., x n - результаты эмпирических наблюдений над количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q *-Q / называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они были несмещенными, эффективными и состоятельными.

Точечная оценка , математическое ожидание которой равно (не равно) оцениваемому параметру, называется несмещенной (смещенной) . М(Q *)=Q .

Разность М(Q *)-Q называют смещением или систематической ошибкой . Для несмещенных оценок систематическая ошибка равна 0.

Эффективной оценку Q *, которая при заданном объеме выборки n имеет наименьшую возможную дисперсию: D min (n = const ). Эффективная оценка имеет наименьший разброс по сравнению с другими несмещенными и состоятельными оценками.

Состоятельной называют такую статистическую оценку Q *, которая при n стремится по вероятности к оцениваемому параметру Q , т.е. при увеличении объема выборки n оценка стремится по вероятности к истинному значению параметра Q .

Требование состоятельности согласуется с законом больших числе: чем больше исходной информации об исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n ) можно рассматривать как упорядоченный набор x 1 , x 2 , ..., x n независимых одинаково распределенных случайных величин.

Выборочные средние для различных выборок объема n из одной и той же генеральной совокупности будут различны. Т. е. выборочное среднее можно рассматривать как случайную величину, а значит, можно говорить о распределении выборочного среднего и его числовых характеристиках.

Выборочное среднее удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е. дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что . Таким образом, выборочная дисперсия является смещенной оценкой генеральной дисперсии, давая ее заниженное значение. Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для несмещенной, состоятельной оценки достаточно взять величину , которую называют исправленной дисперсией. Т. е.

На практике для оценки генеральной дисперсии применяют исправленную дисперсию при n < 30. В остальных случаях ( n >30) отклонение от малозаметно. Поэтому при больших значениях n ошибкой смещения можно пренебречь.

Можно так же доказать,что относительная частота n i / n является несмещенной и состоятельной оценкой вероятности P (X =x i ). Эмпирическая функция распределения F *(x ) является несмещенной и состоятельной оценкой теоретической функции распределения F (x )= P (X < x ).

Пример:

Найдите несмещенные оценки математического ожиданияи дисперсии по таблице выборки.

x i
n i

Решение:

Объем выборки n =20.

Несмещенной оценкой математического ожидания является выборочное среднее.


Для вычисления несмещенной оценки дисперсии сначала найдем выборочную дисперсию:

Теперь найдем несмещенную оценку:

9. Интервальные оценки параметров распределения

Интервальной называется статистическая оценка, определяемая двумя числовыми значениями- концами исследуемого интервала.

Число > 0, при котором | Q - Q *|< , характеризует точность интервальной оценки.

Доверительным называется интервал , который с заданной вероятностью покрывает неизвестное значение параметра Q . Дополнение доверительного интервала до множества всех возможных значений параметра Q называется критической областью . Если критическая область расположена только с одной стороны от доверительного интервала, то доверительный интервал называется односторонним: левосторонним , если критическая область существует только слева, и правосторонним- если только справа. В противном случае, доверительный интервал называется двусторонним .

Надежностью, или доверительной вероятностью, оценки Q (с помощью Q *) называют вероятность, с которой выполняется следующее неравенство: | Q - Q *|< .

Чаще всего доверительную вероятность задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой к единице.

Вероятность называют вероятностью ошибки, или уровнем значимости.

Пусть | Q - Q *|< , тогда . Это означает, что с вероятностью можно утверждать, что истинное значение параметра Q принадлежит интервалу . Чем меньше величина отклонения , тем точнее оценка.

Границы (концы) доверительного интервала называют доверительными границами, или критическими границами.

Значения границ доверительного интервала зависят от закона распределения параметра Q *.

Величину отклонения равную половине ширины доверительного интервала, называют точностью оценки.

Методы построения доверительных интервалов впервые были разработаны американским статистом Ю. Нейманом. Точность оценки , доверительная вероятность и объем выборки n связаны между собой. Поэтому, зная конкретные значения двух величин, всегда можно вычислить третью.

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения. Пусть известно генеральное среднеквадратическое отклонение , но неизвестно математическое ожидание теоретического распределения a ( ).

Справедлива следующая формула:

Т.е. по заданному значению отклонения можно найти, с какой вероятностью неизвестное генеральное среднее принадлежит интервалу . И наоборот. Из формулы видно, что при возрастании объема выборки и фиксированной величине доверительной вероятности величина - уменьшается, т.е. точность оценки увеличивается. С увеличением надежности (доверительной вероятности), величина -увеличивается, т.е. точность оценки уменьшается.

Пример:

В результате испытаний были получены следующие значения -25, 34, -20, 10, 21. Известно, что они подчиняются закону нормального распределения с среднеквадратическим отклонением 2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый доверительный интервал.

Решение:

Найдем несмещенную оценку

Тогда


Доверительный интервал для а имеет вид: 4 – 1,47< a < 4+ 1,47 или 2,53 < a < 5, 47

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная совокупность подчинена закону нормального распределения, где неизвестны а и . Точность доверительного интервала, покрывающего с надежностью истинное значение параметра а, в данном случае вычисляется по формуле:

, где n - объем выборки, , - коэффициент Стьюдента (его следует находить по заданным значениям n и из таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются закону нормального распределения. Найдите доверительный интервал для математического ожидания а генеральной совокупности с доверительной вероятностью 0,9.

