Уход и... Инструменты Дизайн ногтей

Анатомическое строение корня. В клетках хлореллы отсутствуют…. Морфология хромосомы определяется

Анатомия корня (часть 2)

Первичное строение корня можно рассмотреть под микроскопом на поперечном разрезе всасывающей зоны молодого корня. На подобном препарате видно, что корень состоит из эпидермиса (эпиблемы), образующего корневые волоски, первичной коры корня , расположенной под эпидермисом, занимающей основную часть корня и состоящей из клеток основной ткани. Внутренняя часть корня называется центральным цилиндром , который состоит главным образом из проводящих тканей (рис.2).

Рис.2. Поперечные разрезы корня :
I - разрез проведен в зоне корневых волосков, видны эпидермис с многочисленными корневыми волосками, основная ткань коры и центральный цилиндр . II - центральный цилиндр корня : а - крупный сосуд, от которого расходятся пять лучей более мелких сосудов, между ними участки луба (флоэмы); б - клетки эндодермы; в - пропускные клетки, г - перицикл, или корнеродный слой.

В основной ткани клеток коры корня содержится протопласт, а также запасные вещества, кристаллы, смолы и др. Самый внутренний слой коры образует эндодерму , которая окружает центральный цилиндр и состоит из несколько вытянутых клеток. На поперечных срезах радиальные оболочки этих клеток имеют темные пятна или сильно утолщенные внутренние и боковые одревесневшие оболочки, не пропускающие воду. Среди них попадаются вертикальные ряды пропускных клеток с тонкостенными целлюлозными оболочками, они расположены против древесных сосудов и служат для пропускания воды и солей, притекающих из корневых волосков через клетки коры в сосуды древесины.

Внутрь от эндодермы расположен центральный цилиндр , наружный слой которого называется корнеродным слоем (перициклом), так как из него развиваются боковые корни, которые затем прорастают сквозь кору и выходят наружу. Боковые корни образуются обычно против лучей древесины, и потому они распределяются на корне правильными рядами по числу лучей древесины или в два раза большим числом рядов.

В центральном цилиндре располагается проводящая ткань, состоящая из водоносных сосудов - трахей и трахеид, образующих древесину (ксилему), и из ситовидных трубок с сопровождающими клетками, образующих луб (флоэму) и проводящих органические вещества. Так как первичная древесина в корне располагается в виде лучей, число которых бывает различно (от 2 до 20), то и участки первичного луба распределяются в промежутках между лучами первичной древесины и число их соответствует числу лучей древесины.

Трахеи , или сосуды , - это полые трубки, стенки которых имеют разнообразные утолщения. Трахеиды - это удлиненные (прозенхимные) мертвые клетки с заостренными концами.

По трахеям и трахеидам вода и растворенные соли поднимаются по корню вверх и дальше по стеблю, а по ситовидным трубкам луба органические вещества (сахар, белковые вещества и др.) спускаются из стебля вниз в корень и в его разветвления.

Механические элементы луба и древесины (лубяные волокна и древесные волокна) распределены между клетками проводящей ткани. В центральном цилиндре корня встречаются также живые паренхимные клетки.

В корнях однодольных растений изменения в течение жизни сводятся только к отмиранию корневых волосков и к опробковению клеток наружной коры, к появлению механических тканей. Только у древовидных однодольных с утолщающимися корнями и стволами (драцен, пальм) возникает камбий и происходят вторичные изменения.

У двудольных растений уже в течение первого года жизни описанное выше первичное строение корня претерпевает резкие вторичные изменения, связанные с тем, что между первичной древесиной (ксилемой) и первичным лубом (флоэмой) появляется полоска камбия ; если клетки его откладываются внутрь корня, то превращаются во вторичную древесину (ксилему), а кнаружи - во вторичный луб (флоэму). Клетки камбия возникают из паренхимных клеток, находящихся между первичной древесиной и лубом. Они делятся тангентальными перегородками (рис.3).


Рис.3. Начало вторичных изменений в корне двудольного растения (боба обыкновенного):
1 - основная ткань коры; 2 - эндодерма; 3 - корнеродный слой (перицикл); 4 - камбий; 5 - луб (флоэма); 6 - первичная ксилема.

