Уход и... Инструменты Дизайн ногтей

Интеграционное тестирование достоинства и недостатки. Виды тестирования и подходы к их применению. Методы сборки модулей

Всего приложения. Но между этими двумя этапами тестирования происходят и другие. Я, как и многие другие, называю такие тесты интеграционными.

Несколько слов о терминологии

Много общаясь с любителями разработки через тестирование, я пришёл к выводу, что они имеют другое определение для термина «интеграционные тесты». С их точки зрения, интеграционный тест проверяет «внешний» код, то есть тот, который взаимодействует с «внешним миром», миром приложения.

Поэтому, если их код использует Ajax или localStorage, или IndexedDB и, следовательно, не может быть протестирован с помощью юнит-тестов, они оборачивают этот функционал в интерфейс и мокают этот интерфейс для юнит-тестов, а тестирование реальной реализации интерфейса называют «интеграционным тестом». С этой точки зрения «интеграционный тест» просто тестирует код, который взаимодействует с «реальным миром» вне тех юнитов, которые работают без учета реального мира.

Я, как и многие другие, склонен использовать понятие «интеграционные тесты» для обозначения тестов, которые проверяют интеграцию двух или более юнитов (модулей, классов и т. д.). При этом неважно, скрываете ли вы реальный мир через замоканные интерфейсы.

Мое эмпирическое правило о том, следует ли использовать реальные реализации Ajax и других операций I/O (ввода-вывода) в интеграционных тестах, заключается в следующем: если вы можете это сделать и тесты все еще выполняются быстро и не ведут себя странно, то проверяйте I/O. Если операция I/O сложная, медленная или просто странная, то используйте в интеграционных тестах mock-объекты.

В нашем калькуляторе, к счастью, единственным реальным I/O является DOM. Нет вызовов Ajax и других причин писать «моки».

Фейковый DOM

Возникает вопрос: нужно ли писать фейковый DOM в интеграционных тестах? Применим моё правило. Использование реального DOM сделает тесты медленными? К сожалению, ответ - «да»: использование реального DOM означает использование реального браузера, что делает тесты медленными и непредсказуемыми.

Мы отделим большую часть кода от DOM или протестируем всё вместе в E2E-тестах? Оба варианта не оптимальны. К счастью, есть третье решение: jsdom . Этот замечательный и удивительный пакет делает именно то, чего от него ждёшь - реализует DOM в NodeJS.

Он работает, он быстр, он запускается в Node. Если вы используете этот инструмент, то можете перестать рассматривать DOM как «I/O». А это очень важно, ведь отделить DOM от фронтенд-кода сложно, если не невозможно. (Например, я не знаю, как сделать это.) Я предполагаю, что jsdom был написан именно для запуска фронтенд-тестов под Node.

Давайте посмотрим, как он работает. Как обычно, есть инициализирующий код и есть тестовый код, но на этот раз мы начнём с тестового. Но перед этим - отступление.

Отступление

Эта часть является единственной частью серии, которая ориентирована на конкретный фреймворк. И фреймворк, который я выбрал - это React. Не потому, что это лучший фреймворк. Я твердо верю, что нет такого понятия. Я даже не считаю, что существуют лучшие фреймворки для конкретных случаев использования. Единственное, во что я верю - люди должны использовать среду, в которой им наиболее комфортно работать.

И фреймворком, с которым мне наиболее комфортно работать, является React, поэтому следующий код написан на нём. Но, как мы увидим, интеграционные тесты фронтенда с использованием jsdom должны работать во всех современных фреймворках.

Вернемся к использованию jsdom.

Использование jsdom

const React = require("react") const e = React.createElement const ReactDom = require("react-dom") const CalculatorApp = require("../../lib/calculator-app") ... describe("calculator app component", function () { ... it("should work", function () { ReactDom.render(e(CalculatorApp), document.getElementById("container")) const displayElement = document.querySelector(".display") expect(displayElement.textContent).to.equal("0")

Интересными являются строки с 10 по 14. В строке 10 мы визуализируем компонент CalculatorApp , который (если вы следите за кодом в репозитории) также отображает компоненты Display и Keypad .