Решение:

Найдем несмещенную оценку .

Найдем .

Тогда

Доверительный интервал примет вида (-29,2 - 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение доверительного интерла для дисперсии и среднеквадратического отклонения нормального распределения

Пусть из некоторой генеральной совокупности значений, распределенной по нормальному закону, взята случайная выборка объема n < 30, для которой вычислены выборочные дисперсии: смещенная и исправленная s 2 . Тогда для нахождения интервальных оценок с заданной надежностью для генеральной дисперсии D генерального среднеквадратического отклонения используются следующие формулы.


или ,

Значения - находят с помощью таблицы значений критических точек распределения Пирсона.

Доверительный интервал для дисперсии находится из этих неравенств путем возведения всех частей неравенства в квадрат.

Пример:

Было проверено качество 15 болтов. Предполагая, что ошибка при их изготовлении подчинена нормальному закону распределения, причем выборочное среднеквадратическое отклонение равно 5 мм, определить с надежностью доверительный интервал для неизвестного параметра

Границы интервала представим в виде двойного неравенства:

Концы двустороннего доверительного интервала для дисперсии можно определить и без выполнения арифметических действий по заданному уровню доверия и объему выборки с помощью соответствующей таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности). Для этого полученные из таблицы концы интервала умножают на исправленную дисперсию s 2 .

Пример:

Решим предыдущую задачу другим способом.

Решение:

Найдем исправленную дисперсию:

По таблице «Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности» найдем границы доверительного интервала для дисперсии при k =14 и : нижняя граница 0,513 и верхняя 2,354.

Умножим полученные границы на s 2 и извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для среднеквадратического отклонения).

Как видно из примеров, величина доверительного интервала зависит от способа его построения и дает близкие между собой, но неодинаковые результаты.

При выборках достаточно большого объема (n >30) границы доверительного интервала для генерального среднеквадратического отклонения можно определить по формуле: - некоторое число, которое табулировано и приводится в соответствующей справочной таблице.

Если 1- q <1, то формула имеет вид:

Пример:

Решим предыдущую задачу третьим способом.

Решение:

Ранее было найдено s = 5,17. q (0,95; 15) = 0,46 – находим по таблице.

Тогда:

Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в статистике и при статистических исследованиях. Проверить полностью определенное социальное явление чаще всего бывает невозможным. Например, как узнать мнение населения или всех жителей определенного города по какому-либо вопросу? Спрашивать абсолютно всех – дело практически невозможное и очень трудоемкое. В таких случаях нам и необходима выборка. Это именно то понятие, на котором основаны практически все исследования и анализы.

Что такое выборка

При анализе конкретного социального явления необходимо получить информацию о нем. Если взять любое исследование, то можно заметить, что исследованию и анализу подлежит не каждая единица совокупности объекта исследования. Во внимание берется только определенная часть всей этой совокупности. Вот этот процесс и является выборкой: когда исследуются только определенные единицы из множества.

Конечно же, многое зависит от вида выборки. Но есть и основные правила. Главное из них гласит, что отбор из совокупности должен быть абсолютно случайным. Единицы совокупности, которые будут использованы, не должны быть выбраны из-за какого-либо критерия. Грубо говоря, если необходимо набрать совокупность из населения определенного города и отобрать только мужчин, то в исследовании будет ошибка, потому что отбор был проведен не случайно, а отобран по гендерному признаку. Практически все методы выборки основаны на этом правиле.

Правила выборки

Для того чтобы отобранная совокупность отражала основные качества всего явления, она должна быть построена по конкретным законам, где основное внимание необходимо уделять следующим категориям:

  • выборка (выборочная совокупность);
  • генеральная совокупность;
  • репрезентативность;
  • ошибка репрезентативности;
  • единица совокупности;
  • способы построения выборки.

Особенности выборочного наблюдения и составления выборки заключаются в следующем:

  1. Все полученные результаты основаны на математических законах и правилах, то есть при правильном проведении исследования и при правильных расчетах результаты не будут искажены по субъективному признаку
  2. Дает возможность значительно быстрее и с меньшими затратами времени и ресурсов получить результат, изучая не весь массив событий, а только их часть.
  3. Может быть применено для изучения различных объектов: от конкретных вопросов, например, возраст, пол интересующей нас группы, к изучению общественного мнения или уровня материального обеспечения населения.

Выборочное наблюдение

Выборочное - это такое статистическое наблюдение, при котором исследованию подвергается не вся совокупность изучаемого, а лишь некоторая, отобранная определенным образом ее часть, а полученные результаты изучения этой части распространяются на всю совокупность. Эта часть называется выборочной совокупностью. Это единственный способ изучения большого массива объекта исследования.