Клетки перицикла , находящиеся против лучей древесины, делятся, образуя паренхимную ткань, превращающуюся в сердцевинный луч . Остальные клетки перицикла, являющиеся наружным слоем центрального цилиндра корня, также начинают делиться на всем своем протяжении, и из них возникает пробковая ткань, отделяющая внутреннюю часть корня от первичной коры, которая постепенно отмирает и сбрасывается с корня.

Камбиальный слой замыкается вокруг первичной древесины центрального цилиндра, и в результате деления его клеток внутри нарастает вторичная древесина, а к периферии образуется сплошной луб, отодвигающийся все дальше от первичной древесины. Камбий вначале имеет вид изогнутой линии, а позднее выравнивается и принимает форму окружности.

Осенью и зимой деление клеток камбия превращается, а весной оно начинается с новой силой. Вследствие этого в многолетних корнях образуются слои древесины, и корень становится сходным по строению со стеблем. Отличить корни от стеблей можно по первичной древесине, остающейся в центре корня в виде радиальных лучей (рис.2). В корне сердцевинные лучи упираются в первичную древесину, тогда как в стебле они всегда упираются в сердцевину.

Сосуды древесины и ситовидные трубки луба из корня переходят непосредственно в стебель, где они располагаются не радиальными лучами, как при первичном строении корня, а в виде обычных замкнутых (однодольные) и открытых (двудольные) сосудисто-волокнистых пучков. Перегруппировка древесины и луба происходит в корневой шейке в подсемядольном колене .


Основные функции корня: обеспечивает закрепление растения в почве, всасывание почвенного водного раствора солей и транспорт его к надземным частям растения.

Дополнительные функции: запасание питательных веществ, фотосинтез, дыхание, вегетативное размножение, выделение, симбиоз с микроорганизмами, грибами. Первые настоящие корни появились у папоротникообразных.

Зародыш корня называется зародышевым корнем и закладывается одновременно с почкой в зародыше семени.

У растений различают:

Главный корень. Он образуется из зародышевого и сохраняется на протяжении всей жизни. Всегда один.

Боковые корни. Ответвляются от корней (главного, дополнительных, боковых). Образуют при ветвлении корни 2-го, 3-го и т. д. порядка.

Придаточные корни. Образуются в любой части растения (стебле, листьях).

Совокупность всех корней растения образует корневую систему. Корневая система формируется в течение всей жизни растения. Ее формирование обеспечивают преимущественно боковые корни. Различают два типа корневой системы: стержневую и мочковатую.

Рост корня, его ветвление продолжается в течение всей жизни растительного организма, то есть практически он не ограничен. Меристемы- образовательные ткани- расположены на верхушке каждого корня. Доля меристематических клеток сравнительно велика (10% по массе против 1% у стебля).

Определение размеров корневых систем требует специальных методов. Очень много в этом отношении достигнуто благодаря работам русских физиологов В.Г. Ротмистрова, А.П. Модестова, И.В. Красовской. Оказалось, что общая поверхность корней обычно превышает поверхность надземных органов в 104-150 раз. При выращивании одиночного растения ржи было устоновленно, что общая длинна его корней достигает 600 км., при этом на них образуется 15 млрд. корневых волосков. Эти данные говорят об огромной потенциальной способности к росту корневых систем. Однако эта способность не всегда проявляется. При росте растений в фитоценозах, с достаточно большой густотой их строение, размеры корневых систем заметно уменьшаются.

С физиологической точки зрения корневая система не однородна. Довольно не вся поверхность корня участвует в поглощении волы. В каждом корне различают несколько зон (рис.1). Правда, не всегда все зоны выражены одинаково четко.