Затем мы проверяем, что в строках 12 и 14 элемент в DOM показывает на дисплее калькулятора начальное значение, равное 0.

И этот код, который работает под Node, использует document ! Глобальная переменная document является переменной браузера, но вот она здесь, в NodeJS. Чтобы эти строки работали, требуется очень большой объем кода. Этот очень большой объем кода, который находится в jsdom, является, по сути, полной реализацией всего, что есть в браузере, за вычетом самого рендеринга!

Строка 10, которая вызывает ReactDom для визуализации компонента, также использует document (и window), так как ReactDom часто использует их в своем коде.

Итак, кто создает эти глобальные переменные? Тест - давайте посмотрим на код:

Before(function () { global.document = jsdom(`

`) global.window = document.defaultView }) after(function () { delete global.window delete global.document })

В строке 3 мы создаём простой document , который содержит лишь div .

В строке 4 мы создаём глобальное window для объекта. Это нужно React.

Функция cleanup удалит эти глобальные переменные, и они не будут занимать память.

В идеале переменные document и window должны быть не глобальными. Иначе мы не сможем запустить тесты в параллельном режиме с другими интеграционными тестами, потому что все они будут переписывать глобальные переменные.

К сожалению, они должны быть глобальными - React и ReactDom нуждаются в том, чтобы document и window были именно такими, поскольку вы не можете им их передать.

Обработка событий

А как насчет остальной части теста? Давайте посмотрим:

ReactDom.render(e(CalculatorApp), document.getElementById("container")) const displayElement = document.querySelector(".display") expect(displayElement.textContent).to.equal("0") const digit4Element = document.querySelector(".digit-4") const digit2Element = document.querySelector(".digit-2") const operatorMultiply = document.querySelector(".operator-multiply") const operatorEquals = document.querySelector(".operator-equals") digit4Element.click() digit2Element.click() operatorMultiply.click() digit2Element.click() operatorEquals.click() expect(displayElement.textContent).to.equal("84")

Остальная часть теста проверяет сценарий, в котором пользователь нажимает «42 * 2 =» и должен получить «84».

И он делает это красивым способом - получает элементы, используя известную функцию querySelector , а затем использует click , чтобы щелкнуть по ним. Вы даже можете создать событие и иницировать его вручную, используя что-то вроде:

Var ev = new Event("keyup", ...); document.dispatchEvent(ev);

Но встроенный метод click работает, поэтому мы используем его.

Так просто!

Проницательный заметит, что этот тест проверяет точно то же самое, что и E2E-тест. Это правда, но обратите внимание, что этот тест примерно в 10 раз быстрее и является синхронным по своей природе. Его гораздо проще писать и гораздо легче читать.

А почему, если тесты одинаковы, нужен интеграционный? Ну, просто потому, что это учебный проект, а не настоящий. Два компонента составляют всё приложение, поэтому интеграционные и E2E-тесты делают одно и то же. Но в реальном приложении E2E-тест состоит из сотен модулей, тогда как интеграционные тесты включают в себя несколько, быть может, 10 модулей. Таким образом, в реальном приложении будет около 10 E2E-тестов, но сотни интеграционных тестов.

Из институтского курса по технологиям программирования я вынес следующую классификацию видов тестирования (критерий - степень изолированности кода). Тестирование бывает:

  • Блочное (Unit testing) - тестирование одного модуля в изоляции.
  • Интеграционное (Integration Testing) - тестирование группы взаимодействующих модулей.
  • Системное (System Testing) - тестирование системы в целом.
Классификация хорошая и понятная. Однако на практике выясняется, что у каждого вида тестирования есть свои особенности. И если их не учитывать, тестирование станивится обременительным и им не занимаются в должной мере. Здесь я собрал подходы к реальному применению различных видов тестирования. А поскольку я пишу на.NET, ссылки будут на соответствующие библиотеки.

Блочное тестирование

Блочное (модульное, unit testing) тестирование наиболее понятное для программиста. Фактически это тестирование методов какого-то класса программы в изоляции от остальной программы.