Но выборочное наблюдение может использоваться только в тех случаях, когда необходимо исследовать лишь малую группу единиц. Например, при исследовании соотношения мужчин к женщинам в мире, будет использоваться выборочное наблюдение. По понятным причинам – взять во внимание каждого жителя нашей планеты невозможно.

А вот при таком же исследовании, но не всех жителей земли, а определенного 2 «А» класса в конкретной школе, определенного города, определенной страны, может обойтись без выборочного наблюдения. Ведь проанализировать весь массив объекта исследования – вполне возможно. Необходимо посчитать мальчиков и девочек этого класса - вот и будет соотношение.


Выборочная и генеральная совокупность

На самом деле все не так сложно, как звучит. В любом объекте изучения есть две системы: генеральная и выборочная совокупность. Что же это такое? Все единицы относятся к генеральной. А к выборочной – те единицы общей совокупности, которые были взяты для выборки. Если все правильно сделано, то отобранная часть будет составлять уменьшенный макет всей (генеральной) совокупности.

Если говорить о генеральной совокупности, то можно выделить всего две ее разновидности: определенная и неопределенная генеральная совокупность. Зависит от того, известно ли общее количество единиц данной системы или нет. Если это определенная генеральная совокупность, то выборку будет делать легче из-за того, что известно, какой процент от общего количества единиц будет составлять выборка.

Этот момент очень необходим в исследованиях. Например, если необходимо исследовать процент недоброкачественной продукции кондитерских изделий на конкретном заводе. Допустим, что генеральная совокупность уже определена. Точно известно, что в год это предприятие производит 1000 кондитерских изделий. Если сделать выборку 100 случайных кондитерских изделий из этой тысячи и отправить их на экспертизу, то погрешность будет минимальной. Грубо говоря, исследованию подлежало 10 % всей продукции, и по результатам можем, приняв во внимание ошибку репрезентативности, говорить о недоброкачественности всей продукции.

А если провести выборку 100 кондитерских изделий из неопределенной генеральной совокупности, где их на самом деле было, допустим, 1 млн единиц, то результат выборки и самого исследования будет критически неправдоподобным и неточным. Чувствуете разницу? Поэтому определенность генеральной совокупности в большинстве случаев крайне важна и очень сильно влияет на результат исследования.


Репрезентативность совокупности

Итак, теперь один из самых главных вопросов - какой должна быть выборка? Это самый главный момент исследования. На этом этапе необходимо рассчитать выборку и отобрать единицы из общего числа в нее. Совокупность была отобрана правильно, если определенные особенности и характеристики генеральной совокупности остается и в выборочной. Это называется репрезентативностью.

Иными словами, если после отбора часть сохраняет те же самые тенденции и особенности что и все количество исследуемого, то такая совокупность называется репрезентативной. Но не каждая определенная выборка может быть отобрана из репрезентативной совокупности. Бывают и такие объекты исследования, выборка которых просто не может быть репрезентативной. Отсюда и возникает понятие ошибки репрезентативности. Но об этом поговорим подробнее чуть больше.

Как сделать выборку

Итак, чтобы репрезентативность была максимальной, выделяют три основные правила выборки:

  1. Самым уникальным показателем числа выборки считается 20 %. Статистическая выборка в 20 % будет практически всегда давать результат максимально приближенный к действительности. В то же самое время нет необходимости переносить в собранную большую часть генеральной совокупности. 20 % выборки – это тот показатель, который выработан многими исследованиями. Приведем еще немного теории. Чем больше выборка, тем меньше ошибка репрезентативности и точнее результат исследования. Чем ближе будет выборочная совокупность к генеральной по количеству единиц, тем более точными и правильными будут результаты. Ведь если исследовать всю систему, тогда результат будет 100 %. Но здесь уже нет выборки. Это те исследования, в которых исследуется весь массив, все единицы, поэтому это нас не интересует.
  2. В случае нецелесообразности обработки 20 % генеральной совокупности допускается изучение единиц совокупности в количестве не менее 1001. Это также один из показателей исследования массива объекта исследования, который выработался со временем. Конечно же, он не даст точных результатов при больших массивах исследования, но максимально приблизит к возможной точности выборки.
  3. В статистике существует множество формул и сведенных таблиц. В зависимости от объекта исследования и от критерия выборки, существует целесообразность выбора той или иной формулы. Но этот пункт используется в сложных и многоэтапных исследованиях.

Погрешность (ошибка) репрезентативности

Главной характеристикой качества выбранной выборки является понятие «погрешности репрезентативности». Что же это такое? Это определенные расхождения между показателями выборочного и сплошного наблюдения. По показателям погрешности репрезентативность делят на надежную, обычную и приближенную. Иначе говоря, допустимыми являются отклонения в размере до 3 %, от 3 до 10 % и от 10 до 20 % соответственно. Хотя в статистике желательно, чтобы погрешность не превышал 5-6 %. В противном случае есть повод говорить о недостаточной репрезентативности выборки. Для вычисления погрешности репрезентативности и того, как она влияет на выборочную или генеральную совокупность, во внимание берутся многие факторы:

  1. Вероятность, с которой необходимо получить точный результат.
  2. Количества единиц выборочной совокупности. Как уже упоминалось ранее, чем меньше единиц составит выборка, тем больше будет ошибка репрезентативности, и наоборот.
  3. Однородность исследуемой совокупности. Чем более разнородной является совокупность, тем больше будет погрешность репрезентативности. Возможность совокупности быть репрезентативной зависит от однородности всех ее составляющих единиц.
  4. Способ отбора единиц в выборочную совокупность.