Окончание корня с наружи защищено корневым чехликом, напоминающим округлый колпачок, таящий из живых тонкостенных продолговатых клеток. Корневой чехлик служит защитой для точки роста. Клетки корневого чехлика слущиваются, что уменьшает трение и способствует проникновению корня в глубь почвы. Под корневым чехликом расположена меристематическая зона. Меристема состоит из многочисленных мелких, усилено делящихся, плотно упакованных клеток, почти целиком заполненных протоплазмой. Следующая зона-зона растяжения. Здесь клетки увеличиваются в объеме (растягиваются). Одновременно в этой зоне появляются дифференцированные ситовидные трубки, затем следует зона корневых волосков. При дальнейшем увеличении возраста клеток, а так же расстояния от кончика корня корневые волоски исчезают, начинается кутинизация и опробковение клеточных оболочек. Поглощение воды происходит главным образом клетками зоны растяжения и зоны корневых волосков.

Рис. 1. Схема строения корня:

А - продольный разрез: 1-корневой чехлик; 2- меристема; 3-зона растяжения; 4- зона корневых волосков; 5- зона ветвления;

Б - поперечный разрез (по М.Ф. Даниловой): 1 - ризодерма; 2 - корневой волосок; 3 - паренхима; 4 - эндодерма; 5- пояски Каспари; 6 - перицикл; 7 - флоэма; 8 - ксилема. Пунктирные стрелки- пути передвижения веществ, поглощаемых из наружного раствора. Сплошные стрелки путь растворов по симпласту; прерывистые - путь по апопласту.

Поверхность корня в зоне корневых волосков покрыта ризодермой. Это однослойная ткань с двумя видами клеток, формирующими и не формирующими корневые волоски. В настоящее время показано, что клетки, формирующие корневые волоски, отличаются особым типом обмена веществ. У большинства растений клетки ризодермы обладают тонкими стенками. Вслед за ризодермой до перицикла идут клетки коры кора состоит из нескольких слоев паренхимных клеток. Важной особенностью коры является развитие системных крупных межклетников. На границе коры и центрального цилиндра развивается один слой плотно прилегающих друг к другу клеток- эндодерма, для которой характерно наличие поясков Каспари. Цитоплазма в клетках эндодермы плотно прилегает к клеточным оболочкам. По мере старения вся внутренняя поверхность клеток эндодермы, за исключением пропускных клеток, покрывается суберином. При дальнейшем старении сверху могут накладываться еще слои. По-видимому, именно клетки эндодермы служат основным физиологическим барьером для передвижения, как воды, так и питательных веществ. В центральном цилиндре расположены проводящие ткани корня.. При рассмотрении структуры корня в продольном направлении важно отметить, что начало роста корневых волосков, появление волосков Каспари в стенках эндодермы и дифференциация сосудов ксилемы происходят на одном и том же расстоянии от апикальной меристемы. Именно эта зона является основной зоной снабжения растений питательными веществами. Обычно поглощающая зона составляет 5-10 см в длину. Величина ее зависит от скорости роста корня в целом. Чем медленнее растет корень, тем зона поглощения короче.

Корень по длине можно разделить на несколько участков, имеющих различное строение и выполняющих различные функции. Эти участки называют зонами корня. Выделяют корневой чехлик и следующие зоны: деления, растяжения, всасывания и проведения.

Дифференциация тканей корня происходит в зоне всасывания. По происхождению это первичные ткани, так как они образуются из первичной меристемы конуса нарастания. Поэтому микроскопическое строение корня в зоне всасывания называют первичным. У однодольных растений первичное строение сохраняется и в зоне проведения. Здесь лишь отсутствует самый поверхностный слой с корневыми волосками - ризодерма (эпиблема). Защитную функцию выполняет ниже лежащая ткань - экзодерма.

В первичном строении корня выделяют три части: ризодерму, первичную кору и осевой (центральный) цилиндр.
Строение ризодермы рассматривалось в теме "Покровные ткани".

На первичную кору приходится основная масса первичных тканей корня. Ее клетки накапливают крахмал и другие вещества. Эта ткань содержит многочисленные межклетники, имеющие значение для аэрации клеток корня. Наружные клетки первичной коры, лежащие непосредственно под ризодермой, называются экзодермой. Основная масса коры (мезодерма) образована паренхимными клетками. Самый внутренний слой носит название эндодермы. Это ряд плотно сомкнутых клеток (без межклетников).
Центральный или осевой цилиндр (стела) состоит из проводящих тканей, окруженных одним или несколькими слоями клеток - перициклом.
Внутренняя часть центрального цилиндра у большинства растений занимает сплошной тяж первичной ксилемы, дающий к перициклу выступы в виде ребер. Между ними размещаются тяжи первичной флоэмы.