Не всякий класс легко покрыть unit тестами. При проектировании нужно учитывать возможность тестируемости и зависимости класса делать явными. Чтобы гарантировать тестируемость можно применять TDD методологию , которая предписывает сначала писать тест, а потом код реализации тестируемого метода. Тогда архитектура получается тестируемой. Распутывание зависимостей можно осуществить с помощью Dependency Injection . Тогда каждой зависимости явно сопоставляется интерфейс и явно определяется как инжектируется зависимость - в конструктор, в свойство или в метод.

Для осуществления unit тестирования существуют специальные фреймворки. Например, NUnit или тестовый фреймфорк из Visual Studio 2008. Для возможности тестирования классов в изоляции существуют специальные Mock фреймворки. Например, Rhino Mocks . Они позволяют по интерфейсам автоматически создавать заглушки для классов-зависимостей, задавая у них требуемое поведение.

По unit тестированию написано много статей. Мне очень нравится MSDN статья Write Maintainable Unit Tests That Will Save You Time And Tears , в которой хорошо и понятно рассказывается как создавать тесты, поддерживать которые со временем не становится обременительно.

Интеграционное тестирование

Интеграционное тестирование, на мой взгляд, наиболее сложное для понимания. Есть определение - это тестирование взаимодействия нескольких классов, выполняющих вместе какую-то работу. Однако как по такому определению тестировать не понятно. Можно, конечно, отталкиваться от других видов тестирования. Но это чревато.

Если к нему подходить как к unit-тестированию, у которого в тестах зависимости не заменяются mock-объектами, то получаем проблемы. Для хорошего покрытия нужно написать много тестов, так как количество возможных сочетаний взаимодействующих компонент - это полиномиальная зависимость. Кроме того, unit-тесты тестируют как именно осуществляется взаимодействие (см. тестирование методом белого ящика). Из-за этого после рефакторинга, когда какое-то взаимодействие оказалось выделенным в новый класс, тесты рушатся. Нужно применять менее инвазивный метод.

Подходить же к интеграционному тестированию как к более детализированному системному тоже не получается. В этом случае наоборот тестов будет мало для проверки всех используемых в программе взаимодействий. Системное тестирование слишком высокоуровневое.

Хорошая статья по интеграционному тестированию мне попалась лишь однажды - Scenario Driven Tests . Прочтя ее и книгу Ayende по DSL DSLs in Boo, Domain-Specific Languages in .NET у меня появилась идея как все-таки устроить интеграционное тестирование.

Идея простая. У нас есть входные данные, и мы знаем как программа должна отработать на них. Запишем эти знания в текстовый файл. Это будет спецификация к тестовым данным, в которой записано, какие результаты ожидаются от программы. Тестирование же будет определять соответствие спецификации и того, что действительно находит программа.

Проиллюстрирую на примере. Программа конвертирует один формат документа в другой. Конвертирование хитрое и с кучей математических расчетов. Заказчик передал набор типичных документов, которые ему требуется конвертировать. Для каждого такого документа мы напишем спецификацию, где запишем всякие промежуточные результаты, до которых дойдет наша программа при конвертировании.

1) Допустим в присланных документах есть несколько разделов. Тогда в спецификации мы можем указать, что у разбираемого документа должны быть разделы с указанными именами:

$SectionNames = Введение, Текст статьи, Заключение, Литература

2) Другой пример. При конвертировании нужно разбивать геометрические фигуры на примитивы. Разбиение считается удачным, если в сумме все примитивы полностью покрывают оригинальную фигуру. Из присланных документов выберем различные фигуры и для них напишем свои спецификации. Факт покрываемости фигуры примитивами можно отразить так:

$IsCoverable = true

Понятно, что для проверки подобных спецификаций потребуется движок, который бы считывал спецификации и проверял их соответствие поведению программы. Я такой движок написал и остался доволен данным подходом. Скоро выложу движок в Open Source. (UPD: Выложил)

Данный вид тестирования является интеграционным, так как при проверке вызывается код взаимодействия нескольких классов. Причем важен только результат взаимодействия, а не детали и порядок вызовов. Поэтому на тесты не влияет рефакторинг кода. Не происходит избыточного или недостаточного тестирования - тестируются только те взаимодействия, которые встречаются при обработке реальных данных. Сами тесты легко поддерживать, так как спецификация хорошо читается и ее просто изменять в соответствии с новыми требованиями.