В конкретно заданных исследованиях процент погрешности среднего значения обычно задается самим исследователем на основании программы наблюдения и согласно данным ранее проведенных исследований. Как правило, считается допустимой предельная ошибка выборки (ошибка репрезентативности) в пределах 3-5 %.


Больше – не всегда лучше

Также стоит помнить, что главное при организации выборочного наблюдения - это доведение его объема до допустимого минимума. При этом не следует стремиться к чрезмерному уменьшению границ погрешности выборки, так как это может привести к неоправданному увеличению объема данных выборки и, следовательно, к повышению расходов на проведение выборочного наблюдения.

В то же время нельзя и чрезмерно увеличивать размер погрешности репрезентативности. Ведь в этом случае, хотя и произойдет уменьшение объема выборочной совокупности, это приведет к ухудшению достоверности полученных результатов.

Какие вопросы обычно ставится перед исследователем

Любое исследование если и проводится, то для какой-то цели и для получения каких-то результатов. При проведении выборочного исследования, как правило, ставятся начальные вопросы:

  1. Определение необходимого количества единиц выборочной совокупности, то есть то, сколько единиц будет исследоваться. К тому же, для точного исследования совокупность должна быть репрезентативной.
  2. Расчет погрешности репрезентативности с установленным уровнем вероятности. Сразу стоит отметить, что выборочных исследований не бывает с уровнем вероятности 100 %. Если та инстанция, которая проводила изучение определенного сегмента, утверждает, что их результаты точны с вероятностью 100 %, то это ложь. Многолетняя практика уже установила процент вероятности правильно проведенного выборочного исследования. Этот показатель равняется 95,4 %.

Способы отбора единиц исследования в выборку

Не каждая выборка является репрезентативной. Иногда один и тот же признак по-разному выражен в целом и в ее части. Для достижения требований репрезентативности целесообразным является использование различных приемов создания выборки. Причем использование того или иного способа зависит от конкретных обстоятельств. Среди таких приемов создания выборки выделяют:

  • случайный отбор;
  • механический отбор;
  • типичный отбор;
  • серийный (гнездовой) отбор.

Случайный отбор представляет собой систему мероприятий, направленных на случайный отбор единиц совокупности, когда вероятность попасть в выборку является равной для всех единиц генеральной совокупности. Этот прием целесообразно применять только в случае однородности и небольшого количества присущих ей признаков. В противном случае некоторые характерные черты рискуют быть не отраженным в выборке. Признаки случайного отбора лежат в основе всех других способов построения выборки.

При механическом отбор единиц проводится через определенный интервал. Если необходимо сформировать выборку конкретных преступлений, можно изымать из всех карточек статистического учета зарегистрированных преступлений каждую 5-ю, 10-ю или 15-ю карточку в зависимости от их общего количества и имеющихся размеров выборки. Недостатком этого способа является то, что перед отбором необходимо иметь полный учет единиц совокупности, затем нужно провести ранжирование и только после этого можно проводить выборку с определенным интервалом. Этот метод занимает много времени, поэтому он и не часто используется.


Типичный (районированный) отбор – вид выборки, при котором генеральную совокупность разделяют на однородные группы по определенному признаку. Иногда исследователи употребляют вместо «групп» другие термины: «районы» и «зоны». Затем из каждой группы в случайном порядке отбирается определенное количество единиц пропорционально удельному весу группы в общей совокупности. Типичный отбор часто осуществляется в несколько этапов.

Серийный отбор - это такой метод, при котором отбор единиц проводится группами (сериями) и обследованию подлежат все единицы отобранной группы (серии). Преимуществом этого способа является то, что иногда отобрать отдельные единицы сложнее, чем серии, например, при изучении личности, которая отбывает наказание. В рамках отобранных районов, зон применяется изучение всех единиц без исключения, например, изучение всех лиц, отбывающих наказание в каком-то определенном учреждении.

Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Репрезентативность выборки

Свойство выборки корректно отражать генеральную совокупность. Одна и та же выборка может быть репрезентативной и нерепрезентативной для разных генеральных совокупностей.
Пример:

Выборка, целиком состоящая из москвичей, владеющих автомобилем, не репрезентирует все население Москвы.

Выборка из российских предприятий численностью до 100 человек не репрезентирует все предприятия России.

Выборка из москвичей, совершающих покупки на рынке, не репрезентирует покупательское поведение всех москвичей.

В то же время, указанные выборки (при соблюдении прочих условий) могут отлично репрезентировать москвичей-автовладельцев, небольшие и средние российские предприятия и покупателей, совершающих покупки на рынках соответственно.

Важно понимать, что репрезентативность выборки и ошибка выборки – разные явления. Репрезентативность, в отличие от ошибки никак не зависит от размера выборки.