У двудольных и голосеменных растений уже в раннем возрасте в центральном цилиндре корня между ксилемой и флоэмой появляется камбий, деятельность которого приводит к вторичным изменениям и в конечном итоге формируется вторичная структура корня. К центру камбий откладывает клетки вторичной ксилемы, а к периферии - клетки вторичной флоэмы. В результате деятельности камбия первичная флоэма оттесняется кнаружи, а первичная ксилема остается в центре корня.

Вслед за изменениями в центральном цилиндре корня происходят изменения в коровой части. Клетки перицикла начинают делиться по всей окружности, в результате чего возникает слой клеток вторичной меристемы - феллогена (пробкового камбия). Феллоген, в свою очередь, делясь, откладывает наружу феллему, а внутрь - феллодерму. Образуется перидерма, пробковый слой которой изолирует первичную кору от центрального цилиндра. В результате вся первичная кора отмирает и постепенно сбрасывается; наружным слоем корня становится перидерма. Клетки феллодермы и остатки перицикла в дальнейшем разрастаются и составляют паренхимную зону, которую называют вторичной корой корня (рис. 2).

При развитии запасающей паренхимы главного корня происходит формирование запасающих корней или корнеплодов. Различают корнеплоды:

1. Монокамбиальные (редька, морковь) - закладывается только один слой камбия, а запасные вещества могут накапливаться либо в паренхиме ксилемы (ксилемный тип - редька), либо в паренхиме флоэмы (флоэмный тип - морковь);

2. Поликамбиальные - через определенные промежутки времени происходит заложение нового слоя камбия (свекла).

Рис. 2. Переход от первичного строения корня к вторичному:

1 - первичная флоэма, 2 - первичная ксилема, 3 - камбий, 4 - перицикл, 5 - эндодерма, 6 - мезодерма, 7 - ризодерма, 8 - экзодерма, 9 - вторичная ксилема, 10 - вторичная флоэма, 11 - вторичная кора, 12 - феллоген, 13 - феллема.

Надо отметить, что в целом корневые системы значительно менее разнообразны по сравнению с надземными организмами, в связи с тем что среда их обитания более однородна. Это не исключает того, что корневые системы изменяются под влиянием тех или иных условий. Хорошо показано влияние температуры на формирование корневых систем. Как правило, оптимальная температура для роста корневых систем несколько ниже по сравнению с ростом надземных органов того же растения. Все же сильное понижение температуры заметно тормозит рост корней и способствует образованию толстых, мясистых, мало ветвящихся корневых систем.

Большое значение для формирования корневых систем играет влажность почвы. Распределение корней по горизонтам почвы часто определяется распределением воды в почве. Обычно в первый период жизни растительного организма корневая система растет чрезвычайно интенсивно и, как следствие, скорее достигает более влажных слоев почвы. Некоторые растения развивают поверхностную корневую систему. Располагаясь близко к поверхности, сильно ветвящиеся корни перехватываются атмосферные осадки. В засушливых районах часто глубоко и мелко укореняющиеся виды растений растут рядом. Первые обеспечивают себя влагой за счет глубоких слоев почвы, вторые за счет усвоения выпадающих осадков.

Важное значение для развития корневых систем имеет аэрация . Именно недостаток кислорода является причиной плохого развития корневых систем на заболоченных почвах. Растения, приспособленные к росту на плохо аэрируемых почвах, имеют в корнях систему межклетников, которые вместе с межклетниками в стеблях и листьях составляют единую вентиляционную систему.

Большое значение имеют условия питания . Показано, что внесение фосфорных удобрений способствует углублению корневых систем, а внесение азотных удобрений – их усиленному ветвлению.