Системное тестирование

Системное - это тестирование программы в целом. Для небольших проектов это, как правило, ручное тестирование - запустил, пощелкал, убедился, что (не) работает. Можно автоматизировать. К автоматизации есть два подхода.

Первый подход - это использовать вариацию MVC паттерна - Passive View (вот еще хорошая статья по вариациям MVC паттерна) и формализовать взаимодействие пользователя с GUI в коде. Тогда системное тестирование сводится к тестированию Presenter классов, а также логики переходов между View. Но тут есть нюанс. Если тестировать Presenter классы в контексте системного тестирования, то необходимо как можно меньше зависимостей подменять mock объектами. И тут появляется проблема инициализации и приведения программы в нужное для начала тестирования состояние. В упомянутой выше статье Scenario Driven Tests об этом говорится подробнее.

Второй подход - использовать специальные инструменты для записи действий пользователя. То есть в итоге запускается сама программа, но щелканье по кнопкам осуществляется автоматически. Для.NET примером такого инструмента является White библиотека . Поддерживаются WinForms, WPF и еще несколько GUI платформ. Правило такое - на каждый use case пишется по скрипту, который описывает действия пользователя. Если все use case покрыты и тесты проходят, то можно сдавать систему заказчику. Акт сдачи-приемки должен подписать.


Интеграционное тестирование - это тестирование части системы, состоящей из двух и более модулей. Основная задача интеграционного тестирования - поиск дефектов, связанных с ошибками в реализации и интерпретации интерфейсного взаимодействия между модулями.

С технологической точки зрения интеграционное тестирование является количественным развитием модульного, поскольку так же, как и модульное тестирование, оперирует интерфейсами модулей и подсистем и требует создания тестового окружения, включая заглушки (Stub) на месте отсутствующих модулей. Основная разница между модульным и интеграционным тестированием состоит в целях, то есть в типах обнаруживаемых дефектов, которые, в свою очередь, определяют стратегию выбора входных данных и методов анализа. В частности, на уровне интеграционного тестирования часто применяются методы, связанные с покрытием интерфейсов, например, вызовов функций или методов, или анализ использования интерфейсных объектов, таких как глобальные ресурсы, средства коммуникаций, предоставляемых операционной системой.

Задача, решаемая методом интеграционного тестирования , - тестирование межмодульных связей, реализующихся при исполнении программного обеспечения комплекса K. Интеграционное тестирование использует модель "белого ящика" на модульном уровне. Поскольку тестировщику текст программы известен с детальностью до вызова всех модулей, входящих в тестируемый комплекс, применение структурных критериев на данном этапе возможно и оправдано.

Интеграционное тестирование применяется на этапе сборки модульно оттестированных модулей в единый комплекс. Известны два метода сборки модулей:
Монолитный , характеризующийся одновременным объединением всех модулей в тестируемый комплекс
Инкрементальный , характеризующийся пошаговым (помодульным) наращиванием комплекса программ с пошаговым тестированием собираемого комплекса. В инкрементальном методе выделяют две стратегии добавления модулей:
o "Сверху вниз" и соответствующее ему восходящее тестирование.
o "Снизу вверх" и соответственно нисходящее тестирование.

Особенности монолитного тестирования заключаются в следующем: для замены неразработанных к моменту тестирования модулей, кроме самого верхнего, необходимо дополнительно разрабатывать драйверы (test driver) и/или заглушки (stub), замещающие отсутствующие на момент сеанса тестирования модули нижних уровней.

Сравнение монолитного и интегрального подхода дает следующее:
Монолитное тестирование требует больших трудозатрат, связанных с дополнительной разработкой драйверов и заглушек и со сложностью идентификации ошибок, проявляющихся в пространстве собранного кода.
Пошаговое тестирование связано с меньшей трудоемкостью идентификации ошибок за счет постепенного наращивания объема тестируемого кода и соответственно локализации добавленной области тестируемого кода.
Монолитное тестирование предоставляет большие возможности распараллеливания работ особенно на начальной фазе тестирования.