Как бы мы не увеличивали количество опрошенных москвичей-автовладельцев, мы не сможем репрезентировать этой выборкой всех москвичей.

Ошибка выборки (доверительный интервал)

Отклонение результатов, полученных с помощью выборочного наблюдения от истинных данных генеральной совокупности.

Ошибка выборки бывает двух видов – статистическая и систематическая. Статистическая ошибка зависит от размера выборки. Чем больше размер выборки, тем она ниже.

Пример:
Для простой случайной выборки размером 400 единиц максимальная статистическая ошибка (с 95% доверительной вероятностью) составляет 5%, для выборки в 600 единиц – 4%, для выборки в 1100 единиц – 3% Обычно, когда говорят об ошибке выборки, подразумевают именно статистическую ошибку.

Систематическая ошибка зависит от различных факторов, оказывающих постоянное воздействие на исследование и смещающих результаты исследования в определенную сторону.

Пример:
- Использование любых вероятностных выборок занижает долю людей с высоким доходом, ведущих активный образ жизни. Происходит это в силу того, что таких людей гораздо сложней застать в каком-либо определенном месте (например, дома).

Проблема респондентов, отказывающихся отвечать на вопросы анкеты (доля «отказников» в Москве, для разных опросов, колеблется от 50% до 80%)

В некоторых случаях, когда известны истинные распределения, систематическую ошибку можно нивелировать введением квот или перевзвешиванием данных, но в большинстве реальных исследований даже оценить ее бывает достаточно проблематично.

Типы выборок

Выборки делятся на два типа:

· вероятностные

· невероятностные

Вероятностные выборки

1.1 Случайная выборка (простой случайный отбор)

Такая выборка предполагает однородность генеральной совокупности, одинаковую вероятность доступности всех элементов, наличие полного списка всех элементов. При отборе элементов, как правило, используется таблица случайных чисел.
1.2 Механическая (систематическая) выборка

Разновидность случайной выборки, упорядоченная по какому-либо признаку (алфавитный порядок, номер телефона, дата рождения и т.д.). Первый элемент отбирается случайно, затем, с шагом ‘n’ отбирается каждый ‘k’-ый элемент. Размер генеральной совокупности, при этом – N=n*k

1.3 Стратифицированная (районированная)

Применяется в случае неоднородности генеральной совокупности. Генеральная совокупность разбивается на группы (страты). В каждой страте отбор осуществляется случайным или механическим образом.

1.4 Серийная (гнездовая или кластерная) выборка

При серийной выборке единицами отбора выступают не сами объекты, а группы (кластеры или гнёзда). Группы отбираются случайным образом. Объекты внутри групп обследуются сплошняком.

Невероятностные выборки

Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д..

Квотная выборка

Изначально выделяется некоторое количество групп объектов (например, мужчины в возрасте 20-30 лет, 31-45 лет и 46-60 лет; лица с доходом до 30 тысяч рублей, с доходом от 30 до 60 тысяч рублей и с доходом свыше 60 тысяч рублей) Для каждой группы задается количество объектов, которые должны быть обследованы. Количество объектов, которые должны попасть в каждую из групп, задается, чаще всего, либо пропорционально заранее известной доле группы в генеральной совокупности, либо одинаковым для каждой группы. Внутри групп объекты отбираются произвольно. Квотные выборки используются в маркетинговых исследованиях достаточно часто.

Метод снежного кома

Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
2.3 Стихийная выборка

Опрашиваются наиболее доступные респонденты. Типичные примеры стихийных выборок – опросы в газетах/журналах, анкеты, отданные респондентам на самозаполнение, большинство интернет-опросов. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов.
2.4 Выборка типичных случаев

Отбираются единицы генеральной совокупности, обладающие средним (типичным) значением признака. При этом возникает проблема выбора признака и определения его типичного значения.

Реализация плана исследований

Этот этап, напоминаем, включает в себя сбор информации и ее анализ. Процесс реализации плана маркетинговых исследований, как правило, требует самых больших исследований и служит источником максимальных ошибок.

При сборе статистических данных возникает ряд недочетов и проблем:

во-первых, некоторых респондентов может не оказаться в условленном месте и с ними приходится связываться повторно или заменять;

во-вторых, некоторые респонденты могут отказаться от сотрудничества или давать предвзятые заведомо ложные ответы.

Благодаря современным вычислительным и телекоммуникационным технологиям методы сбора данных развиваются и совершенствуются.

Некоторые фирмы проводят опросы из одного центра. В этом случае профессиональные интервьюеры сидят в кабинетах и набирают случайные телефонные номера. Если они слышат ответ абонентов, интервьюер просит поднявшего трубку ответить на несколько вопросов. Последние зачитываются с экрана монитора компьютера и набираются ответы респондентов на клавиатуре. Такой метод исключает необходимость в оформлении и кодировки данных, уменьшает число ошибок.