Осевой цилиндр корня

Перицикл . В осевом цилиндре корня можно различать сложный радиальный проводящий пучок и паренхиму - ткань, периферическая часть которой, в виде кольца клеток, называется перициклом (рис. 161, 162, 163). На поперечном срезе перицикл состоит из одного, двух или нескольких слоев клеток (у грецкого ореха Juglans regia , например, из 3-10). У многих растений перицикл имеет неодинаковую мощность по окружности. У осоковых и хвойных, например, он прерывается против ксилемных групп, так что протоксилема соприкасается непосредственно с эндодермой. Перицикл может включать смоляные ходы (у некоторых хвойных), масляные ходы (у моркови и других зонтичных), млечники (у колокольчиковых и некоторых сложноцветных), склеренхиму (у лютиковых - василистника, шпорника). У многих злаков клеточные стенки всех перициклических клеток со временем сильно утолщаются (рис. 164) и одревесневают.

В перицикле, обычно напротив ксилемных групп, зарождаются боковые корни . В нескольких клетках перицикла протоплазма с ядром заполняют всю клеточную полость. Эти клетки удлиняются в радиальном направлении, делятся тангентальными перегородками и образуют корнеродную дугу со слоями клеток, функционирующими по тому же типу, как в кончике корня. Молодой боковой корешок растет и пробивается через первичную кору наружу. Этот процесс происходит при участии кармашка - футляра из клеток, образующегося в результате деления клеток эндодермы, находящихся напротив корнеродной дуги (рис. 165). При росте корешка в длину кармашек прокладывает путь через первичную кору и эпиблему, действуя не только механически, но и химически; он выделяет

ферменты, растворяющие клеточные оболочки. После выхода корешка наружу кармашек обычно спадает (рис. 166). Заложение боковых корешков происходит весьма близко к конусу нарастания образующего их корня, выход же их наружу - на значительном расстоянии. У некоторых

Рис. 164. Часть поперечного разреза взрослого корня эриантуса краснеющего (Erianthus purpurascens ):

1 - эндодерма; 2 и 3 - примыкающие к ней другие слои первичной коры; 4 - тельца Раздорского.


Рис. 165. Начало формирования бокового корешка дымянки (Fumaria sp .):

1 - один из слоев первичной коры; 2 - эндодерма; 3 - перицикл; 4 - флоэма; 5 - ксилема; 6, 7, 8 - инициальные клетки точки роста корешка.

растений ответвления корней закладываются не напротив ксилемных групп, а близ них или даже напротив флоэмных групп. Так обстоит дело, например, у моркови, где в перицикле напротив ксилемных групп находятся выделительные каналы, или у злаков, у которых перицикл против ксилемных групп прерван либо представлен, как у пшеницы (на поперечном разрезе), одной весьма малой клеткой. У некоторых растений (например, у гусиного лука желтого Gagea lutea , у многих орхидных) корни не образуют боковых ответвлений.

В перицикле же обычно зарождаются и придаточные почки , которые могут развиться в придаточные побеги, так называемую корневую поросль (у вязеля разноцветного Coronilla varia , у тополей).

У некоторых растений, однако, придаточные почки закладываются в первичной коре корня (у чистяка лютичного). У многих древесных пород (например, у яблони) придаточные побеги на корневых черенках зарождаются в результате меристематической деятельности клеток лубодревесинных лучей.

Проводящая система . Внутрь от перицикла располагается проводящая система корня в виде сложного радиального пучка . По числу групп ксилемы (n ) и равному ему числу групп флоэмы (n ) различают пучки монархные (при n = 1), диархные (при n = 2, рис. 170, кс ), триархные (при n = 3), тетрархные (при n = 4, рис. 163, 169, 10 ). При n , равном 5-6 и больше, пучок (и весь корень) называют полиархным.

Монархные корни весьма редки. Диархны корни многих двудольных, в том числе зонтичных, губоцветных и некоторых голосеменных (елей, нашей сосны Pinus silvestris ). Число групп ксилемы двудольных и голосеменных растений обычно не превышает 5. Среди однодольных

А - материнский корень; Б - сформированный боковой корень первого порядка, пробившийся сквозь первичную кору; В - функционирующий боковой корень первого порядка; эпб - эпиблема; экз - экзодерма; энд - эндодерма; пц - перицикл; п. кс . - первичная ксилема; п. фл . - первичная флоэма; кр - секреторный кармашек; к.ч . - корневой чехлик; м. б. к . - меристематические зачатки боковых корней второго порядка; к. в . - корневые волоски.