Особенности нисходящего тестирования заключаются в следующем: организация среды для исполняемой очередности вызовов оттестированными модулями тестируемых модулей, постоянная разработка и использование заглушек, организация приоритетного тестирования модулей, содержащих операции обмена с окружением, или модулей, критичных для тестируемого алгоритма.

Недостатки нисходящего тестирования :
Проблема разработки достаточно "интеллектуальных" заглушек, т.е. заглушек, способных к использованию при моделировании различных режимов работы комплекса, необходимых для тестирования
Сложность организации и разработки среды для реализации исполнения модулей в нужной последовательности
Параллельная разработка модулей верхних и нижних уровней приводит к не всегда эффективной реализации модулей из-за подстройки (специализации) еще не тестированных модулей нижних уровней к уже оттестированным модулям верхних уровней

Недостатки восходящего тестирования :
Запаздывание проверки концептуальных особенностей тестируемого комплекса
Необходимость в разработке и использовании драйверов

Особенности интеграционного тестирования для процедурного программирования

Процесс построения набора тестов при структурном тестировании определяется принципом, на котором основывается конструирование Графа Модели Программы (ГМП). От этого зависит множество тестовых путей и генерация тестов, соответствующих тестовым путям.

Первым подходом к разработке программного обеспечения является процедурное (модульное) программирование. Традиционное процедурное программирование предполагает написание исходного кода в императивном (повелительном) стиле, предписывающем определенную последовательность выполнения команд, а также описание программного проекта с помощью функциональной декомпозиции. Такие языки, как Pascal и C, являются императивными. В них порядок исходных строк кода определяет порядок передачи управления, включая последовательное исполнение, выбор условий и повторное исполнение участков программы. Каждый модуль имеет несколько точек входа (при строгом написании кода - одну) и несколько точек выхода (при строгом написании кода - одну). Сложные программные проекты имеют модульно-иерархическое построение, и тестирование модулей является начальным шагом процесса тестирования ПО. Построение графовой модели модуля является тривиальной задачей, а тестирование практически всегда проводится по критерию покрытия ветвей C1, т.е. каждая дуга и каждая вершина графа модуля должны содержаться, по крайней мере, в одном из путей тестирования.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

В статье третьей (УШ № 32) говорилось о традиционных тестах. Там же приводились определения гомогенных и гетерогенных тестов. В сегодняшней статье - материал о нетрадиционных тестах, к которым можно отнести тесты интегративные, адаптивные, многоступенчатые и так называемые критериально-ориентированные тесты.

Интегративным можно назвать тест, состоящий из системы заданий, отвечающих требованиям интегративного содержания, тестовой формы, возрастающей трудности заданий, нацеленных на обобщенную итоговую диагностику подготовленности выпускника образовательного учреждения. Диагностика проводится посредством предъявления таких заданий, правильные ответы на которые требуют интегрированных (обобщенных, явно взаимосвязанных) знаний двух и большего числа учебных дисциплин. Создание таких тестов дается только тем преподавателям, которые владеют знаниями ряда учебных дисциплин, понимают важную роль межпредметных связей в обучении, способны создавать задания, правильные ответы на которые требуют от учащихся знаний различных дисциплин и умений применять такие знания.

Интегративному тестированию предшествует организация интегративного обучения. К сожалению, существующая сейчас классно-урочная форма проведения занятия, в сочетании с чрезмерным дроблением учебных дисциплин, вместе с традицией преподавания отдельных дисциплин (а не обобщенных курсов), ещё долго будут тормозить внедрение интегративного подхода в процессы обучения и контроля подготовленности. Преимущество интегративных тестов перед гетерогенными заключается в большей содержательной информативности каждого задания и в меньшем числе самих заданий. Потребность создания интегративных тестов возрастает по мере повышения уровня образования и числа изучаемых учебных дисциплин. Поэтому попытки создания таких тестов отмечаются, в основном, в высшей школе. Особенно полезны интегративные тесты для повышения объективности и эффективности проведения итоговой государственной аттестации учащихся и студентов.