Тема: Выборочный метод в статистике

1. Понятие о выборочном наблюдении, его задачи

Статистическое наблюдение можно органи­зовать сплошное и несплошное. Сплошное наблюдение предусмат­ривает обследование всех единиц изучаемой совокупности и свя­зано с большими трудовыми и материальными затратами. Изуче­ние не всех единиц совокупности, а лишь некоторой части, по ко­торой следует судить о свойствах всей совокупности в целом, мож­но осуществить несплошным наблюдением. В статистической прак­тике самым распространенным является выборочное наблюдение.

Выборочное наблюдение - это такой вид несплошного наблюдения, при котором отбор подлежащих обследованию единиц осуществляется в случайном порядке, отобранная часть изучается, а результаты распро­страняются на всю исходную совокупность. Наблюдение организует­ся таким образом, что эта часть отобранных единиц в уменьшенном масштабе репрезентирует (представляет) всю совокупность.

Совокупность, из которой производится отбор, называется ге­неральной, генеральными.

Совокупность отобранных единиц именуют выборочной сово­купностью, и все ее обобщающие показатели - выборочными.

Имеется ряд причин, в силу которых, во многих слу­чаях выборочному наблюдению отдается предпочтение перед сплошным. Наиболее существенны из них следующие:

Экономия времени и средств в результате сокращения объ­ема работы;

Сведение к минимуму порчи или уничтожения исследуемых объектов (определение прочности пряжи при разрыве, ис­пытание электрических лампочек на продолжительность горения, проверка консервов на доброкачественность);

Необходимость детального исследования каждой единицы наблюдения при невозможности охвата всех единиц (при изучении бюджета семей);

Достижение большой точности результатов обследова­ния благодаря сокращению ошибок, происходящих при регистрации.

Преимущество выборочного наблюдения по сравнению со сплошным можно реализовать, если оно организовано и проведено в строгом соответствии с научными принципами теории выбороч­ного метода. Такими принципами являются: обеспечение случайно­сти (равной возможности попадания в выборку) отбора единиц и достаточного их числа. Соблюдение этих принципов позволяет по­лучить объективную гарантию репрезентативности полученной вы­борочной совокупности. Понятие репрезентативности отобранной совокупности не следует понимать как ее представительство по всем признакам изучаемой совокупности, а только в отношении тех признаков, которые изучаются или оказывают существенное влияние на формирование сводных обобщающих характеристик.

Основная задача выборочного наблюдения в экономике со­стоит в том, чтобы на основе характеристик выборочной сово­купности (средней и доли) получить достоверные суждения о показателях средней и доли в генеральной совокупности. При этом следует иметь в виду, что при любых статистических ис­следованиях (сплошных и выборочных) возникают ошибки двух видов: регистрации и репрезентативности.

Ошибки регистрации могут иметь случайный (непреднамеренный) и систематический (тенденциозный) характер. Случайные ошибки обычно уравновешивают друг друга, поскольку не имеют преимущественного направления в сторону преувеличения или преуменьшения значения изучаемого показателя. Систематические ошибки направлены в одну сторону вследствие преднамеренного нарушения правил отбора (предвзятые цели). Их можно избежать при правильной организации и проведении наблюдения.

Ошибки репрезентативности присущи только выборочно­му наблюдению и возникают в силу того, что выборочная сово­купность не полностью воспроизводит генеральную. Они пред­ставляют собой расхождение между значениями показателей, по­лученных по выборке, и значениями показателей этих же вели­чин, которые были бы получены при проведенном с одинаковой степенью точности сплошном наблюдении, т. е. между величи­нами выборных и соответствующих генеральных показателей.

Для каждого конкретного выборочного наблюдения значе­ние ошибки репрезентативности может быть определено по со­ответствующим формулам, которые зависят от вида, метода и способа формирования выборочной совокупности.

По виду различают индивидуальный, групповой и комби­нированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной со­вокупности; при групповом отборе - качественно однородные группы или серии изучаемых единиц; комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповтор­ную выборки.

При повторной выборке общая численность единиц генеральной совокупности в процессе выборки остается неизменной. Ту или иную единицу, попавшую в выборку, после регистрации снова возвращают в генеральную совокупность, и она сохраняет равную возможность со всеми прочими единицами при повторном отборе единиц вновь попасть в выборку («отбор по схеме возвращенного шара»). Повторная выборка в социально-экономической жизни встречается редко. Обычно выборку организуют по схеме беспо­вторной выборки.

При бесповторной выборке единица совокупности, попавшая в выборку, в генеральную совокупность не возвращается и в дальнейшем в выборке не участвует; т. е. последующую выборку делают из генеральной совокупности уже без отобранных ранее единиц («отбор по схеме невозвращенного шара»). Таким обра­зом, при бесповторной выборке численность единиц генераль­ной совокупности сокращается в процессе исследования.

Способ отбора определяет конкретный механизм или процедуру выборки единиц из генеральной совокупности.

По степени охвата единиц совокупности различают большие и малые (n <30) выборки.

В практике выборочных исследований наибольшее распро­странение получили следующие виды выборки: собственно-случайная, механическая, типическая, серийная, комбинированная.