преобладает полиархия: редко n равно или меньше 7 и во многих случаях достигает нескольких десятков (у некоторых крупных злаков, пальм).

Между особями, между корнями данной особи и даже между различными участками одного длинного корня в числе лучей могут быть различия.

Первичная ксилема в корне обычно экзархная, или центростремительная, т. е. заложение сосудов происходит от периферии центрального цилиндра к центру корня. Элементы протоксилемы наиболее узкопросветны; по характеру структуры они являются кольчатыми и спиральными трахеидами. Сосуды метаксилемы сравнительно широкопросветны; обычно это лестничные, сетчатые, точечные трахеи.

У многих однодольных формирование ксилемных групп происходит несколько своеобразно: раньше начинают дифференцироваться сосуды, более близкие к центру корня, а элементы, более близкие к эндодерме, формируются позже .

Первичная флоэма формируется в корнях в общем также центростремительно. Первичная флоэма может быть замечена раньше, чем первичная ксилема; обычно она и разрушается раньше, чем первичная ксилема.

Как и сосуды, ситовидные трубки первичной проводящей системы в корне более широкопросветны, чем в стебле, но они в корне менее многочисленны и слабее дифференцированы, чем в стебле.

Ксилемные группы нередко смыкаются друг с другом в центре корня, и тогда срединная часть поперечного сечения занята крупными сосудами (рис. 167), одним или несколькими.

Центральная область осевого цилиндра может быть занята тонкостенными паренхимными клетками (рис. 161), нередко хранящими запасы питательных веществ, например у мальвовых. В сердцевине многих сложноцветных находятся членистые млечники (у язычкоцветных, например одуванчиков) или выделительные каналы (у некоторых трубкоцветных, например у полыней).

Сердцевина корня может быть представлена также и тяжем склеренхимы (у многих барбарисовых, ириса и др., рис. 162).

Наличие сердцевины для корня не типично, развита она всегда значительно меньше, чем в стеблях.

Корни огромного большинства однодольных не имеют вторичного


Рис. 167. Заложение и начало деятельности камбия в корне проростка тыквы (Cucurbita pepo ):

энд - эндодерма; пц - перицикл; п. фл . - первичная флоэма; в. фл . - вторичная флоэма; к . - камбий; п. кс . - первичная ксилема; в. кс . - вторичная ксилема.

прироста. Многие из них, однако, претерпевают дополнительные изменения первичных тканей, усиливающие их механическую прочность. Изменения эти состоят преимущественно в склерификации - в утолщении и одревеснении оболочек клеток. Особенно сильно склерифицируются более мощные из придаточных корней, возникающих из узлов стебля над уровнем почвы и затем проникающих в нее. В таких корнях с возрастом их склерификации подвергаются экзодерма, несколько других наружных слоев первичной коры и большая часть паренхимы осевого цилиндра (у кукурузы), а у некоторых растений - наружные и внутренние слои первичной коры и почти все ткани осевого цилиндра .

Вторичным утолщением обладают корни лишь у очень немногих однодольных, а именно у некоторых из тех древовидных лилейных (Dracaena, Aletris ), которые образуют вторичный прирост в стеблях.

Кольцо утолщения закладывается обычно в перицикле. У некоторых видов (у Dracaena goldiena ) после образования некоторого количества вторичных тканей кольцо утолщения превращается в толстостенную постоянную ткань, а в области первичной коры закладывается другое кольцо утолщения. У драцены окаймленной (Dracaena marginata ) кольцо утолщения находится с самого начала в области первичной коры, кнаружи от эндодермы. Продукция кольца утолщения в корнях древовидных лилейных сходна с той, которая образуется в стебле: кнаружи - вторичная паренхима, а внутрь - паренхима с разбросанными в ней проводящими пучками со склеренхимными обложками.