Методика создания интегративных тестов сходна с методикой создания традиционных тестов, за исключением работы по определению содержания заданий. Для отбора содержания интегративных тестов использование экспертных методов является обязательным. Это связано с тем, что только эксперты могут определить адекватность содержания заданий целям теста. Но, прежде всего, самим экспертам важно будет определиться с целями образования и изучения тех или иных образовательных программ, а затем и договориться между собой по принципиальным вопросам, оставив для экспертизы лишь вариации в понимании степени значимости отдельных элементов в общей структуре подготовленности. Согласованный, по принципиальным вопросам, отобранный состав экспертов в зарубежной литературе нередко панелью. Или учитывая различия в смысле последнего слова, в русском языке, такой состав можно назвать представительной экспертной группой. Группа подбирается так, чтобы адекватно представлять подход, используемый при создании соответствующего теста.

Интеграционное тестирование редко попадает в заголовки статей из раздела «Информационные технологии». Масштаб ошибок интеграции не сравнится по степени критичности и по размеру понесенных убытков с ошибками безопасности.

Бизнес, который готовится выпустить продукт на рынок, также редко закладывает в план тестирование интеграции. Обычно проверяется функциональность решения (в рамках ), возможность ПО работать в различных браузерах и ОС (кроссбраузерное и кроссплатформенное тестирование соответственно) или локализация продукта (если речь идет о выпуске решения на международный рынок).

Однако важность интеграционного тестирования недооценивать нельзя. Грамотное интеграционное тестирование – один из основных шагов на пути к выпуску надежного продукта.

Что же это за тестирование и как оно проводится?

Первой на ум приходит интеграция продукта с платежными сервисами. Это, безусловно, важный аспект для проверки тестировщиками, но далеко не единственный.

Бизнес сегодня опирается на множество программных решений: вебсайт, системы ERP, CRM, CMS. От интеграции всех систем зависит качество обработки запросов пользователей, скорость предоставления услуг и успешность бизнеса в целом.

На примере реального проекта a1qa покажем, интеграция каких систем может тестироваться и что требуется от команды, чтобы получить релевантные результаты проверок.

Интеграционное тестирование: обзор проекта

Заказчик

В a1qa обратился представитель популярного англоязычного журнала. Издание доступно как в печатном виде, так и онлайн. На тестировании онлайн-портала и сфокусировалась команда a1qa.

Задача проекта

Помимо функциональности портала, команда должна была проверить модуль подписки, который состоял из нескольких компонентов. Данный модуль представлял особую важность, поскольку именно он отвечал за монетизацию онлайн-версии журнала.

Для реализации функции подписки и ее управления заказчик использовал следующие программные решения:

  • CMS-решение eZ Publish. Функция – предоставлять любые данные о подписках с применением различных фильтров: типа подписки, ее продолжительности, применяемых скидок, бонусов и так далее.
  • Вебсайт, через который пользователь взаимодействует с системой.
  • CRM Salesforce. Функция – хранение данных о пользователях и приобретенных ими подписках. Дополнительная надстройка позволяет команде заказчика управлять приобретенными подписками, а также создавать новые и проверять старые подписки.
  • SaaS-решение Zuora для выставления счетов и обработки платежей.
  • Обмен данными между системами осуществляется с помощью сервисной шины Mule ESB.
  • База данных как инструмент Business Intelligence.
  • Salesforce Marketing Cloud – инструмент рассылки корреспонденции и коммуникации с пользователями.
  • Drupal ранее использовался вместо eZ Publish. На данный момент все еще остается системой, хранящей данные о зарегистрированных пользователях, и инструментом для публикации статей, видео- и аудио-контента.

Процесс оформления подписки был построен следующим образом:

  1. Подготовка набора данных, создание подписки.
  2. Предоставление пользователю возможности приобретения подписки после внесения персональных и платежных данных.
  3. Обработка заказа третьей стороной, предоставляющей свои услуги клиенту в данной сфере.

Цель клиента

Клиент хотел освободить процесс от третьих сторон. Для этого требовалось убедиться, что разработанная система подписки может бесперебойно решать все задачи без участия третьих сторон.