Основные характеристики параметров гене­ральной и выборочной совокупностей обозначаются символами:

N-объем генеральной совокупности (число входящих в нее единиц);

п - объем выборки (число обследованных единиц);

- генеральная средняя (среднее значение признака в генеральной совокупности);

- выборочная средняя;

P - генеральная доля (доля единиц, обладающих дан­ным значением признака в общем числе единиц генеральной совокупности);

w - выборочная доля;

- генеральная дисперсия (дисперсия признака в ге­неральной совокупности);

S 2 - выборочная дисперсия того же признака;

- среднее квадратическое отклонение в генеральной совокупности;

S - среднее квадратическое отклонение в выборке.

2. Ошибки выборки

При выборочном наблюдении должна быть обеспечена слу­чайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом ос­новывается собственно-случайная выборка.

К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного рас­членения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного спосо­ба, например, с помощью таблицы случайных чисел. Случай­ный отбор - это отбор не беспорядочный. Принцип случай­ности предполагает, что на включение или исключение объ­екта из выборки не может повлиять какой-либо фактор, кро­ме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущен­ных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля, выборки есть отношение числа единиц выборочной со­вокупности к числу единиц генеральной совокупности:

Так, при 5%-ной выборке из партии деталей в 1000 ед. объ­ем выборки п составляет 50 ед., а при 10%-ной выборке -100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальном значениям, в результате - выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор «в чистом виде» применяет­ся в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину ко­личественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической сово­купности, которые отличаются от всех других единиц этой сово­купности только наличием изучаемого признака).

Выборочная доля ( w ), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п:

Эмпирические считаются одним из основных средств изучения общественных отношений и процессов. Они обеспечивают получение надежной, полной и репрезентативной информации.

Специфика приемов

Эмпирические обеспечивают получение фактофиксирующего знания. Они способствуют установлению и обобщению обстоятельств за счет опосредованной или прямой регистрации событий, свойственных изучаемым отношениям, объектам, явлениям. Эмпирические приемы отличаются от теоретических тем, что предметом анализа выступают:

  1. Поведение индивидов и их групп.
  2. Продукты деятельности человека.
  3. Вербальные действия индивидов, их суждения, взгляды, мнения.

Выборочные исследования

Эмпирическое изучение всегда ориентировано на получение объективных и точных сведений, количественных данных. В этой связи при его выполнении необходимо обеспечить репрезентативность информации. Соответственно, особое значение имеет правильная выборочная совокупность. Это значит, что отбор необходимо осуществлять так, чтобы полученные данные узкой группы отражали тенденции, имеющие место в общей массе респондентов. Например, при опросе 200-300 человек полученные данные можно экстраполировать на все городское население. Показатели выборочной совокупности позволяют по-другому подойти к изучению общественно-экономических процессов в регионе, в стране в целом.

Терминология

Для лучшего понимания вопросов, касающихся выборочных исследований, необходимо разъяснить некоторые определения. Единицей наблюдения называют непосредственный источник информации. Им может являться отдельный индивид, группа, документ, организация и так далее. Генеральная совокупность - это комплекс единиц наблюдения. Они все должны иметь отношение к проблеме, которая изучается. Непосредственному анализу подлежит . Изучение осуществляется в соответствии с разработанными приемами сбора сведений. Для определения этой доли всего массива респондентов используют понятие "выборочная совокупность". Ее свойство отражать ключевые параметры общей массы людей именуется репрезентативностью. В ряде случаев совпадения отсутствуют. Тогда говорят об ошибке репрезентативности.

Обеспечение репрезентативности

Подробно вопросы, связанные с ним, рассматриваются в рамках статистики. Проблемы отличаются сложностью, так как, с одной стороны, речь ведется об обеспечении количественной репрезентации, которую дает генеральная совокупность. Это означает, в частности, что группы опрошенных должны быть представлены в оптимальном числе. Количество должно быть достаточным для нормального представительства. С другой стороны, имеется в виду и качественная репрезентация. Она предполагает определенный субъектный состав, которым формируется выборочная совокупность. Это значит, что, например, о репрезентативности не может идти речь, если опрашиваются исключительно мужчины либо только женщины, люди пожилого возраста либо молодежь. Изучение должно осуществляться в рамках всех представленных групп.

Характеристика выборки

Этот термин рассматривается в двух аспектах. В первую очередь она определяется как комплекс элементов от общего массива людей, мнение которых изучается, - это выборочная совокупность. Это также процесс создания определенной категории респондентов при требуемом обеспечении репрезентативности. На практике выделяется несколько типов и видов отбора. Рассмотрим их.

Типы

Их существует три:

  1. Стихийная выборочная совокупность. Это набор респондентов, отобранных по принципу добровольности. Вместе с этим обеспечивается доступность вхождения единиц от общей массы людей в конкретную группу изучения. Стихийный отбор на практике применяется достаточно часто. Например, при опросах в прессе, на почте. Однако этот прием имеет существенный недостаток. В нем невозможно качественно представить весь объем генеральной выборки. Этот прием применяется с учетом экономичности. В некоторых опросах этот вариант является единственно возможным.
  2. Стихийная выборочная совокупность. Это один из основных приемов, применяемых при изучении. В качестве ключевого принципа такого отбора выступает обеспечение возможности для каждой единицы наблюдения попасть из общей массы индивидов в узкую группу. Для этого используются разные приемы. Например, это может быть лотерейный, механический отбор, таблица случайных чисел.
  3. Стратифицированная (квотная) выборка. В ее основе лежит формирование качественной модели общей массы респондентов. После этого осуществляется отбор единиц в выборочную совокупность. К примеру, он выполняется по возрастному или половому признаку, по слоям населения и так далее.