У некоторых сосен бывает около 10 лучей.

У многих однодольных сосуды метаксилемы не располагаются по радиусам, как сосуды протоксилемы, а разбросаны по всей ткани осевого цилиндра.

Осевые цилиндры таких корней применяются в шелкометальном производстве и для изготовления щеток.

Мафия — это игра, которая помогает развивать интуицию и логическое мышление. Но это еще не все: у вас есть отличная возможность научиться говорить свободно на английском языке.

Основные правила игры:

Количество игроков составляет обычно 8-10 человек. В игре участвуют: «мафия», «честные граждане», «комиссар» и ведущий.

Для раздачи статусов обычно используют карты, но могут подойти и любые мелкие предметы, главное чтобы их можно было разделить на 2 группы. Если используются карты, то обычно «комиссар» - туз бубен, либо король, черные карты (пики, трефы) - «мафия», а красные (бубны, черви) - «честные граждане».

Ведущий тщательно тасует колоду и выдает карты на выбор. Получая карту, необходимо незаметно её посмотреть и спрятать, либо положить на стол рубашкой вверх.

Далее ведущий может произнести, примерно следующее: «Все закрыли глаза, наступила ночь». Все игроки закрывают глаза. Ведущий говорит: «Мафия открыла глаза и знакомится». Игроки с чёрными картами (мафия) открывают глаза и начинают запоминать «не спящих» игроков. Это делать необходимо максимально осторожно и беззвучно. Ведущий в это время может сказать: «Считаю до 10. Раз, два, три, .... Всё. Мафия познакомилась и уснула. Наступило утро. Все проснулись».

После наступления «дня» игроки обмениваются информацией: о реакции на, что было слышно ночью, что произошло за ночь; проходит голосование. Как "честные граждане", так и "мафия", для убеждения окружающих в своей правоте могут использовать честные и нечестные аргументы. Голосование — это процесс, когда живые играющие поднимают руки за посадку кого-либо в тюрьму. Если игрок посажен в тюрьму — больше половины игроков держали руки за него больше 5 секунд, он не имеет никакого «последнего слова». Если же его возгласы убедят часть игроков опустить руки — то он может говорить «последнее слово», а может и не говорить. После голосования игрок открывает свою карту.

Затем наступает следующая ночь. Ведущий объявляет: «Все заснули. Проснулась мафия для того, чтобы выбрать жертву». В это время мафиозные игроки совещаются взглядами и показывают, кого убить. Оптимальный вариант — это убить "комиссара". Игрок считается убитым ночью, если все члены мафии согласны. Ночью "мафия" обязана договориться, кого они выводят из игры.

Далее ведущий говорит: «Наступило утро. Мафия выбрала свою жертву. Мафия уснула. Проснулся комиссар». Просыпается "комиссар" и выбирает, кого проверить. Можно проверить только одного игрока. "Комиссар" указывает на кого-либо. Ведущий, молча, кивает в знак согласия, либо машет головой. Если "комиссар" этой ночью убит, ещё до его проверки ведущий показывает скрещенные руки — это означает, что "комиссар" убит, но "комиссар" все равно имеет право проверить одного игрока. Если "комиссар" показывает на игрока, а тот только что убит, то ведущий тоже показывает скрещенные руки — «труп» не может быть честным или мафией. Комиссар проверяет игроков, вызывающих у него наибольшие подозрения, либо абсолютно честных, чтобы было ясно, на кого опираться при обсуждении.

Затем ведущий говорит: «Наступил день. Комиссар проверил. Всё выяснил. Заснул. Все проснулись. И только Джек не проснулся. И был Джек честным человеком…» Карта убитого вскрывается. Если "комиссар" убит днём, то далее ведущий пропускает утро комиссара. Во второй и все последующие дни имеется огромное количество информации: кто и когда за кого голосовал, что происходило и кого убили ночью, кто как себя вёл, кого проверял "комиссар", сколько осталось мафиози. Игроки пытаются составить цепочки: «Если Том в мафии, то кто ещё? Элен и Роберт». Все составляют свои списки подозреваемых и голосуют.