Задача тестирования

Команда a1qa должна была подтвердить, что продукт способен выполнять возложенные функции. В ходе проекта некоторые компоненты разрабатывались с нуля, некоторые настраивались на базе готовых.

Важно было проверить, как они взаимодействуют между собой, и ответить на вопрос: способна ли вся система решать требуемые задачи?

Стратегия проведения интеграционного тестирования a1qa

  1. Определены ключевые бизнес-процессы, которые должна выполнять система: создание, отмена, приостановка и возобновление подписки, изменение платежной информации для подписки и т.д.
  2. Разработана тестовая документация с учетом всех возможных вариаций. Вариации – различные альтернативные выполнения операций (например, отмена подписки может произойти по желанию заказчика, а может быть произведена автоматически, если платежные данные были отклонены банком), а также различные параметры (например, тип продукта). В документации требовалось учесть проверку того, например, что создание подписки пройдет успешно для всех продуктов в рамках каждого бизнес-процесса.
  3. Проведение тестирования, которое заключалось в пошаговом прохождении каждого бизнес-процесса со стартового компонента (где он был инициирован) через все промежуточные и до финального (или финальных) с проверкой того, что все данные передаются правильно, а ожидаемые события на самом деле случаются.

Большинство процессов включало в себя передачу данных из одного модуля (чаще всего из Salesforce) во все остальные. Если начальной точкой был не SF, то информация из модуля поступала в MuleESB, а потом в SF, а оттуда во все остальные (опять же, через MuleESB).

На проведение тестирования интеграции было потрачено порядка 40% всех трудозатрат QA-команды.

Трудности

Большинство трудностей при проведении тестирования интеграции было вызвано недостаточной проработкой требований на начальном этапе проекта. Именно некачественные требования стали причиной множества дефектов и нестабильности системы в целом.

Поясним. Изначально требования выглядели как набор пользовательских историй (User Story) в JIRA и содержали только заголовки без какого-либо пояснения. Создавали их чаще всего разработчики.

Команда a1qa инициировала изменения в подходе написания требований: теперь для них обязательно добавляются описания и Acceptance Criteria, создаются промежуточные задачи с четким определением, кто и за что отвечает.

Автоматизация интеграционного тестирования

Автоматизация тестирования – непростой вопрос, который требует внимательного сопоставления всех «за» и «против».

Автоматизация интеграционного тестирования требует еще более внимательного подхода. С одной стороны, разработка автотестов сокращает время на выполнение тестов. С другой стороны, автотесты эффективны, когда работают с повторяющимися наборами данных или, как минимум, предсказуемыми.

А при оформлении подписки далеко не всегда так происходит: данные обновляются регулярно и хаотично. Поэтому тестирование проводилось преимущественно вручную.
Лишь на поздних стадиях проекта была внедрена автоматизация. Какие же тест-кейсы были автоматизированы? Были отобраны ключевые бизнес-процессы. Для каждого бизнес-процесса были прописаны вариации его прохождения. Автоматизированы были те тест-кейсы, которые покрывали регулярные и стабильные бизнес-процессы. Тем самым, автоматизация обеспечила максимальное покрытие при оптимальных затратах усилий.

Результаты

Работа над проектом продолжается, но уже можно сказать, что система функционирует надежно. Каждый компонент выполняет свою роль. А все вместе они помогают достичь поставленной цели – обеспечить бесперебойную работу важных для заказчика бизнес-процессов.

Подводя итоги

Тестирование интеграции обязательно, если на проекте задействованы процессы со сложной бизнес-логикой, которые задействуют различные системы.

Для проведения эффективного тестирования, обнаружения всех дефектов и недочетов команда по тестированию должна:

  1. Понимать структуру продукта, знать, как между собой взаимодействуют все модули;
  2. Владеть спецификой проекта. Это важно для написания хороших тест-кейсов, анализа результатов прогона тестов, выбора между ручным и автоматизированным тестированием.

Как заказать интеграционное тестирование?

Для получения бесплатной консультации по интеграционному тестированию, заполните .