Виды

Существуют следующие выборки:

Дополнительно

Выборки могут быть также зависимыми и независимыми. В первом случае процедура эксперимента и результаты, которые будут в ходе него получены для одной группы респондентов, оказывают определенное влияние на другую. Соответственно, независимые выборки не предполагают наличие такого воздействия. Здесь, однако, следует обратить внимание на один важный момент. Одна группа испытуемых, в отношении которой психологическое обследование проводилось дважды (даже если оно было направлено на изучение различных качеств, особенностей, признаков), по умолчанию будет считаться зависимой.

Вероятностные отборы

Рассмотрим некоторые типы выборок:

  1. Случайная. Она предполагает однородность общей совокупности, одну вероятность доступности всех компонентов, а также наличие полного перечня элементов. Как правило, в процессе отбора используется таблица со случайными числами.
  2. Механическая. Эта разновидность случайной выборки предполагает упорядочение по определенному признаку. К примеру, по номеру телефона, в алфавитном порядке, по дате рождения и так далее. Первый компонент выбирается в случайном порядке. Далее осуществляется отбор каждого k элемента с шагом n. Величина общей совокупности будет N=k*n.
  3. Стратифицированная. Эта выборка используется при неоднородности общей совокупности. Последняя разбивается на страты (группы). В каждой из них отбор проводится механическим либо случайным способом.
  4. Серийная. Отбор групп осуществляется случайно. Внутри них объекты изучаются сплошняком.

Невероятностные отборы

Они предполагают выборку не по принципу случайности, а по субъективным признакам: типичности, доступности, равного представительства и так далее. К этой категории относят отборы:

Нюанс

Для обеспечения репрезентативности необходим точный и полный перечень единиц совокупности. Объектами наблюдения, как правило, выступает один человек. Отбор из перечня лучше осуществлять, нумеруя единицы и применяя таблицу со случайными числами. Но достаточно часто используется и квазислучайный метод. Он предполагает отбор из перечня каждого n элемента.

Влияющие факторы

Объемом совокупности называют количество ее единиц. По мнению специалистов, он не обязательно должен быть большим. Несомненно, чем больше число респондентов, тем точнее результат. Однако вместе с этим большой объем не всегда гарантирует успех. Например, это случается, когда общий массив респондентов неоднороден. Однородной будет считаться такая совокупность, где контролируемый параметр, к примеру, уровень грамотности, распределяется равномерно, то есть, пустоты или сгущения отсутствуют. В таком случае будет достаточно опросить несколько человек. По результатам обследования можно будет сделать вывод, что большая часть людей имеет нормальный уровень грамотности. Из этого следует, что на репрезентативность информации влияние оказывают не количественные признаки, а качественные характеристики совокупности - уровень ее однородности, в частности.

Ошибки

Они представляют собой отклонение средних параметров выборочной совокупности от значений общей массы респондентов. На практике ошибки определяются с помощью сопоставления. При обследовании взрослых людей обычно применяются сведения переписей, статистического учета, а также результаты прошлых опросов. Контрольными параметрами обычно выступают Сопоставление средних значений совокупностей (общей и выборочной), определение в соответствии с этим ошибки и уменьшение этого отклонения именуется контролированием репрезентативности.

Выводы

Выборочное исследование - способ сбора данных об установках и поведении людей через опрос специально подобранных групп респондентов. Этот прием считается надежным и экономичным, хотя и требует определенной техники. В качестве основы выступает выборочная совокупность. Она выступает как определенная доля общей массы людей. Отбор производится с использованием специальных приемов и направлен на получение информации обо всей совокупности. Последняя, в свою очередь, представлена всеми возможными общественными объектами или той их группой, которая будет изучаться. Зачастую генеральная совокупность настолько крупная, что проведение опроса каждого ее представителя будет достаточно дорогостоящим и обременительным процессом. Поэтому используется уменьшенная ее модель. В выборочную совокупность включаются все те, кто получает анкеты, кто именуется респондентами, кто, собственно, выступает в качестве объекта изучения. Проще говоря, ее составляет множество людей, которых опрашивают.

Заключение

Цели обследования определяются по конкретным категориям, входящим в генеральную совокупность. Что касается конкретной доли от общей массы людей, то ее составляют субъекты, включенные в группы с помощью математических расчетов. Для отбора единиц необходимо описание объекта исходной совокупности. После определения количества испытуемых определяется прием или способ формирования групп. Результаты обследования позволят описать изучаемый признак относительно всех представителей общей массы людей. Как показывает практика, в основном проводятся выборочные, а не сплошные исследования.